Institute for Software Research

University of California, Irvine

Communication and Capability URLs in
COAST-based Decentralized Services

Michael M. Gorlick
University of California, Irvine
mgorlick@acm.org

Richard N. Taylor
University of California, Irvine
taylor@uci.edu

December 2012
ISR Technical Report # UCI-ISR-12-10

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455
www.isr.uci.edu

www.isr.uci.edu/tech-reports.html

Communication and Capability URLSs in
COAST-based Decentralized Services

Michael M. Gorlick and Richard N. Taylor

Abstract Decentralized systems are systems-of-systems whose services are gov-
erned by two or more separate organizations under distinct spheres of authority.
Coordinated evolution of the various elements of a decentralized system may be dif-
ficult, if not impossible, as individual organizations evolve their service offerings in
response to organization- and service-specific pressures, including market demand,
technology, competitive and cooperative interests, and funding. Consequently, de-
centralized services offer unique challenges for evolution and adaptation that reach
well beyond any one single organizational boundary. However, client-driven service
customization and tailoring is a powerful tool for meeting conflicting, independent
client demands in an environment where disorderly and uneven service evolution
predominates. Computational State Transfer (COAST) relies on capability secu-
rity to minimize the risks of client-driven customization, for which fine-grain man-
agement of communication capability is critical. We introduce the Capability URL
(CURL) as the unit of communication capability and show how two distinct mecha-
nisms, communication capability and mobile code, can be combined to express and
enforce constraints on the communications among decentralized computations.

1 Introduction

Decentralized software systems are distributed systems that span multiple, distinct
spheres of authority—participants may unilaterally change their behaviors in ways
that may or may not be compatible with the needs or goals of the other members.
The web is a prime example; servers come and go, links are created and broken, and
mashups are deployed that rely upon the APIs of other web sites. Integrated supply

Michael M. Gorlick
University of California, Irvine, California, USA, e-mail: mgorlick@acm.org

Richard N. Taylor
University of California, Irvine, California, USA, e-mail: taylor@ics.uci.edu

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

2 Michael M. Gorlick and Richard N. Taylor

chains are another example; the designs of NASA’s Curiosity rover and both the
Boeing 787 and Airbus A380 commercial aircraft required the network-mediated
collaboration of thousands of engineers in many dozens of companies. Decentral-
ization appears in numerous domains including disaster response, coalition military
command, commerce, finance, education, and scientific research. A decentralized
system may be open or closed. In the former participation is loosely constrained if
at all, while in the latter participation is governed by agreements (with varying de-
grees of formality, rigor, and enforcement) among the participants. The global web
is an open system and anyone can participate, but participating in a business-to-
business supply chain system demands negotiations and contracts. Joining or leav-
ing the global web can be done on a whim while joining or leaving a supply-chain
system is not undertaken lightly.

All decentralized systems are intrinsically dynamic: members join and leave,
service relationships change, system implementations and deployments vary as will
their rates of evolution and adaptation, and members adapt to the changing business,
financial, or regulatory environment. Both open and closed decentralized systems
raise concerns of security and trust and neither are immune to malicious behavior.

COmputAtional State Transfer (COAST), an architectural style based on the idiom
of computation exchange, targets decentralized systems and their security issues.
COAST has its roots in two earlier architectural styles, REST and CREST. The World
Wide Web is one of the best known decentralized applications and REST (REpre-
sentational State Transfer) is the architectural style [21] underlying the web’s evo-
lution, performance, and scaling. Code mobility was always part of the REST style
(for example, Javascript embedded in HTML pages) with the nominal goal of fos-
tering browser-side display of new media types or reducing application latency. In
other words, computation mobility in REST was subservient to content transfer and
focused largely on optimizing the transfer and interpretation of resource representa-
tions.

On one hand REST was a huge success, as adherence to the REST principles set
the stage for the web’s unparalleled expansion. However, REST has many shortcom-
ings. From the outset there was insufficient support for differentiation, as the rapid
adoption of cookies, in violation of REST precepts, demonstrated. The emergence
of Ajax (mashups) and the exploitation of computation in the browser suggested a
more prominent role for mobility—constructing and deploying customizations and
application services [17]. At the same time inadequate security led to numerous
breaches.

Inspired by REST, the evolution of web architecture, and the rapid introduction
of Ajax and Web Services, we formulated CREST [14, 15, 17], an architectural style
in which computations displaced content representations as the unit of exchange
among hosts. In CREST, actively executing computations (as opposed to “resources”
as abstracted black-boxes of information) were named by URLs and computations
exchanged state representations reified as closures and continuations. Our trials of
CREST, including a customizable, collaborative feed reader and analyzer [14, 16]
and Firewatch [24], a system for wildfire detection and response, showed consider-
able promise for constructing highly dynamic systems. However, CREST needlessly

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 3

inherited many constraints from Web architecture and, like REST before it, failed to
address security in any comprehensive manner.

COAST, the successor to CREST, is a style for which security is a dominant con-
cern and whose mechanisms allow hosts to minimize the risk of executing visiting
computations on behalf of clients. A detailed view of COAST accompanied by a
demonstration application is given in [26]. Here our focus is communication secu-
rity, whereby COAST hosts manage communications among computations and mod-
ulate access to critical services. However, before introducing the communication
mechanisms we describe our domain of interest, decentralized SOAs, from the per-
spective of computation exchange and from there move to the COAST style itself.
With that behind us we turn to our principal contribution, the details of Capability
URLs, and present examples of their use.

2 Decentralized Systems via Computation Exchange

Decentralized systems whose constituent subsystems operate under distinct spans of
authority must meet two conflicting goals: protecting valuable fixed assets (such as
servers, databases, sensors, data streams, and algorithms) and meeting the evolving
service demands of a diverse client population.

Computation exchange (the computational analogue of content exchange) is the
bilateral exchange of computations among decentralized peers. In this regime, con-
tent delivery is a by-product of the evaluation of computations exchanged among
peers. Computation exchange exploits existing core organizational functions, pro-
cesses, and assets to create higher-level customized services, but imposes significant
security obligations.

Computation exchange generalizes and subsumes a number of well-known styles
for distributed computing, including remote procedure call [7, 40], remote evalua-
tion [47, 49], REST [21], and service-oriented architectures [19]. From the perspec-
tive of computation exchange remote procedure call is an exchange containing a
single function call, remote evaluation is an exchange containing an entire function
body, REST is an exchange of a small set (GET, PUT, POST, DELETE, and so on)
of single function calls accompanied by call-specific metadata, and service-oriented
architectures are higher-order compositions of remote evaluation.

