
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Hazeline U. Asuncion			
University of Washington, Bothell 		
hazeline@u.washington.edu			

	 					

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

Architecture-Centric Traceability for
Stakeholders: Technical Foundations

May 2011
ISR Technical Report # UCI-ISR-11-2

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

 1

Architecture-Centric Traceability for
Stakeholders: Technical Foundations

Hazeline U. Asuncion and Richard N. Taylor
ISR Technical Report # UCI-ISR-11-2

May 2011

Abstract— Software traceability, is recognized for its utility in many development activities. Achieving traceability in practice,
however, is difficult because of the complex interaction between factors like high costs, heterogeneous artifacts and tools, and
varied stakeholder interests. Architecture-Centric Traceability for Stakeholders (ACTS) is a technical framework that considers
the economic and social challenges to traceability. This framework connects distributed and varied artifacts around concepts
represented by the architecture, enables stakeholders to control the traceability capture via tool extensibility and customization,
and prospectively captures links in the background as users perform their development tasks. We discuss open hypermedia
and rules as the supporting mechanisms of our framework. We demonstrate the technical feasibility of our approach through a
case study in software acquisition research and an exemplar implementation. We also discuss means of increasing the
practicability of our framework based on user feedback.

Index Terms— Documentation, Hypertext/Hypermedia, Software Architectures, Software Traceability

——————————  ——————————

1 Introduction

oftware development is a complex process
that rests upon creating, arranging, juxtaposing,

analyzing, and transforming information artifacts.
These myriad heterogeneous artifacts are interre-
lated in numerous ways. Recognizing, maintain-
ing, and using these relationships is fundamental
to development and subsequent system evolution.
Too often, however, these relationships are only
“maintained” in the minds of software engineers
and eventually forgotten. The isolation of artifacts
by tools, development teams, and geographic loca-
tions causes related information to drift apart,
leading to obsolescence and inconsistencies be-
tween these information units. Software traceabil-
ity aims to cross these barriers to explicitly con-
nect related information artifacts. When success-
ful, software traceability facilitates system com-
prehension, impact analysis, system debugging,
and communication between stakeholders [48,
100, 76, 103, 105]. Not only does traceability sup-
port software development by making relevant
artifacts accessible to all members of the devel-

opment team, but it also lowers the cost of soft-
ware maintenance [103] – at a minimum by speed-
ing up access to the information needed when
making changes.

Despite these benefits, the lack of effective
traceability, which we call the traceability prob-
lem, is a long-standing shortcoming in software
development [64]. Many approaches have proven
infeasible in practice [9, 25, 110]. Manual tech-
niques for establishing and maintaining traceabil-
ity links are tedious and error-prone. Consequent-
ly, software engineers generally view traceability
obligations as additional imposed work with no
direct benefits [76]. In addition, automated tech-
niques often require human intervention [70].
Thus, high overhead remains an issue.

We posit that these limitations stem from a nar-
row understanding of the traceability problem.
Our survey of reported difficulties with traceabil-
ity reveals that many interacting factors hinder
effective traceability, including high costs [76,
104], complex interrelationships between artifacts
[9, 13], heterogeneity of artifacts and tools [48,
82], and varied stakeholder interests [64, 104,
120]. These factors, which reflect economic,
technical and social perspectives, must all be ad-
dressed to realize the benefits of traceability.

 H.U. Asuncion is with the Computing and Software Systems, University of
Washington, Bothell, Box 358534, 18115 Campus Way NE, Bothell, WA
98011-8246. E-mail: hazeline@u.washington.edu

 R.N. Taylor is with the Institute for Software Research, University of Cali-
fornia, Irvine, ICS2-203, Irvine, CA 92697-3455 . E-mail: taylor@
ics.uci.edu

S

2

We recognize the complexity of the traceability
problem, and thus, the purpose of this paper is to
lay the technical foundations for building a highly
customizable traceability tool that can integrate
current techniques while considering the economic
and social perspectives. We demonstrate the
technical feasibility of our approach through a
case study in software acquisition research and an
exemplar implementation. We also provide user
feedback regarding the usage of a tool built upon
these foundations. The contributions of our ap-
proach, Architecture-Centric Traceability for
Stakeholders (ACTS) are as follows:
 A means of connecting distributed and var-

ied artifacts by linking them to concepts rep-
resented by the architecture

 The ability of stakeholders to control trace-
ability capture via tool extensibility and cus-
tomization features

 The prospective capture of links in the
background, as software engineers perform
development tasks

 The ability to automatically capture links to
heterogeneously represented artifacts such
as graphic files, presentation files, and vari-
ous media files

 The decoupling of heuristics for capturing
links from the underlying capture mecha-
nisms, facilitating the adaptability of the tool
to different contexts.

