
Institute for Software Research
University of California, Irvine

isr.uci.edu/publications

Joshua Garcia
University of California, Irvine
joshua.garcia@uci.edu			

	 					

Sam Malek
University of California, Irvine
malek@uci.edu

		

Path-Sensitive Analysis of Message-Controlled
Communication for Android Apps

September 2016
ISR Technical Report # UCI-ISR-16-4

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

isr.uci.edu

Path-Sensitive Analysis of Message-Controlled
Communication for Android Apps

Joshua Garcia and Sam Malek
Institute for Software Research, University of California, Irvine

Department of Informatics, University of California, Irvine
Irvine, California, USA
{joshug4, malek}@uci.edu

Abstract—To support quality development of Android apps,
a variety of techniques have been produced for analyzing the
exchange of messages, i.e., Intents, among Android components.
Intents and their payloads can cause a variety of operations to be
performed, and can be filled with malicious data, demonstrating
that Intents can serve as attack vectors of an insecure app. Intents
may further guard or control execution of different program
paths, which may contain vulnerable, faulty, or energy-inefficient
code. While different techniques have focused on determining
possible Intents in an app, none have focused on analyzing Intents
per program path, i.e., path-sensitive Intent analysis. Analyzing
a program per path allows the determination of the attributes of
Intents needed to control execution of a program from its message-
based inter-component interface. Unfortunately, analyzing apps
in a path-sensitive manner faces scalability issues. To address
these challenges, we introduce a novel, scalable framework
called PHENOMENON (PatH-sEnsitive aNalysis Of MEssage-
coNtrOlled communication for aNdroid apps). We evaluate the
accuracy of PHENOMENON’s path-sensitive analysis on five
apps with 4KSLOC–460KSLOC, over a total of 4,100 program
paths, achieving an accuracy of over 96% for each app. To eval-
uate PHENOMENON’s efficiency, we assess it on 100 randomly
selected apps, demonstrating an average runtime of 30 seconds,
with no app taking more than 180 seconds to analyze.1

Keywords-Android; Intent; path-sensitive; event-based;
message-control;

I. INTRODUCTION

Mobile devices are ubiquitous, with hundred of millions
of smartphones and tablets used worldwide. Among these
popular mobile devices, Android has emerged as the dominant
platform. Fueling the popularity of such devices are the
abundance of applications (apps) available on a variety of app
markets (e.g., Google Play). This abundance of apps arises,
in large part, due to the Android platform’s low barrier to
entry for amateur and professional developers alike, where a
re-usable infrastructure enables relatively quick production of
apps. However, this low barrier to entry is associated with an
increased risk of apps with errors, security vulnerabilities, poor
energy efficiency, etc. Consequently, developers and designers
of such apps need to utilize appropriate approaches, tools, and
frameworks that aid them in satisfying an app’s functional and
non-functional requirements.

To support quality development of Android apps, a vari-
ety of techniques have been produced for analyzing inter-

1ISR Technical Report UCI-ISR-16-4, September 2016

component communication (ICC) of Android apps [1], [2], [3],
[4]. The main form of ICC in Android apps are Intents, which
are asynchronous messages that enable transfer of data and
control between Android components and apps [5]. Intents can
serve as interfaces to background services of apps (e.g., app-
specific services or repeating alarms), communication between
GUI components, performing broadcasts between apps, and
other forms of ICC. Intents and their payloads can cause
a variety of operations to be performed, and can be filled
with malicious data, demonstrating that Intents can serve as
attack vectors of an insecure app. Intents may further guard
or control execution of different program paths, which may
contain vulnerable, faulty, or energy-inefficient code.

While different techniques have focused on determining
possible Intents in an app, none have focused on analyzing
Intents per program path, i.e., path-sensitive Intent analysis.
Analyzing Intents per program path allows engineers to ana-
lyze different use-case scenarios involving different parts of an
app. Furthermore, analyzing programs per path enables deter-
mination of the effects of Intent payloads on the execution of
particular program paths. For example, a specific combination
of attributes of an Intent may cause a particular vulnerability
to be exploited along a program path. As a result, analyzing
a program per path allows the determination of the attributes
of Intents needed to control execution of a program from its
ICC interface.

Unfortunately, analyzing apps in a path-sensitive manner
faces scalability issues. Specifically, the number of paths in a
program grows exponentially. Due to this challenge, existing
analysis techniques have focused on utilizing more scalable
analyses (i.e., data-flow analyses). Although such analyses
provide useful information as to the possible Intents in an app,
these analyses significantly over-approximate possible Intent-
driven behaviors in an app and cannot determine the specific
payload of an Intent needed to execute a particular program
path.

To provide scalable path-sensitive analyses of Intents and
the manner in which they control program execution, we
introduce a novel framework called PHENOMENON (PatH-
sEnsitive aNalysis Of MEssage-coNtrOlled communication
for aNdroid apps). Our framework performs its analyses in
a scalable and path-sensitive manner. To achieve scalability,
PHENOMENON performs a pre-analysis to first identify tar-

get program statements at which an Intent or its payload
may be used, and the attributes that may control execution
of a particular path in a program. Using that information,
PHENOMENON performs a backward symbolic execution
per identified target statement, pruning the potential analysis
space. This symbolic execution is conducted in a parallel
manner to improve scalability. To achieve this parallelism,
our algorithm carefully handles locking critical sections of
our algorithm where data may be shared. We further carefully
select the number of paths analyzed per target statement, to
avoid cases where the underlying analysis may not terminate,
due to path explosion. Our experiments demonstrate that it
is possible to set an upper bound on the number of paths
analyzed, while still maintaining completeness or accuracy of
our analysis.

The main contributions of PHENOMENON are as follows:
• We present a scalable, accurate framework, PHE-

NOMENON, for the determination of message-controlled
communication per program path in an Android app.

• We construct an implementation of PHENOMENON and
make it, and other evaluation artifacts, publicly available
for inspection, replication, and support of future research
[6].

• We evaluate the accuracy of PHENOMENON’s path-
sensitive analysis on five apps with 4KSLOC–460KSLOC,
over a total of 4,100 program paths, achieving an accuracy
of over 96% for each app. More specifically, we assessed
the extent to which PHENOMENON is capable of accurately
identifying the Intents along particular program paths and
the accuracy of expressions generated by PHENOMENON
describing message control along those paths.

• To assess the efficiency of PHENOMENON, we ran PHE-
NOMENON’s implementation on 100 randomly selected
apps, demonstrating an average runtime of 30 seconds, with
no app taking more than 180 seconds to analyze.

II. ANDROID BACKGROUND AND RUNNING EXAMPLE

The Android Development Framework (ADF) supplies de-
velopers with a set of customizable components and com-
munication mechanisms that allow construction of mobile
apps. In particular, Android includes four pre-defined compo-
nents: Activities, Services, Broadcast Receivers, and Content
Providers. An Activity represents a GUI screen that an app
displays to a user and allows her to interact with the app.
A Service runs operations in the background for an app.
Content Providers represent persistent data storage for an
app. Broadcast Receivers receive Intents that are, as its name
implies, broadcasted by other apps or the Android framework
itself (e.g., indicating that the battery is low or that the
device has finished booting). Of these four different data types,
Activities, Services, and Broadcast Receivers can exchange
Intents.