Computation exchange induces all of the risks associated with mobile code [22]
including waste of fungible resources (processor cycles, memory, storage, or net-
work bandwidth), denial of service via resource exhaustion, service hijacking for at-
tacks elsewhere, accidental or deliberate misuse of service functions, or as a spring-
board for direct attacks against the service itself. A computation accepted from a
trusted source may be erroneous or misapply a service function due to honest mis-
understanding or ambiguity. Even a correct computation may expose previously-
unknown bugs in critical functions, leading to inadvertent loss of service.

For decentralized systems authentication, secrecy, and integrity are necessary but
insufficient for asset protection as there is no common defendable security perimeter

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

4 Michael M. Gorlick and Richard N. Taylor

when function is integrated across the multiple, separate trust domains [56]. Here
an attack on one authority threatens all. At best a breach may lead to failures in
other trust domains. At worst a breached authority may undertake an “insider” at-
tack against its confederates. With this in mind decentralization demands that secu-
rity be everywhere always. Applications that cross authority boundaries inherently
bring security risks; adaptations in such contexts only increase the peril; hinting that
security should be a core architectural element.

3 The COAST Architectural Style

COmputAtional State Transfer (COAST) is an architectural style for decentralized
and adaptive systems [26]. Its applications have origins in CREST and, before that,
the REST architectural style. COAST targets decentralized applications where or-
ganizations offer execution hosts (called islands) whose base assets can include
databases, sensors, devices, execution engines, domain-specific functions, or ac-
cess to distinctive classes of users. In COAST, third-party organizations create their
own custom-tailored versions of services (modulo the constraints imposed by the
asset owner) by dispatching computations to asset-bearing islands. For instance, a
monitor-and-alert function may be defined by one user to run periodically on an
island offering access to a to a collection of environmental sensors. Mobile code
both implements the computations in a COAST system and defines the messages
exchanged among those computations. Decentralized security and guarding against
untrusted or malicious mobile code are principal island concerns—the style man-
dates architectural elements that when used appropriately provide access, resource,
functional, and communication security. In exchange for the complexity imposed by
these security mechanisms, COAST allows the construction of on-demand tailored
services and enables a wide range of dynamic adaptations in decentralized systems.

COAST security relies on the Principle of Least Authority (POLA) [45] and
capability-based security [8]. POLA dictates that security is a product of the au-
thority given to a principal (the functional power made available) and the rights
given to the principal (the rights of use conferred with respect to that authority).
At each point within a system a principal must be simultaneously confined with re-
spect to both authority and rights. A capability is an unforgeable reference whose
possession confers both authority and rights of access to a principal. COAST is one
architectural style for computation exchange, just as “pipes and filters” is one of
many architectural styles for data processing. COAST’s constraints mandate where,
when, and how authority and rights are conveyed.

The COAST style states:

e All services are computations whose sole means of interaction is the asyn-
chronous messaging of closures (functions plus their lexical-scope bindings),
continuations (snapshots of execution state [20]) and binding environments
(maps of name/value pairs [29])

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 5

 All computations execute within the confines of some execution site (E, B) where
E is an execution engine and B a binding environment

e All computations are named by Capability URLs (CURLSs), an unforgeable,
tamper-proof cryptographic structure that conveys the authority to communicate

e Computation x may deliver a message (closure, continuation, or binding environ-
ment) to computation y only if x holds a CURL u, of y

* The interpretation of a message delivered to computation y via CURL u, is u,-
dependent

For example, Alice operates a COAST-based high-performance image process-
ing service. Her clients dispatch computations for processing, enhancing, and ana-
lyzing a wide variety of commercial, industrial and scientific imagery to her service.
The execution sites in her server farms are managed by her own COAST computa-
tions whose CURLSs denote site-specific processing varying across a spectrum of
performance and functionality.

Bob, whose machine shop manufactures custom aviation and motorcycle rac-
ing components, is one of Alice’s clients. His COAST-based automated visual in-
spection system dispatches quality-control computations containing high-resolution
digital photographs of components to Alice’s execution sites for final inspec-
tion. Alice’s proprietary algorithms combined with Bob’s customized closures for
component- and use-specific analysis help Bob maintain a high level of quality.

Carol, another of Alice’s clients, analyzes medical imagery for physicians and
medical testing labs. The sheer volume of the imagery, along with strict medical pri-
vacy regulations, prevent Carol from shipping her closures, binding environments
and imagery to an outside processor (as Bob does for his custom racing compo-
nents), so Carol has licensed an image processing library from Alice that has been
integrated into the execution sites of her own in-house COAST-based services.

Carol obtains analytical tools for her imagery from Dave, whose biotechnology
company deploys computations for narrowly targeted tissue analyses to COAST
sites. Carol dispatches service requests (as computations) to Dave’s COAST ser-
vices. Each of her requests prompts Dave’s computations to generate a custom anal-
ysis (as a closure or continuation) optimized to meet her request-specific needs and
constraints. Included in each of Carol’s requests is a nondelegable, “use-once-only”
CURL referencing one of her execution sites containing privacy-sensitive medical
images.

Dave deploys his customized analysis to Carol’s site via Carol’s CURL. As
Dave’s analysis executes on Carol’s COAST infrastructure her execution site pre-
vents Dave’s computation from accessing any other confidential imagery. Her
COAST-based monitoring and auditing infrastructure tracks the execution of Dave’s
analysis from beginning to end, ensuring that it does not violate patient privacy reg-
ulations. The nondelegable, use-once-only CURL prevents Dave from sharing the
CURL with any other COAST site (nondelegation), and, as it can never be used
more than once, neither Dave nor any attacker that infiltrates Dave’s infrastructure
can ever send more than a single computation to Carol’s request-specific, privacy-
sensitive, execution site.

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

6 Michael M. Gorlick and Richard N. Taylor

COAST offers two distinct forms of capability, functional capability—what a
computation may do and communication capability—when, how, and with whom
a computation may communicate. Functional capability is regulated by execution
sites while communication capability is regulated by CURLs. These two mecha-
nisms, execution sites and CURLs, can be combined in many different ways to elicit
domain- and computation-specific security.

Execution Sites: Over its lifespan each COAST computation is confined to an
execution site (E,B).The execution engine £ may vary from one exectution site
(and computation) to another: for example, a Scheme interpreter or a JavaScript
just-in-time compiler. The execution engine defines the execution semantics of the
computation and the machine-specific limits (e.g., resource caps) imposed upon the
computation.

The binding environment B contains all of the functions and global variables of-
fered to the computation at that execution site. Names unresolved within the lexical
scope of ¢ (the free variables of c) are resolved, at time of reference, within the
binding environment B. If B fails to resolve the name the computation is terminated.