Our previous work discusses the similarities be-
tween traceability and data provenance in e-
Science and introduces possibilities for leveraging
e-Science techniques in software engineering [26].
Our more recent work, which combines ACTS
with a machine learning technique known as topic
modeling, demonstrates the feasibility of integrat-
ing existing information retrieval techniques with
the ACTS framework [24]. While that work fo-
cuses on the semantic analysis and visualization of
software artifacts within a traceability context, this
work focuses on the core mechanisms of prospec-
tive traceability, which are open hypermedia tech-
niques and rules.

The rest of the paper is organized as follows.
The next section briefly analyzes the problem and
presents current approaches. Section 3 presents
ACTS and the main elements of our framework.
We demonstrate the technical feasibility of archi-

tecture-centric links in a case study of software
acquisition research in Section 4. We then
demonstrate the technical feasibility of prospec-
tively capturing user customized links across het-
erogeneous artifacts through an exemplar imple-
mentation in Section 5. Section 6 provides user
feedback. We conclude with open research areas
and future work.

2 Problem Analysis & Existing Techniques

Hindering factors to traceability stem from eco-
nomic, technical, and social perspectives. An in-
terplay also occurs between these perspectives
such that factors from one perspective affects or is
affected by factors from another [25]. This sec-
tion presents our survey of these challenges and
how current approaches address them [23].

2.1 ECONOMIC PERSPECTIVE

The economic perspective focuses on the cost
of supporting traceability. Capturing and main-
taining traceability links incurs high costs in terms
of labor hours [7, 103, 76, 81], and high cost is
one of the major hindering factors to traceability
[54, 76]. A case study of a large government-
funded project reports that the costs of implement-
ing traceability is more than double the normal
documentation costs [103]. Some practitioners
argue that time spent in traceability tasks could
have been allocated to writing software code [28,
36]. Even with companies that are willing to pay
the high costs of traceability, the expected benefits
are often not realized [112, 104]. Other sources of
costs include increased documentation, purchase
or development of a trace tool, and user training
[25, 103].

To mitigate the cost, some approaches examine
the tradeoffs between cost and quality [52] or be-
tween cost and benefit [53]. Regarding cost and
quality tradeoff, one can attempt to reduce the lev-
el of granularity of traces in order to save costs
while still maintaining an acceptable level of link
quality [52]. For instance, it has been shown that
tracing at the method source code level is more
expensive than tracing at the class source code
level even though there is usually not much differ-
ence in the quality of information obtained.
Meanwhile, approaches that examine the cost-
benefit tradeoff concentrate on tracing only higher
value links in order to minimize cost [53]. This

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 3

scheme may require a cost-benefit analysis for
each project. A similar approach allocates more
trace support to the crucial parts of the software
system [40]. Another technique is to take a mini-
malist approach and only capture links that are
important to a class of users, such as developers
[36].

2.2 TECHNICAL PERSPECTIVE

While the economic perspective examines the
costs in supporting traceability, the technical per-
spective looks at the complexity of tracing due to
the heterogeneity of artifacts, the heterogeneity of
tools, the combinatorial explosion of the artifact
space, and the continuous and independent evolu-
tion of artifacts.

2.2.1 HETEROGENEITY OF ARTIFACTS

The heterogeneity of artifacts is a factor that
contributes to the traceability problem. Artifacts
produced in the course of software development
vary in their levels of formality, ranging from un-
structured documents to highly formal code. The
differing formats and notations by which artifacts
are expressed as well as the different levels of ab-
stractions represented by the artifacts present chal-
lenges to establishing traces across different arti-
fact types [69].

Approaches that address the heterogeneity of
artifacts include natural language processing, two-
dimensional traceability, model transformation,
and artifact translation. Natural language pro-
cessing techniques use language structure to de-
termine links between various text artifacts [27,
32, 109]. Two-dimensional traceability enables
tracing between information within an artifact
(vertical traceability) and information across dif-
ferent types of artifacts (horizontal traceability)
[82]. Another approach, model transformation,
enables tracing design artifacts across different
levels of abstraction. Transformations can vary in
the level of automation. Fully automated trans-
formation use a transformation specification on a
design artifact to produce a realization that is at a
lower level of abstraction [10, 77, 89, 105]. Still
another approach translates heterogeneous arti-
facts into a common format in a repository. Trace
relationships between artifacts are automatically
generated within the repository [13, 39]. These
approaches are generally limited to text-based arti-
facts.