As an event-based system [7], [8], certain Android compo-
nents may have multiple entry points corresponding to the
lifecycle of a component’s type. For example, an Activity
has separate entry points for initial creation, being sent to

the background in order to pause the Activity, and resuming
the Activity after pausing. As another example, Services have
separate entry points depending on whether another compo-
nent connects to it for a long period of time (referred to
as starting the service) as opposed to temporarily binding to
it. Although Broadcast Receivers have a single entry point,
they may be registered dynamically, and ideally an analysis
of Intents should take that dynamic registration into account
to improve the accuracy of analysis.

From our studies of Android apps, there are mainly three
types of attributes of an Intent that an app uses to determine
the manner in which it will utilize the Intent and perform
operations based on it: the action of an Intent, its categories,
and its extra data. The action of an Intent is an attribute that
indicates the general operation to be performed in response
to an intent (e.g., display data to the user or deliver data
to some person or agent). Categories of an Intent provide
additional information as to the manner in which the Intent’s
action should be performed (e.g., whether the Intent will
allow launching of an application as referenced by a link in
a browser). Extra data, also called Bundles, are a collection
of key-value pairs in an Intent, allowing even more flexible
attributes to be stored in it. Intents require an action but
categories and extra data are optional.

To better understand the challenges faced by PHE-
NOMENON, we present an example of an Android encryption
Service based on a popular Android encryption/decryption
app, ApgIntentService, depicted in Figure 1. This Service
performs different kinds of encryption-related operations based
on the payload of an Intent. For example, to perform encryp-
tion using this Service, the action of the Intent (extracted
on line 3) must be “ENCRYPT”. The target extra datum
of the Intent (extracted on line 11) determines whether the
encryption is stored as a byte array or a URI stream. The
useAsciiArmor boolean extra of the Intent (extracted on line
12) determines if the resulting data is encrypted as a string
or byte array. Furthermore, a passphrase may be cached on
line 8, if the “PASSPHRASE CACHE” action is received by
ApgIntentService with an extra datum containing the key “ttl”
> 0 and the Intent does not have the default category, indi-
cating the Intent was sent explicitly to the ApgIntentService.
Each of these different values, all obtained from an Intent,
control the execution paths of the Service, and whether or not
particular target statements execute.

III. RELATED WORK

Researchers have produced a variety of analyses for An-
droid and Intent-based communication in Android. EPICC [1]
utilizes a data-flow analysis based on IFDS/IDE to identify
Intents and certain aspects of their payloads. IC3 expands
upon EPICC with a greater focus on URIs, which are partic-
ularly used with Content Providers, and composite constant
propagation. However, neither IC3 [2] nor EPICC identify
possible Intents in each program path or the potential values,
as opposed to just keys, of Intent extra data. Both of these
static analyses for Intents do not describe the specific values

1 public class ApgIntentService extends IntentService {
2 protected void onHandleIntent(Intent intent) {
3 String action = intent.getAction();
4 if ("ENCRYPT".equals(action))
5 doEncrypt(intent);
6 else if ("PASSPHRASE_CACHE".equals(action)) {
7 if (intent.getIntExtra("ttl",0) > 0 && !intent.

hasCategory("android.intent.category.DEFAULT"))
8 cachePassphrase(intent); }}
9 private void doEncrypt(Intent intent) {

10 Bundle data = intent.getExtras());
11 int target = data.getInt("target");
12 boolean useAsciiArmor = data.getBoolean("

ENCRYPT_USE_ASCII_ARMOR");
13 switch (target)
14 {case 0:
15 if (useAsciiArmor)
16 // encrypt as a string
17 else
18 // encrypt as byte array
19 break;
20 case 1:
21 // encrypt as URI stream
22 break;}}}

Fig. 1. An encryption Service example based on a popular encryption
Android app.

of Intent payloads needed to execute particular program paths
in an app.

A series of techniques have been constructed that focus
on data or permission leakage for Android apps. IccTA [9],
AmanDroid [10], and SEPAR [11] focus on detecting inter-
component data leakage for Android apps. COVERT [12]
identifies permission leakages among groups of Android apps.
FlowDroid [13] focuses on data leakage within components.
None of these approaches focus on constructing Intents, their
payloads, and the manner in which Intents execute different
program paths. TASMAN [14] uses symbolic execution to
filter out infeasible paths as a post analysis for a data-leakage
analysis.

Certain techniques utilize symbolic execution for various
purposes in Android. AppIntent [15] and SIG-Droid [16] gen-
erate tests for GUI screens by using symbolic execution that
analyzes GUI events. IntelliDroid [17] focuses on executing
Android APIs in order to find data leakages in malicious
apps. IntentDroid [18] utilizes dynamic analyses to generate
Intents in order to identify security issues in Android apps.
IntentDroid is particularly limited to only analyzing extra data
of boolean types, and thus path conditions analyzed only
involve boolean variables. None of these techniques attempt
to construct a path-sensitive approach for determining Intent
payloads, especially both keys and values of extra data for a
variety of data types, in order to determine the payload needed
across Intent-controlled paths.

Various static analyses have been designed specifically
for Android in order to enhance or enable other analyses.
Two techniques [19], [20] have been developed to improve
string analysis for Android apps. Yang et al. [21] produced
a technique to determine a control-flow graph focusing on
user-driven callbacks for Android. EdgeMiner [22] identifies
pairs of registrations and callbacks by analyzing the Android
framework itself. CLAPP [23] extracts information about loops

in Android apps, particularly the extent to which a loop is
bounded.

Analysis of event-based systems, including the messages
they exchange, has been studied outside of the domain of
Android as well. Jayaram and Eugster [24] present static and
dynamic analyses for event-based systems, including determin-
ing dependencies between messages. Helios [25] extracts de-
pendencies between messages where messages are represented
as nominal types, i.e., a message type is represented by the
event-based frameworks underlying programming language.
Eos [26] improves upon Helios by extracting messages that
include attributes in the form of key-value pairs, instead
of simply its nominal type. Unlike PHENOMENON, none
of these techniques extract messages needed to execute a
particular program path. Furthermore, while Eos can extract
values of attribute that are strings, PHENOMENON can extract
values of extra data of primitive types (e.g., booleans, floats,
integers, etc. and constraints among them) and the nullness of
objects as values of an extra datum. PHENOMENON also
models collections of attributes, particularly in the case of
Intent categories.

Table I depicts key features of PHENOMENON and the
techniques most similar to it along five dimensions: the
technique’s path-sensitivity, if applicable; if the technique de-
termines the payload necessary to execute a particular program
path controlled by the contents of a message; whether the
technique leverages static analysis, dynamic analysis, or both;
the degree to which the analysis can extract attributes of a
message, i.e., the contents of the message; and the targeted
event-based framework of the analysis. PHENOMENON is
currently the only technique designed to determine a rich
variety of possible Intent contents necessary to execute any
reachable program path of an Android app. PHENOMENON
achieves this by utilizing a path-sensitive analysis that models
Intent actions and categories, and also strings, primitive types,
and object nullness of Intent extra data. Furthermore, one of
the key issues reducing accuracy for Eos was its lack of path
sensitivity [26].