Both the execution engine and binding environment of an execution site (E,B)
may vary independently and multiple sites may be offered within a single address
space. E may enforce site-specific semantics: for example, limits on the consump-
tion of resources such as processor cycles, memory, storage, or network bandwidth;
rate-throttling of the same; logging; or adaptations for debugging. The contents of
B may reflect both domain-specific semantics (for example, B contains functions
for image processing) and limits on functional capability (B contains functions for
access to a subset of the tables of a relational database).

Capability URLs: CURLs convey the ability to communicate between com-
putations. A CURL u issued by a computation x is an unguessable, unforgeable,
tamper-proof reference to x, as it contains cryptographic material identifying x and
is signed by x’s execution host. A CURL referencing x may be held by one or more
other computations y. CURL u is a capability that designates the network address
of computation x, contains arbitrary x-specific metadata (including closures), and
grants to any computation y holding u the power to transmit messages to x. When
y transmits a message m to x via CURL u both the message m and the CURL u are
delivered together to x.

A computation x uses the CURLS it issues to constrain its interactions with other
computations and to bound the services it offers. The rationale for constraining in-
teraction in this way is based upon security concerns. A computation y, holding a
CURL for x, can send arbitrary closures to x in the expectation that x will evaluate
those closures in the context of some x-specific execution site (E, B). Therefore x
must defensively minimize the functional capability that it exposes to visiting clo-
sures.

A computation can accumulate communication capability in the form of addi-
tional CURLSs. For any computation, CURLSs conveying additional communication
capability are:

¢ Contained in the closure defining the computation
* Returned as values by functions invoked, or

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 7

* Embedded as values in the messages received.

Fig. 1 The notional structure

of a COAST execution host

where a trusted code base o @ @
allocates execution engines)

and binding environments to !
computations, whose imple-)
mentations are sourced from defined

a variety of other organiza- by ‘
tions. Computations (given as service
circles) C5 and C6 each hold builders

a distinct CURL (given as ~ ====== === of poaas e m m e m e e oo o S

V...

diamonds) denoting different BinQing BinQing Binqing
services offered by compu- defined Environ Environ Environ
tation C3. By holding those by 1 2 3
CURLSs C5 and C6 possess local Execution Execution
the ng})ﬁt(dde.nowf}? Y d(t))t.tled authority Engine 1 Engine 2
arrows) to dispatch mobile

code as messages to C3 for Infrastructure/Framework

execution.

Constructing COAST Applications: A COAST application is constructed from
multiple services available at distinct, decentralized, execution sites, each of which
offers location- and organization-specific primitives. Those services themselves may
depend on customized collaborations with yet other services. Figure 1 illustrates the
notional structure that COAST induces on execution hosts.

Computations are expressed in MOTILE, a single-assignment functional language
with functional, persistent data structures [41] (all data structures are immutable).
A COAST island is a single, uniform address space occupied by one or more com-
putations. Computations residing on an island 7 issue one or more CURLs to the
computations with whom they wish to communicate. A CURL u for x is a CURL
generated by x. For the sake of security, communication among computations is
“communication by introduction” meaning that computation x can’t communicate
with computation y unless it already holds or obtains (via function call or messag-
ing) a CURL issued by y.

4 Capability URLSs in Detail

Each CURL u denotes a specific computation x and contains a self-certifying net-
work address [31], a path (a list of MoTILE values), and arbitrary metadata. To ensure
the integrity of “introduction only” it must be effectively impossible to guess, forge,
or alter a CURL. CURLSs are a first-class, immutable capability in MoTILE; hence,
within the confines of a legitimate island, it is impossible for a MOTILE computation

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

8 Michael M. Gorlick and Richard N. Taylor

to forge a CURL or alter one surreptitiously. Every island / holds a public/private
key pair and guarantees the integrity of the CURLs that its computations issue by
signing each with its private key.

For the sake of safety and security islands must manage and limit access to both
fungible resources (such as memory or bandwidth) and island-specific assets (such
as sensors or databases). Restricting the lifespans of computations may help an is-
land stave off resource exhaustion and limiting the total number of messages that a
computation may receive or the rate at which they are delivered can limit access, im-
prove performance, or reduce the severity of computation-specific denial of service
attacks. These forms of resource security protect against malicious visiting compu-
tations intent on resource attacks or exploiting the island as a platform for attacks
directed elsewhere.

With these primitive mechanisms at hand it is trivial to generate a “once only”
CURL that is invalid after a single use. Finite CURL lifespans allow computations
to offer time-limited services to their clients; for example, such CURLSs can be used
by a transaction coordinator to enforce time limits among the participants of a two-
phase commit. An e-commerce service can combine lifespans with use counts to
generate the CURL-equivalent of limited-offer coupons or gift cards, and rate limits
are useful in “introductory” promotions in which the service may want to bound the
rate of use by newcomers.

The CURLs generated by a computation x draw upon a tree of “resource ac-
counts” whose root is the resource account granted to computation x “at birth” by
the island 7 on which x resides. Each account has a finite lifespan and contains a
“balance” comprising a use count and rate limit. The initial balance allocated to a
new account is “withdrawn” from its parent account and the lifespan of the new
account is never more than the lifespan of the parent account. Many accounts may
derive from the same parent account and many CURLs may share a single resource
account in common.

(let* ((path (list "question" "ultimate")) 1
(metadata 2

(list (cons "name" "Arthur Dent") 3

(cons "residence" "Earth")))) 4

(IQ (curl/new (resource/root) path metadata))) 5
(curl/send 6
Guide@ 7
(list "SPAWN" (lambda () (curl/send IQ 42)))) 8
(receive)) 9

Fig. 2 A simple MOTILE program. Island / sends a closure to island J for execution that does
nothing but transmit the the number 42 back to island /.

A Simple MotiLE Program: Figure 2 is an example of a simple program in
which a trivial closure is dispatched by island / to a remote island Guide for execu-
tion and a constant value is transmitted back to island /. Line 3 binds the variable I@

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 9

to a CURL for computation x on island I. The function resource/root always
returns the root resource account of the calling computation; the MoTiLE function
curl/new (line 3) generates a CURL given a resource account from which the
CURL draws its resources (use count, rate limit, and lifespan), a path (line 1), and
metadata (line 2).

The function curl/send given in lines 4—6 transmits a spawn command (the
second argument, line 6) to the computation denoted by the first argument, a CURL
for island Guide bound to the variable Guide@ (line 5; the details of how compu-
tation x acquired CURL Guide@ are omitted for the sake of brevity and clarity).
The closure, (lambda ...), evaluated by an execution site of island Guide, im-
mediately transmits the message 42 back to computation x on island 7 via CURL
Guide@. The MortiILE function receive, called on line 7 of computation x, blocks
until a message m for computation x arrives and returns that message m as its value.