2.2.2 HETEROGENEITY OF TOOLS

Tracing software artifacts across different tools
is also difficult due to the lack of interoperability
between tools [48, 65, 103]. The separation of in-
formation by tools is known as the “islands of in-
formation” problem [13]. Changing the artifacts
outside a trace tool does not guarantee that the ar-
tifacts inside the trace tool are updated [48, 39].
The lack of interoperability between different
tools necessitates redundant data entry [20] which
adds to the overhead of reconciling data [13].

One way to address tool heterogeneity is
through the use of a shared repository and special-
ized code. For instance, different tools can ex-
change data via a shared repository [25]. The
tools communicate with the shared repository via
customized code. This approach avoids the prob-
lem of redundant data entry since artifact changes
are always reflected in a shared data repository. A
similar approach is to use a shared data model and
a communication channel where the subscribed
tools, such as a browser and an IDE, listen for
published updates to the data model [63]. When a
matching criterion is found between the code in
the IDE and the resource on the browser, the tool
prompts the user whether to link the visited re-
source to the source code.

Another approach is to use a shared repository
with tool monitors and pre-defined heuristics [42].
The shared repository stores the metadata of new-
ly generated or modified artifacts. Tool monitors,
invoked by an Update Module, track any changed
artifacts from various sources (e.g. Bugzilla, CVS,
mailing list archive) and updates the shared re-
pository. Links are generated by indexing the arti-
facts and applying pre-defined heuristics within
the tool. These techniques, however, do not have
extensible mechanisms by which users can inte-
grate their own tools into the traceability environ-
ment.

Another way to tackle tool heterogeneity is
through the use of open hypermedia concepts.
Open hypermedia adapters can be used to manual-
ly create links across tools boundaries [15]. Later
in the paper, we will show how we build upon
open hypermedia concepts to automatically cap-
ture trace links.

4

2.2.3 EXPLOSION OF THE ARTIFACT SPACE

Tracing across various artifacts in a software
development lifecycle is difficult due to the sheer
number of artifacts and the complex relationships
between these artifacts [13]. Capturing an insuffi-
cient number of trace links can have negative ef-
fects such as lower system quality and increased
project costs and time [37, 100]. On the other
hand, capturing too many traces is unwanted. Ex-
cessive traceability is known to be unmanageable
[37, 48] and can negatively impact the accuracy of
links [52]. Thus, it is important to know the
boundary between adequate and excessive tracing.

There are different ways of bounding the prob-
lem space of artifacts and artifact-relationships.
The agile community advocates a lean traceability
approach where only relevant traces to the devel-
opers are captured [36]. The selection of specific
artifacts to trace can also be based on the project
manager’s discretion or the information gleaned
from past projects [48]. These approaches require
a basic understanding of the system or previous
experience.

Another approach is recovering candidate trace
links automatically through information retrieval
(IR) techniques. To date, trace recovery tech-
niques have not been able to provide fully accu-
rate links [39, 68]. Captured traces may only be as
accurate as the user input [52]. One requirement of
these techniques is artifact preprocessing [35].
Even with sophisticated IR techniques, it is diffi-
cult to achieve high recall and precision rates,
where recall is defined as the percentage of re-
trieved links out of all relevant links and precision
is the percentage of correct links out of the re-
trieved links [36].

2.2.4 MAINTENANCE OF TRACEABILITY LINKS

Maintaining trace links is also challenging.
Links quickly deteriorate because artifacts change
continuously and independently and the changes
are not reflected in the related artifacts [62]. For
example, changing a requirement necessitates the
update of all the corresponding links and related
artifacts. Without a systematic update approach,
the cost of maintaining traceability can be very
high. There is also no guarantee that all the im-
pacted links are updated.

Techniques to maintain trace links include pro-
cesses to control artifact changes. Artifact changes

can be controlled by establishing a development
process to disallow software engineers from di-
rectly changing artifacts. One such technique re-
quires changes to be approved by a review board
[108]. Since this process imposes high overhead,
only high visibility documents go through review
boards. Another technique is providing a down-
stream development team a process whereby they
can control changes to the requirements made by
an upstream functional development team [20].

Changes can also be automatically cascaded be-
tween tools or artifacts [25, 37, 1, 121]. For in-
stance, Rational RequisitePro automatically up-
dates its data when the related Word documents
change [1]. Embedding information objects, which
are automatically updated, into various documents
is another means of cascading changes across dif-
ferent artifacts [121]. Moreover, artifact changes
can be cascaded through event-based traceability
(EBT). EBT uses a publish-subscribe mechanism
to relate various artifacts to the requirements arti-
fact [37]. Thus, when a requirements artifact
changes, the subscribed artifacts are notified. This
approach requires a manual registration of arti-
facts with the requirements artifact.