IV. APPROACH

PHENOMENON is a flow-sensitive, object-sensitive,
context-sensitive, and path-sensitive analysis that operates
primarily through backwards symbolic execution [27] and a
backwards data-flow analysis over the app’s use-def chains
[22]. To obtain a call graph suitable for analysis of Android
apps, the call graph must take into account the multiple entry
points of an Android app and its lifecycle. To achieve this,
PHENOMENON incorporates incremental callback analysis
to construct a call graph as described in previous work
[13], where the call graph is continuously updated with
identified callback registrations until a fixed point is reached.
PHENOMENON further includes entry points for call graph
construction to dynamically registered Broadcast Receivers.
Specifically, PHENOMENON scans the call graph built using
incremental callback analysis. If within that callback, a pro-
grammatic registration of a Broadcast Receiver is found, our

TABLE I
FEATURE COMPARISON OF PHENOMENON WITH MOST RELATED MESSAGE-BASED ANALYSES

PHENOMENON EPICC [1] IC3 [2] EventJava [24] Helios [25] Eos [26] IntelliDroid [17] IntentDroid [18]

Path-Sensitive Yes No No No No No Yes N/A
Message-Control Yes No No No No No No Partial
Static/Dynamic Static Static Static Static/Dynamic Static Static Static Dynamic
Attribute-Value
Extraction

Intent actions, cat-
egories, extra data
of primitive types,
extra data of object
nullness

Intent actions
and categories

Intent ac-
tions and
categories

Unsupported Unsupported Non-string
attribute
values

Intent actions and
categories

Intent actions,
categories, and
boolean extra
data

Framework Target Android Android Android EventJava
Framework

Any Any Android Android

Algorithm 1: intentControlAnalysis
Input: set of methods M in reverse topological order from the app
Output: a map Σω : M → targetExprs , which describe the Intents and path

conditions of methods M
1 targetStmts ← identifyTargetStmts(M);
2 Σα ← Σβ ← Σω ← ∅;
3 foreach method m ∈M do
4 useDefsm ← constructUseDefChains(m);
5 foreach statement st ∈ m.statements do
6 if st ∈ targetStmts then
7 reachPaths ← constructBackReachPaths(m.cfg, st);
8 intraPathExprs ← ∅;
9 foreach path p ∈ reachPaths do

10 foreach sp ∈ reachPaths do
11 intraPathExprs ←

generateExprsForStmt(sp, p, useDefsm) ∪
intraPathExprs;

12 Σα ← ∆α(Σα, st , intraPathExprs, p);

13 foreach path p ∈ reachPaths do
14 foreach statement sp ∈ p do
15 if sp is an invocation of the form rb.mα(A) and

Σα(mα) 6= ∅, and A = (an)n∈N then
16 if argument a is an Intent and a ∈ A then
17 if Σα(mα) has an Intent referencing the

parameter matching argument a then
18 Σβ ← ∆β(Σβ , st,newExprs, p);

19 foreach path p ∈ reachPaths do
20 foreach statement sp ∈ p do
21 Σω ←

buildCtxtSensSummaries(Σα,Σβ , p, sp,m);

analysis rebuilds the call graph by including the Broadcast
Receiver’s entry point. In addition to the callbacks of the
four canonical Android component types described in Section
II, we further include entry points for our analysis that
utilize the Android Loader class and its subclasses (e.g.,
AsyncTaskLoader). Loaders provide means to perform asyn-
chronous tasks on a separate thread in an event-driven manner
and often have an observer (e.g., a dynamically registered
Broadcast Receiver) that monitors data source changes of the
Loader.

The main algorithm driving PHENOMENON’s analysis, in-
tentControlAnalysis, is depicted in Algorithm 1. Similar to pre-
vious analyses [28], [26], intentControlAnalysis is a summary-
based analysis that processes methods in the app’s call graph
in reverse topological order. By analyzing methods in that
order, intentControlAnalysis ensures that a callee method’s

summary is constructed and available before a caller method
is analyzed, preventing the need to analyze a method more
than once and improving intentControlAnalysis’s efficiency.
intentControlAnalysis returns a map Σα : M → targetExprs
summarizing the analysis results for each method m ∈ M .
Each e ∈ targetExprs is a pair (sτ , exprsp). exprsp is a
sequence of expressions describing Intents and path conditions
in a program path p; and sτ is a target statement, where
backward symbolic execution initiates from, which is futher
elaborated in the next section.

intentControlAnalysis constructs intermediate analysis re-
sults in two phases, and combines those results in a third and
final phase. The first phase occurs on (lines 9-11 of Algorithm
1) and stores Intent data in Σα for intra-method paths. In the
next phase (lines 13-18 of Algorithm 1), method summaries
are utilized to determine context-sensitive Intent information
at call sites by enumerating path expressions from Σα inter-
procedurally, and storing that information in Σβ . The final
phase (lines 19-21 of Algorithm 1) involves combining the
results of Σα, intra-method results, and Σβ , inter-procedural
results, to obtain the final results Σω , context-sensitive results
for the entire app. At this point, the computed path conditions
and expressions describing Intents may be sent to a solver to
check for feasibility, generate data along the path, or other
purposes.

A. Bootstrapping the Analysis

Before determining the attributes (i.e., actions, categories,
and extra data) within an Intent along a particular program
path and how these attributes may control execution of that
path, Algorithm 1 begins by identifying program points that
serve as target statements for PHENOMENON’s backwards
symbolic execution by invoking identifyTargetStmts on line
1. These target statements are any points in the app where
an Intent’s attributes are used. For example, the getAction
invocation that extracts an Intent’s action (line 3 in Figure 1)
or the hasCategory invocation that checks for existence of a
category in the Intent (line 7 in Figure 1). To further ensure
that the blocks controllable by these Intents are also analyzed,
we add successor blocks of these initial target statements as
additional target statements to perform backwards symbolic
execution from. For instance, once line 7 of Figure 1 is marked
as a target statement, the line containing the invocation to
cachePassphrase() is also marked as an additional starting

Algorithm 2: constructBackReachPaths
Input: A control-flow graph cfg of a method, A target statement t that is a node

of cfg
Output: A set of program paths reachPaths that reach t

1 workStmts ← t;
2 workPaths ← ((t));
3 reachPaths ← {};
4 while workStmts 6= ∅ do
5 currStmt ← workStmts.head ;
6 currPath ← workPaths.head ;
7 if cfg.predecessorsOf (currStmt) = ∅ then
8 reachPaths ← reachPaths ∪ currPath

9 foreach predStmt ∈ cfg.predecessorsOf (currStmt) do
10 if predStmt /∈ currPath then
11 newPath← currPath ;
12 newPath← currPath _ predStmt ;
13 workPaths ← newPath _ workPaths;
14 workStmts ← predStmt _ workStmts;

point. By first selecting relevant program points to start our
analysis from, PHENOMENON prunes the space of the analy-
sis, reducing issues of path explosion often faced by symbolic
execution.