(define (palindrome? s) 1
(define (traverse? s left right) 2
(or 3

(= left right) 4

(> left right) 5

(and 6

(eg? (string-ref s left) (string-ref s right)) 7
(traverse? s (addl left) (subl right))))) 8
(traverse? s 0 (subl (string-length s)))) 9
10

(letx ((reply (promise/new 60.0)) 11
(reply/promise (car reply)) 12
(reply/curl (cdr reply)) 13
(palindromes 14
(lambda () 15
(curl/send 16
reply/curl (filter (words/get) palindrome?))))) 17

18

(curl/send JQ@ (list "SPAWN" palindromes)) 19
(promise/wait reply/promise 60.0 #f)) 20

Fig. 3 A computation on island / dispatches a closure to island J to obtain all of the palindromes
in in a dictionary of words.

A Client-Defined Service: Figure 3 illustrates sending a closure from island /
to extract all of the palindromes contained in a database of words maintained by
island J. Since island J has no predefined function for detecting palindromes, the
computation on island / defines (lines 1-9) a function palindrome? that accepts
a string s and returns true (#t) if s is a palindrome and false (# £) otherwise. MOTILE
uses promises to bridge the gap between functional programming and asynchronous
messaging. A promise is a proxy object for a result that is initially unknown because
the computation of its value has yet to be initiated or is incomplete. Line 11 creates
a new promise with a lifespan of 60 seconds. In MOTILE a promise consists of two

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

10 Michael M. Gorlick and Richard N. Taylor

elements: the promise object proper (reply/promise in line 12) and a single-
use CURL, reply/curl in line 13, by which the result of the promise will be
resolved by some computation .

Lines 14-17 define the closure, palindromes, that will be transmitted to is-
land J for evaluation. pal indromes, when executed by island J, first applies the -
defined predicate palindrome? as a filter to the contents of the word database and
then sends the result of that filtering (a list, possibly empty, of the palindromic words
in the database) to the island computation denoted by the CURL reply/curl.
The functions filter and words/get are resolved in the binding environment
of the closure’s execution site on island J. Line 19 is the transmission by [to J
of the request to evaluate the closure palindromes. The variable J@ is a CURL
for island J denoting the target execution site for the palindromes closure. Fi-
nally, at line 20, the computation on island / waits a maximum of 60 seconds for
the spawned computation to complete and return its result. If for some reason the
spawned computation is unable to complete its task in the time allotted the result of
the promise will be the value # £ (false) given in line 20.

The program of Figure 3 is a classic example of moving computation close to the
data that it demands and illustrates an effect that is difficult to achieve in a RESTful
system; island J may easily host a large dictionary of words but it’s not likely to
implement a service expressly designed for extracting palindromes. However, that
omission is irrelevant in COAST-based systems since a client is free to compose
client-specific higher-order services from the primitives found in the execution sites
of island J. No such provision exists in RESTful services.

Provider-Issued Mobile Code in CURLSs: A computation may embed closures
as metadata in the CURLSs that it issues and use those embedded closures as the
interpreters of the messages that it receives. As the CURL is tamper-proof, the re-
ceiving computation (by definition the issuer of the CURL) may safely rely on any
state and mobile code the CURL contains. When the computation first constructs
and issues the CURL, it ensures that the CURL contains all of the static state (in-
cluding arbitrary generated closures) that the computation will need in the future
to serve the holder(s) of the CURL. In this manner computations, in addition to
granting the capability to communicate, can enforce fine-grained constraints on the
interpretation of messages. For example, a computation x may issue a CURL to y
that allows y’s mobile code, when sent to x, to call only one particular function that
x selects and makes available.

For instance, an e-commerce site wants to issue CURLSs as coupons for a book
sale where three popular books, identified by ISBN numbers b1,52,b3, will be on
sale for a month at 80% of the list price, but only on the even days of the month-long
sale.

The construction of such a CURL is given in Figure 4. Lines 1-4 specify the
derivation (via function resource/new at line 2) of a CURL-specific resource
account, sale, from the root account (line 3) of the computation. At line 1-4 sale
is granted a balance of three total uses, a rate limit of once every seventeen seconds,
and a total lifespan of 30 days (timespan/seconds at line 3 takes days, hours,
minutes, and seconds and converts that span of time to total seconds).

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

—
—

Communication and Capability URLs in COAST-based Decentralized Services

(let* ((sale 1
(resource/new 2
(resource/root) 3

3 (/ 1.0 17.0) (timespan/seconds 30 0 0 0))) 4
(day/even? 5
(lambda () (even? (date/day (date/now))))) 6

(path (list "books" "sale")) 7
(metadata 8
(list (cons "ISBNs" (list bl b2 b3)) 9

(cons "gate" day/even?) 10

(cons "discount" 0.80)))) 11

(curl/new sale path metadata)) 12

Fig. 4 Generating a time-limited, day-specific sales coupon as a CURL.

day/even? at lines 5-6 is a provider-generated MoTiLE predicate that returns
true if the current day of the calendar month is an even integer and false otherwise.
date/now and date/day are provider-side calendrical functions. date/now
returns the current date as a structure and date/day extracts the day of the month
(1-31) from that structure. Line 7 defines the path for the CURL to be generated and
lines 8—11 define the metadata to be included in the CURL as key/value pairs: the
ISBNSs of the books on sale, the gate function defined by the provider to determine
the validity of the “coupon” and the amount of the sale discount. Finally, line 12
generates and returns the desired CURL.

When the e-commerce site receives a purchase request message sent by way of a
“coupon” CURL it passes the CURL and message on to the book sale computation
only if the message arrived before the expiration date of the CURL. The book sale
computation executes the gate function contained within the metadata of the CURL
to determine if the coupon is valid. If so it allows the purchase to proceed; otherwise
the request is rejected. As the book sale computation is ignorant of the details of the
gate function included in the CURL metadata the e-commerce site provider can
easily generate customized sale coupons, each with different gate functions.

Service Implementations in CURLSs: Figure 5 illustrates how a CURL can carry
a service implementation; here generating custom ranges of real random numbers.
Lines 1-3 define a utility function random/new that returns a customized random
number generator as a closure (line 3). The provider-side function random returns
a real random number in the open range [0,1). service/custom returns a cus-
tomized CURL for a client requiring a random number service using bounds, 1ow
and high, specified by the client. The CURL is granted a use count of 100, a rate
limit of 7.5Hz and a lifespan of 90 seconds (lines 6 and 10). The CURL metadata
contains the custom random number generator (line 9). The CURL itself is the return
value (line 10).