Still another approach is to manage the relation-
ships of all artifact types within a tool so that
changes can automatically be reflected in the links
[97]. This requires a pre-specification of the arti-
fact types and their relationships.

2.3 SOCIAL PERSPECTIVE

The social perspective is equally important,
since it focuses on the interaction of stakeholders
with traceability, such as differing expectations,
low motivation, and lack of artifact visibility. It is
recognized that people play a crucial part in de-
termining the quality of traceability links [20, 68,
70].

2.3.1 DIFFERENT EXPECTATIONS OF TRACEABILITY TOOL

Implementing software traceability is difficult
since traceability has different meanings to differ-
ent people [65]. Consequently, stakeholders have
different expectations of a trace tool [103]. For
instance, a maintenance engineer expects support
for impact analysis while a project manager ex-
pects support for tracking project status. One way
to address different stakeholder expectations is by
identifying the key users of a trace tool and devel-
oping custom in-house extensions to existing trace

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 5

tools [104] or developing custom trace tools for an
organization [25].

2.3.2 LOW MOTIVATION FOR PERFORMING TRACEABILITY
TASKS

In general, software engineers have little or no
motivation to perform traceability tasks [28, 76].
To them, traceability tasks are “laborious” [10]
and “burdensome” [9]. In one study, half of the
subjects who were commissioned to verify trace
links dropped out because they “disliked” tracing
[68]. There are several reasons for the low motiva-
tion of software engineers. One reason is that
traceability tasks are additional imposed work
with no direct benefits [20, 76], known as the
Traceability Benefit Problem [20]. Other reasons
include the lack of understanding of the usage of
trace information and the lack of first-hand
knowledge of the artifacts [20].

One way to address the low motivation for per-
forming traceability tasks is by coupling traceabil-
ity tasks with the development process [60, 99] or
with traceability usage [20]. This approach may
require high overhead in setting up the process
capture to automatically determine trace links [60,
99]. Another method is to use trace information to
support stakeholders in their development tasks
[22, 25] thereby providing direct benefits to them.

2.3.3 LACK OF ARTIFACT VISIBILITY

Traceability across artifacts owned by different
groups is difficult due to the lack of visibility of
artifacts to those outside the groups. For example,
the lack of visibility to the requirements’ sources,
which could be distributed among multiple
groups, has been the most frequently cited prob-
lem by practitioners [65]. In addition, distributing
the ownership of requirements among different
groups makes it difficult to trace the dependency
relationships among the requirements [104]. Lack
of communication between groups is one of the
factors that contribute to the lack of accessibility
of artifacts [65].

Approaches that address the lack of visibility to
artifacts include negotiating changes to upstream
artifacts and publishing artifacts to a portal. En-
couraging teams to negotiate the changes to up-
stream artifacts like requirements enhances com-
munication between groups and increases the ac-
cessibility of artifacts [20]. Publishing artifacts to

a portal raises the visibility and accessibility of
artifacts to other groups [25].

2.4 PERSPECTIVES INTERPLAY

The economic, technical, and social perspec-
tives are highly intertwined. A factor in one per-
spective affects factors in others (see Figure 1).
We provide some examples of the interplay be-
tween the different perspectives and explain why
focusing on one perspective falls short of address-
ing the traceability problem.

There is a bidirectional relationship between the
economic and technical perspectives. The eco-
nomic perspective is a major factor in determining
whether a traceability approach will be adopted by
an organization [25]. The cost of establishing and
maintaining trace links affects the number of arti-
fact and the relationship types that will be traced
by an organization. Since fine-grained tracing is
more costly [29, 20], the economic perspective
also determines the level of granularity that an or-
ganization is willing to trace. The technical per-
spective also affects the economic perspective.
The level of tool support in establishing or defin-
ing traceability links heavily determines the cost
of tracing [82]. The lack of interoperability be-
tween tools also contributes to the high cost of
traceability since this necessitates redundant data
entry and manual reconciliation [108, 13, 25, 103].
Moreover, there is a tension between capturing all
possibly relevant links to ensure that no loss of
knowledge occurs [48, 104] and taking a minimal-
ist approach in trace capture [36] to lower the cost.
There are currently no cost-benefit models that
can guide organizations in selecting the types of
artifacts, the level of granularity, and the types of
relationships to trace [69].