Once the points from which to start backward symbolic
execution are identified, Algorithm 1 analyzes each method m
by first constructing m’s use-def chains (line 4 of Algorithm
1). For each target statement st of a method m, line 7 of
Algorithm 1 constructs all the relevant program paths from
the entry point of the program to the target statements by
invoking constructBackReachPaths, shown in Algorithm 2. To
avoid analyzing paths that may not actually reach these target
statements, and thus improving analysis efficiency. Algorithm
2 builds these relevant program paths through a backward
traversal algorithm over a method’s control-flow graph. Al-
gorithm 2 takes as input a control-flow graph cfg and a target
statement t belonging to cfg , and outputs the set of program
paths that reach t starting from the method’s entry points.

B. Generating Expressions Describing Intents

The production of expressions describing message-
controlling Intents occurs during the first phase, on lines 9-11
of Algorithm 1. For each statement sp in a path p that reaches
target statement st, Algorithm 1 at line 11 generates a set
of expressions describing the Intent or the path conditions at
sp by invoking generateExprsForStmt, shown in Algorithm 3.
generateExprsForStmt generates each expression in a language
suitable for supplying to an SMT solver, i.e., the SMT-LIB
language [29], allowing our analysis to use the SMT solver
to determine feasibility of paths, and also the validity of the
expressions describing Intents, their attributes (i.e., actions,
categories, and extra data), and their relations to programming
language-level constructs (e.g., object references, definition
sites, etc.).

generateExprsForStmt takes as input a statement sp of
method m, path p in m containing sp, and use-def chain
useDefsm of method m. As output, generateExprsForStmt
constructs path-sensitive expressions describing a message-
controlling Intent and path conditions for the Intent. By
considering the path p of sp, generateExprsForStmt ensures

Algorithm 3: generateExprsForStmt
Input: A statement sp of method m, path p in m containing sp, use-def chain

useDefsm of method m
Output: expressions newExprs describing Intent and path-condition

information at statement sp
1 newExprs ← ∅;
2 if sp extracts extra data from an Intent i of the form re = i.get[Ψ]Extra(rk)

then
3 newExprs ←

genExtraDataExprs(sp, p, useDefsm) ∪ newExprs;

4 else if sp extracts an action from an Intent i of the form ra = i.getAction() then
5 newExprs ← genGetActionExprs(sp, p, useDefsm)∪newExprs;

6 else if sp is of the form if (i.hasCategory(rc)), where i is an Intent then
7 newExprs ← genCategoryExprs(sp, p, useDefsm) ∪ newExprs;

8 else if sp is a conditional statement of the form if (l op r) then
9 newExprs ← genConditionalExprs(sp, p) ∪ newExprs;

10 else if sp is a conditional statement of the form if (r1.equals(r2)) then
11 if r1 is a String obtained from an Intent’s extra data then
12 newExprs ←

genStringAttrExprs(sp, p, useDefsm) ∪ newExprs;

13 else if r1 is an arbitrary object obtained from an Intent’s extra data then
14 newExprs ←

genObjEqualityExprs(sp, p, useDefsm) ∪ newExprs;

that expressions generated for sp are relevant to p, thus main-
taining path sensitivity. Each conditional block in Algorithm
3 handles a different type of program statement and generates
expressions based on that statement type: extra data on lines 2-
3, the action of an Intent on lines 4-5, categories of the Intent
on lines 6-7, operators between numeric and boolean symbols
on lines 8-9, and string and object equivalence comparison on
lines 13-14.

Extra Data. To handle extra data, genExtraDataExprs (at
line 3 of Algorithm 3) produces symbolic variables for the
following references: rk, key of the extra datum extracted
from the Intent i; re, containing the value of the extra
datum; and i for the reference of the Intent housing the
extra datum. genExtraDataExprs further records the type
of the extra datum at the programming language-level when
declaring a new symbol by taking the API method’s type Ψ
into account. For example, in the case of the API method
getIntExtra, Ψ is an integer. To represent the new generated
information, genExtraDataExprs creates expressions of the
following form, with declarations removed for brevity:
e1) (assert (= (containsKey re rk) true))
e2) (assert (= (fromIntent re) i))

The first expression indicates that extra datum re contains
key rk. The second expression asserts that re is from intent
i. We further define a generic Object datatype for the solver
that can be either null or not null. In the expressions above, i
is declared as an Object, rk is a built-in String type, and re
varies in type depending on Ψ. As an example, consider line
7 of Figure 1. On that line, the getIntExtra invocation results
in the generation of the following expressions:
e3) (assert (= (containsKey rttl “ttl”) true))
e4) (assert (= (fromIntent rttl) rintent))

PHENOMENON and its underlying algorithms ensure that,
whenever a symbol or expression is generated, the following
criteria are met: (1) any definitions of references are along the

current path under analysis and (2) the closest definition for the
reference at the statement under analysis is used. These two
criteria ensure that data along other paths is not generated and
that values of dead variables are not used, thus maintaining
path sensitivity. Additionally, since we compute our analysis
in a backwards fashion along a path, we create a different
symbol every time a variable is redefined, as done in previous
work [14], in order to simulate static single assignment.

PHENOMENON also tracks extra data not directly extracted
from Intents. For example, consider the extra datum “target”
from an Intent extracted at line 11 of Figure 1. This datum is
obtained from a Bundle object, which represents the extra data
within an Intent, but also has a different API than if extra data
is extracted directly from an Intent. PHENOMENON tracks
this information as well as part of extracting extra data from
Intents.

Actions. For actions of an Intent, genGetActionExprs (at
line 5 of Algorithm 3) produces symbolic variables for the
following references: ra, the reference storing the action of
Intent i; and the reference to i. Using those variables, the
function creates the following expressions:
a1) (assert (= (getAction i) ra))
a2) (assert (= (fromIntent ra) i))

The first expression indicates that i has the action ra. By
defining the function getAction in the solver, it can verify that
along the path, Intent i should only have a single action. As
in the case for extra data, i is declared as an Object.

Before conditional statements are processed by generate-
ExprsForStmt, expressions generated by genGetActionExprs
only indicate the existence of an action ra for an Intent i along
a path.

Categories. genCategoryExprs (at line 7 of Algorithm 3)
handles categories by analyzing a conditional statement that
checks if an Intent has a category. In particular, the function
creates the following symbols: rh representing the boolean
reference indicating if the Intent i has a category rc; the Intent
i; and rc, which is a string reference representing the name of
the category. To determine, if along the path under analysis,
i has category rc, genCategoryExprs must determine if the
path containing the conditional check on hasCategory and its
successor statement is along a true branch or false branch. A
true branch indicates that rc is in i; a false branch implies the
opposite.

Although a set would be an ideal representation of cate-
gories in an SMT solver, it is not always the case that sets are
built-in to the solver. Furthermore, specifying them properly
is a research challenge in its own right [30]. Consequently, we
simply represent a set as an array and use expressions involv-
ing quantifiers to check existence or absence of a category.
Therefore, for existence of a category, genCategoryExprs
generates the following expression:

(assert (exists((idx Int))(= (select catsrh idx) rc)))

The above expression simply asserts existence of an element at
index idx in the array catsrh that contains the value rc, using

the existential quantifier. For absence, genCategoryExprs
generates the following expression:

(assert (forall((idx Int))(not (= (select catsrh idx) rc))))

The expression asserts that for all elements in the array
catsrh there is no element with the value rc. To relate the
categories catsrh to an Intent i, genCategoryExprs produces
an expression using the fromIntent function, similar to the
cases involving extra data and actions.