The server itself is just a skeleton that expects messages whose only content is a
“reply to” CURL r. Recall that every MoTiLE/island message is accompanied by the
CURL u to which the message is directed. On receiving such a message the server

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

12 Michael M. Gorlick and Richard N. Taylor

extracts the service implementation (as a closure f) from the metadata of CURL u,
evaluates f, and transmits that result via CURL r.

(define (random/new low high) 1
(let ((difference (- high low))) 2
(lambda () (+ low (* (random) difference))))) 3

4

(define (service/custom low high) 5
(let ((custom (resource/new (resource/root) 100 7.5 90.0)) 6
(path (list "random" "custom" low high)) 7
(metadata 8

(list (cons "implementation" (random/new low high))))) 9
(curl/new custom path metadata))) 10

Fig. 5 Generating a client-specific service as a CURL.

Non-Delegation and CURL Revocation: COASTcasT [26] is a COAST-based
service for the distribution and manipulation of real-time High Definition (HD)
video. Islands whose assets include HD cameras and execution sites containing
primitives for managing cameras and encoding (compressing) video serve video
streams to other islands with high-resolution monitors for displaying the video
streams. Island assets may be less tangible, for example, islands with sufficient com-
puting capacity and network bandwidth to relay high-bandwidth video streams to
other less capable islands. In such applications camera islands may want to restrict
direct access to cameras to a small set of trusted display or relay islands. In other
words, if island 7 holds a CURL u granting it access to a particular camera of island
J we would like to guarantee that only / may access the camera of J even if it hands
CURL u on to island X for its use. This property, non-delegation, is enforced by
embedding J-generated restrictions (as metadata) in the CURL u that J provides to
I. As all islands are self-certifying, island J can determine authoritatively if a mes-
sage m sent to it via CURL u was sent from island / or some other island X. Each
CURL u may contain (as metadata) a predicate (a single-argument closure) that,
given the address of an island, returns true if the island is permitted to use u and
false otherwise.

Figure 6 illustrates the construction of a CURL by island J that limits delegation
on the basis of processor load. Islands A, B, and C are each permitted access to HD
camera 3 of island J with a resolution of 720p at a frame rate of 20 frames-per-
second (indicated by the path, line 14). Combined, the three islands may access
the camera a total of 10 times (line 1), at most twice per day (lines 2-3), over a
period of 14 days (lines 4-5). Lines 6—7 define a derived resource account camera
that enforces these use, rate, and lifespan constraints.

Lines 8—13 define the delegation predicate dictated by island J. The access of all
three islands A, B, and C is determined by the current processor load on island J. A
may access the camera only if the processor load is low (< 3.7), B may access the
camera only if the processor load is moderate at worst (< 7.3), and C may access

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 13
(let* ((uses 10) 1
(rate 2

(/ 2.0 (timespan/seconds 1 0 0 0))) ; Twice per day. 3
(lifespan 4
(timespan/seconds 14 0 0 0)) ; Fourteen days. 5
(camera 6
(resource/new (resource/root) uses rate lifespan)) 7
(delegate 8
(lambda (x) 9

(or 10

(and (eg? x A) (<= (cpu/load) 3.7)) 11

(and (eg? x B) (<= (cpu/load) 7.3)) 12

(and (eqg? x C) (<= (cpu/load) 10.1))))) 13

(path (list "camera" 3 "720p" 20)) 14
(metadata (list (cons "delegate" delegate))) 15

(J@ (curl/new camera path metadata))) 16

17

(curl/send AQ JQ) 18
(curl/send BQR JQ) 19
(curl/send CQ JQ)) 20

Fig. 6 Generate a CURL that limits delegation on the basis of processor load.

the camera only if the processor load is not excessively high (< 10.1). The CURL
J@ for access to camera 3 is generated at line 16 and is distributed to islands A, B,
and C at lines 18-20.

When a closure f is sent to the execution site of camera 3 of island J via CURL
J@ island J applies the delegation predicate in the CURL metadata to the address
of the transmitting island. If the predicate returns true then closure f is evaluated
in the context of the execution site of camera 3; otherwise, closure f is rejected.
Consequently, no other islands besides A, B, or C can access the camera and the
access of these three is predicated on the current processor load. If another island X
somehow acquires CURL J@ it cannot be used productively by X.

Any CURL issued by an island may be revoked at any time by that island. The
unit of revocation is the resource account » on which the CURL draws; for example,
the CURL J@ generated at line 16 of Figure 6 draws upon the resource account
camera constructed at lines 6-7. If the resource account » upon which a CURL u
draws is invalidated by its issuing island then any message transmission via u will be
summarily rejected from that point forward. If multiple, distinct CURLS uy,...,u,
draw upon r then the invalidation of r revokes all such CURLSs ;.

5 Motile/Island: A Reference Infrastructure

The COAST style imposes substantive constraints on how COAST-based applications
must be built. Satisfying these constraints with a typical imperative programming

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

14 Michael M. Gorlick and Richard N. Taylor

language is awkward so we have created an implementation platform for construct-
ing and deploying COAST applications: MOTILE, a mobile code language whose se-
mantics and implementation enforce key constraints on the use and migration of
capability, and IsLAND, an infrastructure for MOTILE computations.

COAST Computations as Actors: Each COAST computation is implemented as
an actor [3]. Each actor is an independent thread of computation that may trans-
mit asynchronous messages to other actors, receive asynchronous messages from
other actors, conduct private computations, and spawn new actors. All four actions
are implemented (and perhaps selectively restricted) by functions in binding envi-
ronments. Spawning is implemented as a specialized kind of message sending. The
assumptions of the actor model, private computation and asynchronous messaging,
match those of COAST, where private computation is conducted only in the context
of a specific execution site. Actors are distinct from agents as, unlike agents [9], each
actor is immobile (closures and continuations are mobile but not an actor). Also in
many agent systems the identity of the agent is invariant as it moves from host to
host, whereas spawning a closure or continuation results in a new and distinct actor.

Motile: MorTILE is a single-assignment, functional language for defining COAST
computations. All MoTILE actors are named by one or more CURLS, a base data type
in MotiLE. All MoTILE data structures are purely functional [41] (hence immutable).
This choice reduces the semantic distinctions between messaging where sender and
receiver share an address space and messaging where the sender and receiver oc-
cupy separate address spaces. Since all data structures (including messages) are
immutable the data synchronization races common to shared-memory, imperative
languages are not possible. By implication, shared-memory attacks where values
are mutated after being shared with other actors are impossible.