A bidirectional interaction between the social
and technical perspectives also exists. For in-
stance, due to the low motivation of software en-
gineers in performing traceability tasks, the cap-
tured traces were deemed to be unusable in one
reported case study [20]. In addition, users have
differing expectations [65], making it difficult to
use an off-the-shelf trace tool without customiza-
tion. The technical perspective affects the social
perspective as well. If a trace tool supports the de-
velopment activities of stakeholders, it is more
likely to be adopted [25, 90].

6

Similarly, interactions occur between the eco-
nomic and the social perspectives. Due to the high
costs required in performing traceability tasks,
most software engineers have an aversion toward
traceability [76, 68]. The high startup and mainte-
nance cost of the manual approaches is also one of
the common complaints of developers [28]. Fur-
thermore, lack of accessibility of artifacts between
groups can make tracing across groups more cost-
ly since more time is spent locating artifacts.

There is also interplay between the three per-
spectives. One example of this interplay is the au-
tomation of trace link generation (see Figure 1).
To mitigate the costs, information retrieval meth-
ods can be used to provide automated support for
traceability [84, 17, 39, 71], at the risk of poten-
tially establishing inaccurate links. To compensate
for this technical shortcoming, human involve-
ment becomes necessary. The generated candi-
date links must be post-processed by a human ana-
lyst [68, 39]. However, the economic difficulty of
cost shows up again if the IR technique produces
very large numbers of candidate links to be manu-
ally analyzed [81].

Another example of the interplay between the
three perspectives is in the heterogeneous nature
of the artifacts. Because it is difficult to automate
data conversion between heterogeneous artifacts
[112], these artifacts tend to be linked manually.
Manual linking is a human intensive effort that is
often viewed by developers as a burden. Thus, the
technical difficulty of linking heterogeneous arti-
facts results to added economic overhead. This in
turn then leads to developers’ aversion to tracing,
a social issue [28].

3 Technical Foundation for Adaptable Trace-
ability: ACTS

To begin to address the multi-faceted traceabil-
ity problem, we present Architecture-Centric
Traceability for Stakeholders (ACTS), a technical
framework that considers both the economic and
social perspectives. The key elements of ACTS
are centering links to the architecture, enabling
stakeholders to control the link capture and usage,
and capturing links prospectively. We detail how
traceability link capture is enhanced by exploiting
the information stored in the architecture as well
as exploiting the stakeholder knowledge in how
artifacts are related. ACTS is also undergirded by

the supporting mechanisms of open hypermedia
and rules.

3.1 ARCHITECTURE-CENTRIC TRACEABILITY

The first element of our approach, architecture-
centric traceability, links all the artifacts to the ar-
chitecture. Previous approaches have suggested
centering links to the requirements [70] or to the
code [52]. While there are advantages and disad-
vantages to both models, we posit that architec-
ture-centric traceability provide advantages that

are lacking in these previous model, and is worth
one’s consideration. To aid the reader, we first
provide a brief background on software architec-
ture research and recent advances in the field that
support some of software traceability goals. We
then move to discuss the rationale for using the
model, how current approaches fall short of sup-
porting architecture-centric traceability, and final-
ly discuss contexts where the model may be less
relevant.

3.1.1 BACKGROUND IN SOFTWARE ARCHITECTURE RESEARCH

While techniques have been proposed to cap-
ture links to the architecture, grounding all the
links in the architecture is a novel concept, and
one that proceeds from architecture-centric devel-
opment [115]. Architecture-centric software en-
gineering [31, 59, 67] conceptualizes software de-
velopment activities with the system’s architecture
as a central focal point. We define software archi-
tecture broadly, as the set of principal design deci-
sions about a software system [115]. This defini-
tion implies that every software system has an ar-
chitecture—some set of design decisions that were
made in its development. Principal design deci-
sions can be expressed as the system’s structure,
functional behavior, interaction, and non-
functional properties; this paper focuses on deci-

Fig 1: An example of an interplay between hindering factors from

the three perspectives

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 7

sions as expressed in the system’s structure, e.g.,
the architectural style, the functional units, the
mode of communication between the functional
units, and the configuration of these units. These
principal design decisions, as represented by the
system’s structure, provide product-based con-
cepts by which traceability can be reliably an-
chored and supported.