As an example, consider a partial path from lines 7-8 in Fig-
ure 1. For the statement at line 7, genCategoryExprs generates
the following expression, where we elide the fromIntent
expression due to space limitations:

(assert (forall ((idx Int)) (not (= (select catsrh
idx)

“android .intent .category .DEFAULT”))))

Primitive Comparisons. To properly characterize message
control along program paths, it is of key importance that we
model as many comparison statements as possible involving
primitive types, especially those extracted from Intents. For
example, in Figure 1, comparisons involving the boolean vari-
able useAsciiArmor, and the integers target and ttl control
the execution of different parts of ApgIntentService. To that
end, genConditionalExprs (invoked on line 9 of Algorithm
3) transforms conditional statements involving a variety of
comparisons among primitive data types. To that end, given a
conditional statement of the form if (l op r), PHENOMENON
models the following comparison operators ==, !=, <=, >=,
<,>. The left and right references (l and r) can be any numeric
or boolean types.

For the l and r references of the conditional comparison
statements, we track whether the reference refers to either (1)
an extraction of extra data or (2) a check of its existence. In the
former case, the generation of expressions closely resembles
how extra data is extracted on lines 2-3 of Algorithm 3. In the
second case, where a check of the existence of an extra datum
of an Intent, the form of the statement is if (i.hasExtra(rk)).
In this case, we further generate the appropriate containsKey
expression, as in the extra data extraction case; however,
we further consider whether the path the reference obtained
from is along a true or false branch. Based on that branch,
we determine whether or not the containsKey expression is
asserted to be true or false.

For example, consider lines 7-8, and the statement if

(intent.getIntExtra("ttl",0)> 0. Besides the expressions
e3 and e4 generated by genExtraDataExprs ,
genConditionalExprs also generates an expression
(assert (> rttl 0)). Thus, conditions necessary to execute a
program path, especially those obtained from Intents are
characterized by genConditionalExprs .

Besides managing any primitive comparisons, including
ones involving Intent extra data, genConditionalExprs further
generates expressions for checks that determine if an object

is null. To handle this special case, genConditionalExprs
determines if r is the null constant. For these comparisons,
genConditionalExprs produces an expression of the follow-
ing form to assert for nullness: (assert(= (isNull l)β)).
β is a boolean value, i.e., true or false. As in other cases,
by checking if the null check statement is along a true or
false branch, for the path under analysis, and sets β to the
appropriate boolean value accordingly.

String and Object Comparisons. Equality comparisons
among strings, and to a lesser extent objects in general, are
critical for determining the contents of Intents that control
execution of different program paths. Although other forms of
string manipulation may potentially affect execution, they are
extremely rare, as found both in this study and previous work
[14], [12], [26], [25]. Consequently, our analysis focuses on
representing and handling string equality.

Specifically for Intents, determining string extra data and
values of actions for an Intent are dependent on extracting
equality comparisons. As an example, for any path that reaches
line 8 of Figure 1, the equals comparison of strings at line 6 in
that figure must evaluate to true. Furthermore, along that path,
the action of the Intent must be “PASSPHRASE CACHE”.

To extract Intent information from string comparisons,
genStringAttrExprs (invoked on line 12 of Algorithm 3)
analyzes string equality statements. For statements of the form
shown on line 13, genStringAttrExprs creates symbols for
references r1 and r2 declared as built-in strings and generates
an expression of the form asrteq = (assert (= r1 r2)) if the
comparison is true along the path under analysis, and generates
the expression ¬asrteq = (assert (not (= r1 r2))) otherwise.
As in the case of non-conditional extra data extraction, expres-
sions of the form e1 and e2 are generated as well, describing
the key of the string extra datum and the Intent it belongs to.

To obtain potential values for actions of an Intent along
a path, genStringAttrExprs need only generate the assertion
expressions of the form asrteq or ¬asrteq . These expressions
combined with the expressions of the form a1 and a2 extracted
by genGetActionExprs describe potential string values for
actions of a particular intent.

For the example of line 6 in Figure 1 with a path ending at
line 8 of Figure 1, the following expressions are generated by
genStringAttrExprs:
a3) (assert (= ra “PASSPHRASE CACHE”))
a4) (assert (not (= ra “ENCRYPT”)))

The other relevant information along the path for the action,
generated by genGetActionExprs , are as follows:
a5) (assert (= (getAction i2) ra))
a6) (assert (= (fromIntent ra) i2))

In expression a5 and a6, the intent symbol’s subscript
represents the line number where the Intent is created. In that
case, the Intent is created at the entry point of onHandleIntent
at line 2. Therefore, PHENOMENON tracks the attributes of
an Intent along a path that must exist in it and that cannot
exist in it.

When comparing arbitrary objects, genObjEqualityExprs
(invoked on line 14 of Algorithm 3) operates in a

manner highly similar to that of genStringAttrExprs .
genObjEqualityExprs still creates expressions of the form
asrteq or ¬asrteq . These objects are declared as our custom
Object type and may also be assigned to an Intent using
the fromIntent function as part of a generated expression.
A special case occurs when an string rso is checked against
the null constant along a path and is then checked to contain
a specific string. An example of such case is as follows:

1 if (action != null)
2 if ("ENCRYPT".equals(action))

To avoid type conflicts in such a case, we generate a symbol
for a reference rso as an Object and another symbol for rso
as a string. We then create a custom function objEquals that
allows comparison of strings with objects for the SMT solver.

C. Constructing Context-Sensitive Results

After the first phase completes, computed results stored in
Σα are intra-procedural. The second phase (lines 13-18 of Al-
gorithm 1) enumerates paths inter-procedurally by identifying
call sites of summarized methods stored in Σα. Specifically,
intentControlAnalysis checks three criteria to determine where
to enumerate paths for a statement sp in path p under analysis:
(1) sp is a call site to a summarized method mα in Σα, (2)
an argument a passed to mα is an Intent, and (3) Σα(mα)
contains expressions indicating that information is generated
from a parameter of mα that matches a. For example, line
5 of Figure 1 is a call site where the method doEncrypt is
invoked and is also summarized in Σα after the first phase.
Consequently, the second phase of intentControlAnalysis will
enumerate paths and paths expressions inter-procedurally and
store that information in Σβ .

To clarify, consider the following intra-method path
pohi = (2, 3, 4, 5) of onHandleIntent in Figure 1; and
the two intra-method paths of doEncrypt from that fig-
ure pde1 = (9, 10, 11, 12, 13, 14, 15, 16) and pde1 =
(9, 10, 11, 12, 13, 14, 20, 21). In these three paths, the numbers
in the path represent the line numbers in the figure. In the
second phase, for path pohi, the paths and path expressions
for pde1 and pde2 are stored in Σβ , while Σα has the paths
and path expressions for pohi.