Island: An island is a single, homogeneous address space occupied by one or
more MOTILE actors. Islands implement the role of “execution host” discussed in
Section 3. Each island is uniquely identified by a triple: the public key half of a
public/private key pair, a DNS name, and an IP port number. All islands are self-
certifying [35, 54] and all communication between islands is encrypted. Each is-
land is instantiated with an initial set of execution engines, binding environments,
and a set of trusted computations that allocate execution sites to visiting computa-
tions. Those trusted actors have access to implementation-level MOTILE primitives
that other computations are not permitted to call; for example, creating an actor, in-
stantiating island-wide user interfaces, and staging fixed island assets. These trusted
actors also issue CURLs naming themselves, with the distinction that their CURLs
are durable—valid even after an island is restarted. Computations holding a CURL
for a trusted actor ¢ are permitted to send a closure to ¢ to spawn a new COAST com-
putation. The specific execution engine and binding environment allocated to that
new computation conform to the security and usage policy enforced by ¢.

Capability URL Implementation: Every CURL u denotes a specific computa-
tion x and contains:

* An address, the public key, DNS name, and IP port number of island 7
* A path (a list of MoTILE values, possibly empty), defining for x the domain of
interpretation of a message sent via u

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 15

* The resource key, a globally unique cryptographic identifier [33], used by island
I as an index to CURL-specific, island-side state (including CURL timestamps,
use count, and rate limit)

* The creation and expiration timestamps of u. After the deadline (the expiration
timestamp) any message sent via this CURL will be rejected

* A use count, a positive integer, giving the nominal maximum number of mes-
sages that may be delivered to x via u

* A rate limit, a positive number, giving the nominal maximum rate (in Hz) at
which messages transmitted via u to x will be delivered to x

* Arbitrary metadata that may include primitive values, standard structures such as
lists or vectors, other CURLS, closures, continuations, and binding environments

* A cryptographic signature (over the contents of u) generated by the island / on
which computation x resides. The signing, based on the private key of island /,
allows any computation holding CURL u to verify that u is a valid CURL for x
on/

A CURL supports, by construction, four base restrictions:

* Use count (total number of messages per CURL)

» Expiration date (after which the CURL is invalid)

» Rate limits (rate of message transmissions per CURL)

* Revocation (permanently withdraw, per CURL, the capability to communicate).

All are enforced by the issuing island /, since no island would reasonably trust
another to enforce its own restrictions, and all four restrictions require the issuing
island to maintain a small amount of state. Let u be a CURL for actor x. A trusted
actor of I inspects each CURL/message pair u/m on arrival, passing the pair onto
actor x if and only if CURL u is valid and the pair satisfy all /-imposed restrictions.
At CURL generation time, x and / may both insert arbitrary MOTILE expressions
into u in addition to customizing the base restrictions listed above. In this manner
x enforces x-specific, u-specific restrictions on communication including complex
temporal constraints (“only on alternate Thursdays before noon”), use scenarios
(“only legal expressions in a domain-specific language”), limits on delegation (only
messages from island J) and conditionals based on observables (“the price of gold
on NYMEX must be < $1657 per ounce”), and [in turn enforces restrictions it
places on x and its collaborators. Each CURL contains the mobile code and static
state that x will require to enforce those additional observable restrictions.

6 Related Work

COAST and MoTILE/ISLAND have been influenced by prior work on mobile code
including remote evaluation [48, 49], Scheme-based mobile code languages [27,
42, 51], the actor-like language Erlang [5], the object-capability language E [36],
and capability-based operating systems [44, 46]. Island self-certification is drawn
from self-certifying file systems [35] and URLs [31]. Our previous work on CREST

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

16 Michael M. Gorlick and Richard N. Taylor

[14, 17, 18, 25] inspired computation exchange and led us to consider the problem
of secure decentralized services that COAST addresses.

The idiom of computation exchange is partially reflected in Emerald [30], a
system devoted to high-performance object mobility. Like computation exchange,
Emerald emphasizes fine-grain state and code transfers among hosts, but assumes a
single sphere of authority, identical host processors, and extends no further than a
local area network.

Kali Scheme [10] implemented distinct address spaces containing multiple threads
(the equivalent of islands) as a language construction and introduced closure and
continuation exchange in messages as a mechanism for spawning threads in remote
address spaces.

Self-protective behavior for the sake of ensuring progress (liveness) and system
integrity is a vital interest of local security. Resource sandboxing is a common de-
fense mechanism to forestall denial of service attacks via resource exhaustion and is
available in several languages including Java [34] and Racket [53]. Execution sand-
boxing denies executing programs unsafe access to critical resources. The Google
Native Client [55] employs software fault isolation [52] to confine the execution of
untrusted native Intel x86 code. Extensions to Native Client [4] adapt these tech-
niques to the complex run-times of high-performance, dynamic, JIT-enhanced lan-
guages such as JavaScript.

Several mechanisms were employed by Telescript [23], an object-oriented, mo-
bile agent system, for which security was a concern [50]. Mobile Telescript agents
were executed by a host-independent virtual machine within places, virtual locations
devoted to a particular service: for example, a ticket purchase, or catalog search. Mo-
bile agents and places were tagged with a designation of authority (the originating
organization). Agents were granted permits by the managing authority of the place,
which confined the capabilities granted to an agent and set resource caps. Telescript
can be regarded as a mobile-code-based decentralized SOA.

Agent technology draws from both distributed systems and programming lan-
guages, notably for strong mobility. For example, Agent Tcl [32] (now DAgents)
had four principal goals: ease of agent migration, transparent communication among
agents, support for multiple agent languages, and effective security. Agent Tcl im-
plements “whole” agent mobility where the only unit of code mobility is the entire
binary image of the agent and relies on Safe Tcl to confine the executing Tcl agents
where a set of trusted scripts provide limited access (based on access control lists)
to unsafe functionality.

Object capability security is a pivotal influence on COAST. A capability [13],
fuses access to, and designation of, a protected resource into a single, unforgeable
reference. The object capability security model [36] implements confinement [46],
revocation, and multilevel security [37]; offers patterns for non-delegation [39]; re-
solves the problem of the Confused Deputy [12, 28]; and is a base mechanism for
information flow control [6, 38]. The Emerald language [43] is an early example of
an object-capability language.