Software architecture and architecture-based
evolution research has provided techniques in
modeling and analyzing software as well as in de-
veloping and evolving the code. Architecture de-
scription languages (ADLs) [85] have been used
to model and analyze the software structure, be-
havior, distribution, and concurrency. Most of the-
se approaches focused on discrete units of compu-
tation (components), discrete units of communica-
tion (connectors) and the arrangements of these
units (configurations). Recent work in software
architecture [30, 56, 92] resulted in extensible and
modular ADLs and toolsets (e.g. Acme [58],
ADML [111], and xADL 2.0 [44]). We use xADL
which has mature tool support with respect to ex-
tensibility. We posit that centering links on the
software architecture strikes a balance between
rigor, formality, and level of abstraction. ADLs
tend to have more rigorous syntax than most re-
quirements capture languages (including natural
languages) and are easily tied to other concrete
artifacts such as components, connectors, their
implementations, test cases, and so on. Thus, ver-
sionable architectural models are a plausible, sta-
ble form upon which to anchor traceability links.
Extensible ADLs, moreover, can be expanded to
capture stakeholder concerns such as modeling
security, distributed systems, and product lines
[43].

3.1.2 RATIONALE FOR ARCHITECTURE-CENTRIC TRACEABILITY

This section discusses the insights for centering
links to the architecture.

Insight #1: There is an inherent relationship be-
tween the architecture and other artifacts in soft-
ware development. The architecture, as represent-
ed by the system’s structure, provides a central
‘hub’ through which artifacts can be coordinated
(see Figure 2). Architectural models of the sys-
tem’s structure serve as a direct basis for activities
such as implementation and testing, as well as fu-
ture evolution of the system. Similarly, the archi-

tecture can serve as the primary connection of the
software product to its requirements (if they exist),
identifying and documenting the design decisions
that are responsible for realizing those require-
ments. Thus, design decisions represented by the
architecture, impacts, or is impacted by, all other
development activities. We now discuss these re-
lationships in detail.

First, there is a direct relationship between re-

quirements and architecture. Nuseibeh‘s Twin
Peaks Model indicates that architecture plays an
important role in the development and refinement
of requirements [91]. In fact, Nuseibeh suggests
that the concurrent development and evolution of
both requirements and architecture, as observed in
most software industry projects, is an effective
means of developing software systems quickly.
Taylor et. al. goes further in stating that the archi-
tecture provides the language whereby user needs
can be concretely expressed in the requirements
[115]. Moreover, software architectures have also
been used to address non-functional requirements
early in the software development lifecycle [115,
124].

Software architecture has also been used to as-
sist developing and evolving implementations [16,
34, 95, 94] with tool support. The architecture
serves to guide the implementation activity, ensur-
ing that all design decisions are transferred to the
code [115]. Research in software architecture has
made strides in strengthening the relationship be-
tween the architecture and code [8, 45] through
the use of architectural styles, frameworks, explic-
it implementation mappings, and code generation
[115]. All these approaches provide an easy basis
for establishing links, either generative or explicit,
between architecture and implementation.

Not only does the architecture influence both
the requirements and code, but it also has ties to
test artifacts. Architecture-based testing enables a

Fig 2: Relationship of Software Architecture with other artifacts

8

system to be partially tested before it is actually
implemented in the code [75, 124], allowing for
the detection of errors early in the software lifecy-
cle. Then as development progresses, architecture-
based testing is extended to test the source code
[119]. Given this influence that the architecture
exerts on other artifacts, centering traceability
links on the architecture certainly seems to be a
reasonable choice.

Insight #2: The architecture itself contains in-
formation that aids in understanding the system
and its related artifacts. The software architecture
provides a comprehensive view of the system, en-
abling engineers to better understand the system in
its entirety as well as in its individual computa-
tional units. Indeed, in large complex software
systems, such as the Web, the software architec-
ture is the only adequate guide to understanding
the whole system [115]. Understanding this inter-
connection is particularly important in systems
composed of heterogeneous subsystems such as
legacy systems, open source software, and in-
house proprietary software. In these types of sys-
tems where components may be black boxes,
code-centric traceability no longer becomes a via-
ble option. Finally, a better understanding of the
entire system helps in identifying how an artifact
may be related to the system.

Understanding the entire system also aids in
understanding the traceability links across differ-
ent system versions and across software product
lines [72]. Links centered on the architecture can
be updated to reflect system evolution. In addi-
tion, it is also more intuitive to trace links to the
architecture when capturing links across product
lines. Product line architectures (PLAs) have been
the predominant means of evolving a product line
and its individual products [72]. PLAs use well-
understood constructs such as core, optional, and
variant elements that aid in understanding the
links to artifacts and which place the understand-
ing of the artifact within the context of a product
line.

In addition, the architecture contains the inter-
connections of the system, or its configuration,
which can be used to infer links between other ar-
tifacts. For instance, a hierarchical structure in an
architecture, as represented by a component con-
taining subcomponents, may also indicate a hier-
archical relationship between artifacts linked to

the parent component and artifacts linked to the
subcomponent. Similarly artifact links to directly
connected components may imply relationships
between those artifacts as well.