Once the third phase executes, these three paths will be
combined to two paths with all the relevant path expressions
stored in Σω . Specifically, pohi _ pde1 forms a final context-
sensitive path and pohi _ pde2 forms a second final context-
sensitive path summarized by Σω .

D. Improving Analysis Efficiency

To deal with scalability and efficiency issues during path
explorations, besides pruning paths through target statements
and focusing on Intent data, PHENOMENON can utilize either
parallelism or setting an upper bound on the number of paths
analyzed. In the former case, PHENOMENON can distribute
the workload for each target statement ts to a different worker

thread. Synchronization must occur during construction of use-
def chains (line 4 of Algorithm 1). Our experience has not
found a need to synchronize other code regions. Given that our
analysis makes significant use of map data strutures, we have
found the use of concurrent map data structures is effective
for enabling parallelism, while avoiding issues of concurrent
modification. Specifically, they are most effective for use when
implementing Σα, Σβ , and Σω .

In the second case, PHENOMENON only calculates paths
per target statement up to a bound θ. Bounding path-sensitive
analyses has shown to be effective in previous cases [28],
where the bound was on the analysis time per path, rather
than on the number of paths per targeted statement. We have
found values of θ up to about 100 to be effective, which we
will elaborate on further in our evaluation experiments.

V. EVALUATION

To assess PHENOMENON, we study the following research
questions:

RQ1: What is PHENOMENON’s accuracy in terms of its ability
to produce information about Intents, the manner in which
they control execution of different program paths, and the
associated path conditions?

RQ2: What is PHENOMENON’s runtime efficiency? To what
extent does PHENOMENON handle path explosion?

To answer these research questions, we implemented PHE-
NOMENON in Java. For static analysis, we leveraged the Soot
framework [31]. To transform the Android Dalvik format to
an intermediate representation suitable for analysis in Soot, we
utilized Dexpler [32]. To solve path expressions and processing
of SMT-LIB expressions, we used the Z3 theorem prover [33].
Note that recent versions of Z3 have a built-in String type,
which we leveraged for PHENOMENON.

A. RQ1: Accuracy of Generated Message-Control Information

To answer RQ1, we selected a set of apps listed in Table II
from the open-source F-Droid repository [34]. For each app,
we show the package name that uniquely identifies the app; a
brief description of the app and its functionalities; the version
code given to it in F-Droid; the app’s size in terms of its
source lines of code (SLOC); and the number of program paths
containing Intent usage, or program paths executed based on
Intents (message control-based paths). The F-Droid repository
assigns a unique version code to every version of an app that
it archives.

The set of apps shown in Table II meet several criteria that
significantly aid in answering RQ1. First, each app belongs to
a different application domain (e.g., security, file management,
regional train tracking, etc.). They vary in their sizes in
terms of SLOC—from 4KSLOC to over 460KSLOC. Most
importantly, these apps exhibit sophisticated message usage by
performing different operations along different program paths
based on the Intents they receive, and the contents of those
Intents. They include apps with over 2,600 program paths that
involve message usage or message control.

For each app, we manually checked every program path—
totalling 4,188 program paths—to determine if the expressions
generated correctly describe the Intents and path conditions,
particularly message-controlling path conditions. We checked
the correctness of Intent information generated along a pro-
gram path in the following conservative manner: If our analysis
generated any extra information not valid for the path, we
considered all of its information incorrect. For example, if any
extra datum was missing along a program path, we considered
the entire path incorrect. Consequently, we deem any partially
correct expressions describing Intents or path conditions as
completely incorrect. Furthermore, if extra information about
an Intent was generated by PHENOMENON, we also consider
all the Intent information generated for a program path as
incorrect. For instance, a spurious extra datum that is described
as belonging to an Intent is considered extra information and,
for evaluation purposes, renders all information along the path
as incorrect. To that end, we use the following correctness
metric to assess the accuracy of PHENOMENON per app:

Correctness Rate =
Pcor
Ptot

× 100

Pcor is the number of correct message control-based paths;
Ptot is the total of number of message control-based paths.

The accuracy results that answer RQ1 are shown in Table
III. For each app, the table lists the number of paths with
correct Intent information (Pcor), the number of paths with in-
correct Intent information (Pinc), the total number of message-
controlling paths (Ptot), and the correctness rate (% Correct).

PHENOMENON’s correctness rate is very high with no
app having a rate lower than 96%. Overall, this indicates
that for the overwhelming majority of cases, PHENOMENON
generates correct Intent information.

For cri.sanity, the following code snippet displays an in-
teresting case for which PHENOMENON produces incorrect
paths:

1 final boolean conn = BluetoothDevice.ACTION_ACL_CONNECTED
.equals(act);

2 final int oldCount = pl==null? A.geti(K.BT_COUNT) : pl.
btCount;

3 final int newCount = conn? Math.max(oldCount+1,1) : (Dev.
isBtOn()? Math.max(oldCount-1,0) : 0);

4 if(oldCount == newCount) return;
5 A.putc(K.BT_COUNT, newCount);

This code snippet is from a Broadcast Receiver called
BtReceiver in cri.sanity. On line 1, act is an action extracted
from an Intent and is checked for equality against the String
value BluetoothDevice.ACTION ACL CONNECTED. The
result of that comparison is stored in conn. Line 3 depicts
a ternary expression where the executed path is based on
the value of conn. The particular manner in which message-
controlling paths fork based on conn is not modeled by
PHENOMENON, resulting in inaccuracies.

Another issue affecting correctness for PHENOMENON in
cri.sanity involves string manipulation. In particular, some

TABLE II
APPS USED FOR ACCURACY EXPERIMENTS

App Package Name App Description F-Droid Version Code SLOC Message Control-Based Paths

com.samsung.srpol List a device’s app categories and permissions 9 4,649 47
com.naholyr.android.horairessncf Search and track regional train in France 301 4,054 90
cri.sanity Phone call, SMS, audio recording, and bluetooth management 21100 9,604 458
com.ghostsq.commander Multi-protocol local and remote file manager 270 24,883 1,263
org.thialfihar.android.apg Android port of OpenPGP for data encryption and decryption 11199 461,338 2,650

message-controlling paths occur based on partial values of an
Intent’s action. Specifically, in another Broadcast Receiver of
cri.sanity, Alarmer, the String method endsWith is used to
check if an Intent’s action ends with the characters “Async”.
Given that PHENOMENON does not handle such string
manipulations, Intent information along the resulting paths is
incorrect.

com.ghostsq.commander’s majority of issues arise due to
the manner in which it uses Parcelable objects from the
Android framework. The class of this object is designed
to aid in marshalling and unmarshalling data sent between
Intents. Given that certain classes of com.ghostsq.commander
utilize Parcelables to control execution of different paths, and
Parcelables are not explicitly modeled in PHENOMENON,
we count these missing expressions as incorrect. Neverthe-
less, use of these objects to control execution of Android
apps along different program paths is very rare; hence, the
PHENOMENON’s accuracy results remain very high.