CURLS have precedent in the self-certifying URLs (YURLS) of Waterken [11],
the unique URLs of Second Life [2], and the time-limited, signed URLs of Ama-

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 17

zon S3 [1]. YURLSs embrace “communication by introduction” in which a client,
interacting with a trusted partner, is granted the capability to communicate with a
specialized service acting on behalf of (or equivalently, as a proxy for) the trusted
partner. Both YURLs and CURLSs contain one or more large, cryptographic num-
bers, in the former the SHA hash of the public key of a web site and in the latter,
the public key of an island and the resource key of the resources account affiliated
with the CURL. Consequently, both YURLs and CURLSs are impossible to guess but
YURLSs can be forged as they are not signed. In contrast, since CURLs are signed
with the private key of the issuer they cannot be forged, are tamper-proof, and non-
repudiable.

7 Conclusion and Future Work

Since decentralized services, by definition, have no so single defensible perimeter,
all of the constituent services must be self-defensive. Capability security is the prin-
cipal defensive mechanism for COAST-based systems and takes two forms: func-
tional capability, circumscribed by the execution engine and binding environment
of the individual execution sites of computations, and communications capability,
where communication by introduction and Capability URLs limit and shape the
ability of computations to inter-communicate. By design CURLSs prevent arbitrary
communication among service components and, by constraining communication,
reduce the risks and consequences of both accidental errors and malicious attacks.
Communication between computations x and y is possible only if at least one of the
two holds a CURL for the other. However, that is the minimum necessary condition
since any messaging between the two must also satisfy a CURL-specific use cap
(the total number of messages that may be sent), rate limit (the frequency in Hertz
at which messages may be sent) and an expiration deadline (the “end of life” for the
CURL). With these constraints a computation can regulate the total number of mes-
sages that it receives from another, the arrival rate of those messages, and the span
of time over which it can expect to hear from another computation—all of which
can thwart or reduce abuse of service and ensure fair service for others.

These basic constraints are useful but insufficient for enforcing service agree-
ments based on observables, real-world phenomena (weather, processor load, stock
prices, ...), the states of the communicating computations, or the states of compu-
tations elsewhere. CURLSs, when combined with embedded MoTiLE mobile code,
facilitate:

* Preconditions and use restrictions incorporating observables

» Explicit state transfer in the spirit of REST

* Service customization

» Service transfer for which both the state of the service and its implementation are
completely explicit

* Non-delegation that incorporates arbitrary temporal and use constraints

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

18 Michael M. Gorlick and Richard N. Taylor

The combination of communication by introduction and mobile code is a significant
contribution to the safety and security of decentralized services.

Mobile code embedded in CURLSs can serve other functions as well including
logging, message tracing, debugging, exception handling, event distribution, traffic
analysis, checkpointing and service restart. Many interesting research questions re-
main for example, domain-specific security languages or service-level contracts as
embedded mobile code in CURLSs, language constructions for incorporating, and re-
sponding to, resource restrictions in CURLS, hierarchical constraints in CURLSs that
reflect layered, system-level concerns, the roles of CURLs with embedded mobile
code in dynamic software update, and COAST-like communication by introduction
for embedded and soft real-time systems.

Acknowledgements We are indebted to Kyle Strasser whose adroit implementation of COASTCAST
broadened our understanding of communication capability in MOTILE/ISLAND and the means by
which functional capability could be manipulated to support security.

This work supported by the United States National Science Foundation under Grant Nos. CCF-
0917129 and CCF-0820222.

References

1. http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html, March
2006.

2. http://wiki.secondlife.com/wiki/Protocol#Capabilities, February 2011.

3. AGHA, G. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
December 1986.

4. ANSEL, J., MARCHENKO, P., ET AL. Language-independent sandboxing of just-in-time com-
pilation and self-modifying code. In Proceedings of the 2011 Conference on Programming
Language Design and Implementation (New York, New York, USA, June 2011), PLDI'11,
ACM.

5. ARMSTRONG, J. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, 2007.

6. BIRGISSON, A., RUSSO, A., AND SABELFELD, A. Capabilities for information flow. In
Proceedings of the Conference on Programming Languages and Security (New York, New
York, USA, June 2011), PLAS’11, ACM.

7. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Transac-
tions on Computer Systems 2, 1 (February 1984), 39-59.

8. BOMBERGER, A. C., FRANTZ, W. S., HARDY, A. C., HARDY, N., LANDAU, C. R., AND
SHAPIRO, J. S. The KeyKOS nanokernel architecture. In Proceedings of the Workshop on
Micro-kernels and Other Kernel Architectures (1992), USENIX Association, pp. 95-112.

9. BRAUN, P., AND ROSSAK, W. R. Mobile Agents: Basic Concepts, Mobility Models, and the
Tracy Toolkit. Morgan Kaufmann, 2004.

10. CEJTIN, H., JAGANNATHAN, S., AND KELSEY, R. Higher-order distributed objects. ACM
Transactions on Programming Languages and Systems 17,5 (1995), 704-739.

11. CLOSE, T. Decentralized identification. http://www.waterken.com/dev/YURL/, 2001.

12. CLOSE, T. ACL’s don’t. Tech. Rep. HPL-2009-20, HP Laboratories, February 2009.

13. DENNIS, J. B., AND VAN HORN, E. C. Programming semantics for multiprogrammed com-
putations. Communications of the ACM 9, 3 (March 1966), 143—-155.

14. ERENKRANTZ, J. R. Computational REST: A New Model for Decentralized, Internet-Scale
Applications. PhD thesis, University of California, Irvine, September 2009.

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

Communication and Capability URLs in COAST-based Decentralized Services 19

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

ERENKRANTZ, J. R., GORLICK, M., SURYANARAYANA, G., AND TAYLOR, R. N. Har-
monizing architectural dissonance in REST-based architectures. Tech. Rep. UCI-ISR-06-18,
Institute for Software Research, University of California, Irvine, December 2006.
ERENKRANTZ, J. R., GORLICK, M., AND TAYLOR, R. N. CREST: A new model for de-
centralized, internet-scale applications. Tech. Rep. UCI-ISR-09-4, UCI Insitute for Software
Research, September 2009.

ERENKRANTZ, J. R., GORLICK, M. M., SURYANARAYANA, G., AND TAYLOR, R. N. From
representations to computations: The evolution of web architectures. In Symposium on the
Foundations of Software Engineering (September 2007), pp. 255-264.

ERENKRANTZ, J. R., GORLICK, M. M., AND TAYLOR, R. N. Rethinking web services
from first principles. In Proceedings of the 2nd International Conference on Design Science
Research in Information Systems and Technology (Pasadena, California, May 2007).

. ERL, T. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice-

Hall, 2005.

FELLEISEN, M. The theory and practice of first-class prompts. In Proceedings of the Sympo-
sium on Principles of Programming Languages (New York, New York, USA, January 1988),
ACM, pp. 180-190.