Insight #3: Architecture-centric traceability en-
ables more efficient linking of select concepts as
compared to requirements-centric or code-centric
approaches.

The architecture has a well-defined structure:
units of computation (or units of functionality),
units of communication, and the composition of
these units as a system. The architecture itself, if
properly designed, has clearly defined non-
overlapping concepts that are represented by these
individual architectural units. Relating artifacts to
these concepts simply means creating links be-
tween an artifact and an element or group of ele-
ments in the architecture. For example, individual
requirements can be directly linked to the compo-
nent or components in an architecture.

Meanwhile, these concepts are not immediately
apparent in the requirements document. Concepts
of functionality may be stated at a high level with
vague notions of how they may be realized. In-
deed, concepts of computation or communication
may not actually be clearly stated since the re-
quirements document usually concern itself with
concepts in the problem space and not the solution
space, as the architecture does.

Code-centric traceability also presents chal-
lenges. While the concepts of computation and
communication are present in code, it is often dif-
ficult to identify these higher level conceptual
boundaries at the code level. Thus, it is easy to
capture more links than are necessary [52].

3.1.3 STATE OF THE ART IN LINKING TO THE ARCHITECTURE

Techniques have been proposed to capture links
to the architecture. For example, design rationale
techniques link the design to the rationale to sup-
port reflection, communication among stakehold-
ers, and analysis of past decisions [74]. There are
numerous approaches and tools [80, 83, 33] for
capturing and managing design rationale, but these
are difficult to implement in practice [74, 114].
Another technique is use of model driven devel-
opment (MDD) techniques to capture links across
different design models. This approach tends to
be limited to linking between two adjacent arti-
facts—the source and the target models [77].

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 9

Meanwhile, any artifact may be linked to the
architecture regardless of its representation or lev-
el of formality. In addition, since the architecture
can be modeled at different levels of abstraction,
linking at these different levels of abstraction is
also supported. Finally, artifacts may be linked to
the architecture at any stage of its development,
regardless of whether it is complete or not. As a
result, a flexible traceability scheme can be adopt-
ed by centering links on the architecture.

3.1.4 LIMITATIONS OF ARCHITECTURE-CENTRIC LINKS

While architecture-centric links provide ad-
vantages that are not provided by requirements-
centric or code-centric traceability, there are in-
stances when the architecture-centric model is not
applicable. For instance, it might be necessary to
capture links between a pre-defined set of arti-
facts, such as between requirements and test cases.
There are also cases when links must be captured
early in the software development lifecycle, while
the problem domain is still being studied by the
development team and the architecture has not
been created. In addition, systems may not have a
documented architecture and it may be too expen-
sive or infeasible to recover an accurate system
architecture. In these cases a placeholder, or “null”
architectural model could be used until such time
as a substantive model is developed.

3.2 STAKEHOLDER-DRIVEN TRACEABILITY

The second key element is empowering stake-
holders to both capture and use the traceability
links they capture, which we call stakeholder-
driven traceability. Oftentimes, the stakeholder
who captures the links is not the same as the
stakeholder who uses the links. We believe, how-
ever, that it is imperative for stakeholders who
captured the links to also be able to use the links.
We define stakeholders as individuals who are in-
volved in traceability tasks or who have a vested
interest in capturing relationships between soft-
ware artifacts. This section provides a brief back-
ground to the role of humans in traceability, the
rationale for tool-supported stakeholder-driven
traceability, current tool support for stakeholder-
driven traceability, and contexts where the model
is less relevant.

3.2.1 BACKGROUND IN THE ROLE OF HUMANS IN TRACEABILITY

As mentioned earlier, researchers recognize that
humans play a critical role in the adoption and
success of a traceability approach [70, 25, 103,
20]. Stakeholder-driven traceability is not a new
idea [20, 90, 25], but it has generally been con-
strained by limited tool support [120]. This sec-
tion examines the human perception of traceability
and contexts where traceability has been imple-
mented with some measure of success.

Despite the acknowledged need for traceability
[62, 55], many practitioners have an aversion to
traceability [10, 9]. There are several reasons. To
many software engineers, traceability means man-
ually creating traceability links which quickly de-
teriorate and becomes unusable [62]. Even with
some automated support, traceability to some is a
laborious, time-consuming task of identifying the
correct links among the candidate links [70]. Still
others view traceability as redundant data entry
across different tools [25, 20]. Others, however,
may want to capture traceability links to support
their development tasks, but are unable due to the
lack of adequate tool support [120].