Another recurring pattern in com.ghostsq.commander that
reduces accuracy for PHENOMENON involves URI objects.
In particular, Intents may store URI information, which may
point to files on a device, Content Providers storing informa-
tion in specific apps, resources on the Internet, etc. We do not
model API methods in PHENOMENON involving URIs since,
as our results show, they rarely are used in conditional state-
ments and, thus, only occasionally affect message-controlling
paths. Nevertheless, PHENOMENON may model these cases
by taking the Intent’s getData method into account, which
would be a relatively trivial modification to PHENOMENON.

PHENOMENON obtains incorrect results in certain cases
for android.apg—which we will use here as a shortened form
of org.thialfihar.android.apg—for two reasons: (1) PHE-
NOMENON not modeling URIs of Intents; and (2) PHE-
NOMENON not modeling MIME types of Intents. The MIME
types of an Intent indicate the type of data that may have been
supplied with an Intent or the type of data expected to be
returned as a result. Although our results indicate that these
objects have little effect on our overall results, we intend to
extend PHENOMENON in the future to handle MIME types
and URIs.

B. RQ2: Efficiency Results

To evaluate PHENOMENON’s efficiency, we ran PHE-
NOMENON’s implementation on 100 apps randomly chosen
from the F-Droid repository. Each app was run on a machine
with four AMD Opteron 6376 2.3GHz 16MB Cache Sixteen-
Core Processors and 256GB RAM. For this experiment, par-

TABLE III
ACCURACY OF INTENT INFORMATION GENERATED FOR

MESSAGE-CONTROL PATHS OF SUBJECT APPS

App Package Name Pcor Pinc Ptot % Correct

com.samsung.srpol 47 0 47 100.00%
com.naholyr.android.horairessncf 90 0 90 100.00%
cri.sanity 454 4 458 99.13%
com.ghostsq.commander 906 37 943 96.08%
org.thialfihar.android.apg 2,565 85 2,650 97.79%

allelization and upper bounds on the number of paths per
target statement, which we refer to as path upper-bounding,
as described in Section IV-D, was enabled to determine the
overall speed of our analysis. Path upper-bounding was set
to 100 paths per target statement, which covers a potentially
large number of possible Intents that reach a target statement.

PHENOMENON took on average 30.99 seconds to run
per app on our evaluation machine. The minimum runtime
was 11 milliseconds and the maximum runtime was 180.20
seconds. Besides parallelization and path upper-bounding, the
low runtime is also due to the fact that selecting target
statements, at the beginning of PHENOMENON’s analysis,
significantly reduces the number of paths that need to be
analyzed. Apps that use a fewer number of Intents have a
lower runtime, compared to apps that use a greater number of
Intents, since PHENOMENON prunes out paths that do not
involve Intents.

Additionally, although path upper-bounding prevents certain
paths that reach a target statement from being analyzed, the
number of paths lost is relatively small (i.e., 320 paths across
all apps). Consequently, path upper-bounding of 100 paths per
target statement seems to be a reasonable tradeoff between
efficiency and completeness for path selection.

VI. DISCUSSION AND LIMITATIONS

In terms of accuracy, the main threat to external validity
is the number of apps we utilized for answering RQ1. To
mitigate this threat, we selected apps varying across several
dimensions, allowing us to draw more general conclusions.
The apps come from different application domains, and they
vary in size to as much as 460KSLOC and over 2,600 program
paths involving Intent usage. In particular, android.apg is
much larger than many apps on F-Droid, due to the fact that it
intends to be a port of GnuPGP, which is an implementation
of the OpenPGP standard.

Another threat to external validity is the fact that we selected
apps that are all open-source and all from the F-Droid reposi-
tory. Note that a key reason we selected open-source apps for

evaluation is to allow us to carefully and manually inspect the
correctness of information generated for over 4,100 program
paths. Conducting such a manual analysis on disassembled
code or intermediate representations (such as those produced
for Soot) is intractable. Furthermore, by selecting apps that
utilize a significant amount of Intent information, and par-
ticularly Intent information that affects execution of different
program paths in an app, we select apps with sophisticated
Intent usage. Note also that android.apg is a widely-used port
[35] of a popular piece of encryption/decryption software, i.e.,
OpenPGP [36]. In fact, android.apg has up to 500,000 installs
on devices, more than 3,300 reviews, and a 4.4 user rating, as
of Aug. 26, 2016 [35].

A potential threat to construct validity is our selection of
a simple correctness rate that assesses Intent information per
program path. Note that for each path, a different set of Intents
and their constituent attributes may exist. Furthermore, our
metric takes both missing and spurious Intent information,
i.e., expressions describing path conditions and Intent contents,
into account—rendering the entire path as incorrect if any
piece of information is incorrect.

A major challenge we faced was manually analyzing over
4,100 program paths, a large potentially error-prone effort.
We mitigated the potential issues that may arise from con-
ducting such a large-scale analysis in the following ways.
Our experiments have been conducted over a year, where
we learned to manually and correctly analyze program paths
for Intent information and path conditions, and checked and
re-checked results produced by PHENOMENON. We further
leveraged experience building the ground truth for messages
and their payloads obtained from previous work [26]. Given
that program paths often tend to be variations of each other,
for example many paths in an app are only slight variations
of each other, we could leverage this information to simplify
our correctness checks. At the same time, some paths can be
empty in terms of path conditions, since some Intents may
be constructed without having to use message control, further
simplifying manual checking. We also make the logs of the
apps we created accuracy experiments for, and information
about correctness issues we discovered, available as artifacts
for inspection, replication, or future research [6].

To ensure PHENOMENON itself remains accurate as it
evolves, we constructed benchmark apps representing the
kinds of paths and Intent usages we discovered in exist-
ing apps. This allowed us to run regression tests verifying
correctness of PHENOMENON as it evolves. Building these
benchmarks and running regression tests as PHENOMENON
evolves has further aided us in effectively inspecting program
paths for Intent information.

PHENOMENON currently focuses on Intent information
and message control based on Intents received by an app.
PHENOMENON does not model Intents and their contents as
they are sent out of an Android component. However, PHE-
NOMENON enables the analysis of the contents of Intents per
program path that are needed to send any Intent. In fact, PHE-
NOMENON’s target statements include every statement in an

app that sends an Intent to another component. Consequently,
PHENOMENON determines path conditions, especially those
controlled by incoming Intents, that are needed to produce
outgoing Intents.

One of the goals we aim to achieve by creating an approach
like PHENOMENON is to enable and improve a variety of
downstream analyses. This includes providing information
about the message-controlling program paths of Android apps
for purposes such as the following: automatic generation of
exploits [37], [38], analysis of energy for Android apps [39],
[40], improved testing along the message-based interface of
Android [41], [24], field failure replication [42], etc. For se-
curity and automatic exploit generation, path-sensitive analysis
has been critical for identifying exploits, as opposed to mere
vulnerabilities [37]. Energy consumption of Android apps can
vary significantly depending on the paths executed in an app
[43], [44]. Furthermore, Intents are the most widely-used form
of inter-component communication in Android [5].