FIELDING, R. T., AND TAYLOR, R. N. Principled design of the modern web architecture.
ACM Transactions on Internet Technology 2, 2 (May 2002), 115-150.

FUGGETTA, A., P1cCO, G. P., AND VIGNA, G. Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24, 5 (1998), 342-361.

GENERAL MAGIC INC. Telescript Language Reference. Sunnyvale, California, USA, October
1995.

GORLICK, M. M., GASSTER, S. D., PENG, G. S., AND MCATEE, M. Flow webs: Archi-
tecture and mechanism for sensor webs. In Proceedings of the Ground Systems Architecture
Workshop (Manhattan Beach, California, USA, March 26-29 2007).

GORLICK, M. M., STRASSER, K., BAQUERO, A., AND TAYLOR, R. N. CREST: principled
foundations for decentralized systems. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications companion
(October, 2011), SPLASH’11, ACM, pp. 193-194.

GORLICK, M. M., STRASSER, K., AND TAYLOR, R. N. COAST: An architectural style for
decentralized on-demand tailored services. In Proceedings of 2012 Joint Working Conference
on Software Architecture & 6th European Conference on Software Architecture (August 2012),
WICSA/ECSA’12, pp. 71-80.

HALLS, D. A. Applying Mobile Code to Distributed Systems. PhD thesis, University of
Cambridge, June 1997.

HARDY, N. The confused deputy: (or why capabilities might have been invented). SIGOPS
Operating Systems Review 22, 4 (1988), 36-38.

JAGANNATHAN, S. Metalevel building blocks for modular systems. ACM Transactions on
Programming Languages and Systems 16, 3 (May 1994), 456-492.

JuL, E., LEVY, H., HUTCHINSON, N., AND BLACK, A. Fine-grained mobility in the Emer-
ald system. ACM Transactions on Computer Systems 6, 1 (February 1988), 109-133.
KAMINSKY, M., AND BANKS, E. SFS-HTTP: Securing the web with self-certifying URLs.
Tech. rep., MIT Laboratory for Computer Science, 1999.

Kotz, D., GRrRAY, R., NOG, S., Rus, D., CHAWLA, S., AND CYBENKO, G. Agent Tcl:
Targeting the needs of mobile computers. /EEE Internet Computing 1,4 (July 1997), 58—67.
LEACH, P., MEALLING, M., AND SALZ, R. A universally unique identifier (UUID) URN
namespace. RFC 4122, July 2005.

LINDHOLM, T., AND YELLIN, F. Java Virtual Machine Specification, 2nd ed. Prentice-Hall,
April 1999.

MAZIERES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL, E. Separating key
management from file system security. In Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles (Kiawah Island, South Carolina, USA, 1999), ACM Press, pp. 124—
139.

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

20

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Michael M. Gorlick and Richard N. Taylor

MILLER, M. S. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA,
May 2006.

MILLER, M. S., AND SHAPIRO, J. S. Paradigm regained: Abstraction mechanisms for ac-
cess control. In Eighth Asian Computing Science Conference (December 2003), ASIAN’03,
Springer-Verlag, pp. 224-242. Available as http://www.hpl.hp.com/techreports/2003/HPL-
2003-222.pdf.

MURRAY, T. Analysing the Security Properties of Object-Capability Patterns. PhD thesis,
Hertford College, University of Oxford, Oxford, UK, 2010.

MURRAY, T., AND GROVE, D. Non-delegatable authorities in capability systems. Journal of
Computer Security 16, 6 (December 2008), 743-759.

NELSON, B. J. Remote procedure call. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 1981.

OKASAKI, C. Purely Functional Data Structures. Cambridge University Press, 1998.
PIERARD, A., AND FEELEY, M. Towards a portable and mobile Scheme interpreter. In Pro-
ceedings of the Scheme and Functional Programming Workshop (September 2007), pp. 59-68.
RAJ,R. K., TEMPERO, E. D., LEVY, H. M., BLACK, A. P., HUTCHINSON, N. C., AND JUL,
E. Emerald: A general-purpose programming language. Software - Practice and Experience
21,1(1991),91-118.

REES, J. A. A Security Kernel Based on the Lambda Calculus. PhD thesis, Massachusetts
Institute of Technology, 1996.

SALTZER, J. H. Protection and the control of information sharing in Multics. Communica-
tions of the ACM 17,7 (1974), 388—402.

SHAPIRO, J. S. EROS: A Capability System. PhD thesis, University of Pennsylvania, Philadel-
phia, Pennsylvania, 1999.

STAMOS, J. W. Remote evaluation. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA, 1986. (Also available as MIT Technical Report MIT/LCS/TR-
354, MIT, Cambridge, Massachusetts, 1986).

STAMOS, J. W., AND GIFFORD, D. K. Implementing remote evaluation. /EEE Transactions
on Software Engineering 16,7 (July 1990), 710-722.

STAMOS, J. W., AND GIFFORD, D. K. Remote evaluation. ACM Transactions on Program-
ming Languages and Systems 12, 4 (1990), 537-564.

TARDO, J., AND VALENTE, L. Mobile Agent Security and Telescript. In Proceedings of
the 41st IEEE International Computer Conference (Washington, DC, USA, 1996), COMP-
CON’96, IEEE Computer Society, pp. 58-63.

VYZzovITiS, D., AND LIPPMAN, A. MAST: A dynamic language for programmable net-
works. Tech. rep., MIT Media Laboratory, May 2002.

WAHBE, R., Lucco, S., ANDERSON, T. E., AND GRAHAM, S. L. Efficient software-based
fault isolation. In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles (New York, New York, USA, December 1993), ACM, pp. 203-216.

WICK, A., AND FLATT, M. Memory accounting without partitions. In Proceedings of the 4th
international symposium on Memory management (New York, New York, USA, 2004), ACM,
pp- 120-130.

WOLFE, M. SCURL authentication: A decentralized approach to entity authentica-
tion. Master’s thesis, University of California Irvine, October 2011. Available as
http://gradworks.umi.com/15/02/1502427 .html.

YEE, B., SEHR, D., DARDYK, G., CHEN, B., MUTH, R., ORMANDY, T., OKASAKA, S.,
NARULA, N., AND FULLAGAR, N. Native client: A sandbox for portable, untrusted x86
native code. In Proceedings of the IEEE Symposium on Security and Privacy (2009).
YUMEREFENDI, A. R., AND CHASE, J. S. The role of accountability in dependable dis-
tributed systems. In Proceedings of the First conference on Hot topics in system dependability
(Berkeley, CA, USA, June 2005), HotDep’05, USENIX Association.

UCI Institute for Software Research Technical Report #UCI-ISR-12-11, December 2012