VII. CONCLUSION

In this paper, we introduced PHENOMENON, an approach
for obtaining path-sensitive Intent information, their contents,
and the manner in which they control execution of different
program paths in Android apps. PHENOMENON’s imple-
mentation obtains above 96% accuracy in five apps totalling
over 4,100 program paths and ranging from 4KSLOC to over
460KSLOC. Additionally, it takes 31 seconds on average to
run PHENOMENON on an app, using a machine with 32
cores and 256GB of RAM. These results indicate that PHE-
NOMENON is effective for determining information about
messages and message control in an Android app, which is
useful for a variety of downstream analyses (e.g., automatic
exploit generation, energy analysis, app testing, etc.).

In the future, we intend to utilize PHENOMENON to enable
other analyses. For example, we aim to enable automatic
exploit generation for Android apps, rather than just Linux
binaries, as they have been used in previous work [37]. We
further intend to extend our prior work on energy consumption
analysis [43], [44] and test input generation for Android [45],
[46] with path-sensitive Intent information.

REFERENCES

[1] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective Inter-component Communication Mapping
in Android with Epicc: An Essential Step Towards Holistic Security
Analysis,” in Proceedings of the 22Nd USENIX Conference on
Security, ser. SEC’13. Berkeley, CA, USA: USENIX Association,
2013, pp. 543–558. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2534766.2534813

[2] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite Constant Propagation: Application to Android Inter-
component Communication Analysis,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ser.
ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 77–88.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818767

[3] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 576–587. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635869

[4] X. Cui, D. Yu, P. Chan, L. C. K. Hui, S. M. Yiu, and
S. Qing, CoChecker: Detecting Capability and Sensitive Data Leaks
from Component Chains in Android. Cham: Springer International
Publishing, 2014, pp. 446–453. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-08344-5 31

[5] H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,
“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol. 119,
pp. 31 – 44, 2016.

[6] “PHENOMENON - Website,” http://tiny.cc/phenomenon.
[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,

“The many faces of publish/subscribe,” ACM Comput. Surv., vol. 35,
no. 2, pp. 114–131, Jun. 2003. [Online]. Available: http://doi.acm.org/
10.1145/857076.857078

[8] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems.
Springer Science & Business Media, 2006.

[9] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 280–291.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818791

[10] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New
York, NY, USA: ACM, 2014, pp. 1329–1341. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660357

[11] H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek, “Practical, formal
synthesis and automatic enforcement of security policies for android,”
in Proceedings of the 46th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2016, pp. 514–525.

[12] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android inter-app
security vulnerabilities using covert,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ser.
ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 725–728.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2819009.2819149

[13] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[14] S. Arzt, S. Rasthofer, R. Hahn, and E. Bodden, “Using targeted
symbolic execution for reducing false-positives in dataflow analysis,”
in Proceedings of the 4th ACM SIGPLAN International Workshop
on State Of the Art in Program Analysis, ser. SOAP 2015.
New York, NY, USA: ACM, 2015, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2771284.2771285

[15] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing Sensitive Data Transmission in Android for
Privacy Leakage Detection,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13.
New York, NY, USA: ACM, 2013, pp. 1043–1054. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516676

[16] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “SIG-Droid:
Automated system input generation for Android applications,” in 2015
IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE), Nov. 2015, pp. 461–471.

[17] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for the
dynamic analysis of android malware,” in Proceedings of the Annual
Symposium on Network and Distributed System Security (NDSS), 2016.

[18] R. Hay, O. Tripp, and M. Pistoia, “Dynamic Detection of Inter-
application Communication Vulnerabilities in Android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 118–128.
[Online]. Available: http://doi.acm.org/10.1145/2771783.2771800

[19] J. D. Vecchio, F. Shen, K. M. Yee, B. Wang, S. Y. Ko, and L. Ziarek,
“String Analysis of Android Applications (N),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov. 2015, pp. 680–685.

[20] D. Li, Y. Lyu, M. Wan, and W. G. J. Halfond, “String Analysis for
Java and Android Applications,” in Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 661–672. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786879

[21] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static
control-flow analysis of user-driven callbacks in Android applications,”
in International Conference on Software Engineering (ICSE), 2015.
[Online]. Available: http://web.cse.ohio-state.edu/∼rountev/presto/pubs/
icse15.pdf

[22] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “EdgeMiner: Automatically Detecting Implicit Control
Flow Transitions through the Android Framework,” in Proceedings of
the ISOC Network and Distributed System Security Symposium (NDSS),
2015.

[23] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna,
“Clapp: Characterizing loops in android applications,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 687–697.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786873

[24] P. Eugster and K. R. Jayaram, EventJava: An Extension of Java for
Event Correlation. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 570–594. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-03013-0\ 26

[25] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Impact
analysis for distributed event-based systems,” in Proceedings of the 6th
ACM International Conference on Distributed Event-Based Systems,
ser. DEBS ’12. New York, NY, USA: ACM, 2012, pp. 241–251.
[Online]. Available: http://doi.acm.org/10.1145/2335484.2335511

[26] J. Garcia, D. Popescu, G. Safi, W. G. J. Halfond, and N. Medvidovic,
“Identifying message flow in distributed event-based systems,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013,
pp. 367–377. [Online]. Available: http://doi.acm.org/10.1145/2491411.
2491462

[27] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
http://doi.acm.org/10.1145/360248.360252

[28] M. G. Nanda and S. Sinha, “Accurate interprocedural null-dereference
analysis for java,” in 2009 IEEE 31st International Conference on
Software Engineering, May 2009, pp. 133–143.

[29] C. Barrett, P. Fontaine, and C. Tinelli, “The smt-lib standard version
2.6,” 2010.

[30] L. de Moura and N. Bjrner, “Generalized, efficient array decision proce-
dures,” in Formal Methods in Computer-Aided Design, 2009. FMCAD
2009, Nov 2009, pp. 45–52.

[31] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[32] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler:
Converting android dalvik bytecode to jimple for static analysis with
soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, ser. SOAP ’12.
New York, NY, USA: ACM, 2012, pp. 27–38. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259056

[33] L. de Moura and N. Bjørner, Z3: An Efficient SMT Solver. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.

[34] “F-droid,” https://f-droid.org.
[35] “APG on Google Play,” https://play.google.com/store/apps/details?id=

org.thialfihar.android.apg\&hl=en.
[36] “Openpgp,” http://openpgp.org/.
[37] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo,

and D. Brumley, “Automatic exploit generation,” Commun. ACM,
vol. 57, no. 2, pp. 74–84, Feb. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2560217.2560219

[38] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy, May 2012, pp. 380–394.

[39] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ser. ISSTA 2013. New York, NY, USA: ACM, 2013, pp. 78–89.
[Online]. Available: http://doi.acm.org/10.1145/2483760.2483780

[40] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
International Conference on Software Engineering (ICSE), May 2013,
pp. 92–101.

[41] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on,
Nov 2015, pp. 429–440.

[42] W. Jin and A. Orso, “Bugredux: Reproducing field failures for
in-house debugging,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 474–484. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337279

[43] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android
apps,” in Proceedings of the Fourth International Workshop on
Green and Sustainable Software, ser. GREENS ’15. Piscataway,

NJ, USA: IEEE Press, 2015, pp. 8–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820158.2820161

[44] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM,
2016, pp. 425–436.

[45] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 599–609. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635896

[46] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 559–570. [Online].

Available: http://doi.acm.org/10.1145/2884781.2884853