There are a few instances where stakeholders
adopted a traceability strategy with some level of
success [21, 90, 25]. In one small development
group, traceability links helped the engineers to
coordinate and control changes to requirements
and to identify which artifacts could be reused
[21]. In another setting, developers used traceabil-
ity links to increase program comprehension, to
avoid architectural erosion, and to support change
impact analysis [90]. Still in another setting,
software engineers created traceability links to
track project status, to support requirements analy-
sis and to support high-level design [25]. A com-
mon thread that runs across these different con-
texts is that the stakeholders chose the artifacts to
link and they used the captured links to support
their software development tasks.

3.2.2 RATIONALE FOR TOOL-SUPPORTED STAKEHOLDER-
DRIVEN TRACEABILITY

Based on this observation, we conclude that an
effective traceability scheme should provide tool
support to enable stakeholders to control the cap-
ture of traceability links and to use the captured
links to support their software development tasks.
We discuss the implications for providing tool
support for stakeholder-driven traceability.

10

Insight #1: An effective traceability tool must
cater to varied stakeholder interests in capturing
traceability links. Traceability has different con-
notations to different stakeholders [64]. Even
within a given project, stakeholder interests in
traceability vary [103, 25]. This variability oc-
curs in the types of artifacts stakeholders are inter-
ested in linking, and in how links are related.

First, stakeholders are interested in capturing
links to different types of artifacts. For instance,
an architect may be interested in linking design
rationale and requirements to design, while a QA
engineer may be interested in linking test cases to
requirements. Different stakeholders may also be
interested in linking to artifacts at different levels
of granularity [69]. Thus, tool support for link
capture must be flexible enough to enable stake-
holders to link to different artifacts and to differ-
ent levels of granularity. This capability can be
supported with open hypermedia techniques as
discussed in Section 3.4.

Secondly, variability exists in how links are re-
lated. We believe that stakeholders who are inter-
ested in capturing link are the experts on the links
they capture. They are familiar with the artifacts
they trace and they have a purpose for capturing
the links. It follows then that the usefulness of a
link is highly dependent on the stakeholder and
the purpose of the link. A highly relevant link for
one class of users may be irrelevant for another.

Supporting the knowledgeable capture of links
has implications for the automated tool support.
The tool must enable stakeholders to plug-in their
own heuristics and their knowledge of how arti-
facts are related. This can be implemented with
rules (see Section 3.5).

Insight #2: An effective traceability tool must
enable stakeholders to use the links they capture.
The ability to use the links depends on support for
access to captured links, for analyzing captured
links, and for maintaining traceability links.

First, in order for the links to be usable, it must
be easy to access the captured links. Access en-
tails rendering linked artifacts in their native edi-
tors or in a user selected editor if the artifact can
be rendered in multiple editors. It may also entail
rendering a specific location within the artifact
such as a page, slide, or worksheet. Tool support
for navigation must enable the user to specify the

tools and the level of granularity to render a linked
artifact (see Sections 3.4.2 and 5.2.2.3)

 Secondly, support for link analysis is necessary
to help stakeholders accomplish development
tasks. Support for link analysis includes identify-
ing correct or incorrect links and extracting perti-
nent linked information. Link analysis may also
entail querying and manipulating linked infor-
mation to help stakeholders identify additional
tasks to complete [25]. Link analysis may be sup-
ported with a visualization wherein the link
metadata is displayed. Extracted linked infor-
mation may also be visually depicted on top of the
architecture graph (see Section 5.2.2.5).

Third, in order for the links to be usable, links
must be updateable and maintainable. Support for
link maintenance enables stakeholders to identify
which links have deteriorated without navigating
the link and manually examining the artifact.
More advanced tool support will update the link
location if the artifact was moved to a different
location. This can be supported with notification
adapters (see Section 3.4.2 and 5.2.2.4).

3.2.3 STATE OF THE ART IN SUPPORTING STAKEHOLDER-DRIVEN
TRACEABILITY

Despite the advantages of providing tool sup-
port for controlling trace link capture and using
captured links, current tools and techniques fall
short of providing these capabilities. Off-the-shelf
tools are generally inflexible in providing user
customization [104]. Limited success has been
demonstrated when a tool provides some level of
extension mechanism [9]. Current traceability
techniques do not provide mechanisms for user
customizations [109, 70, 42]. Consequently, some
organizations resort to building a custom in-house
traceability tool in order to cater to specific stake-
holder requirements for link capture and usage
[25, 90]. While techniques exist for providing pro-
ject-specific customization [48] and for providing
direct benefit to users [90, 101], these approaches
fall short of providing customized tool support for
stakeholder-driven traceability.

Visualization of traceability links aids in ana-
lyzing captured links. ENVISION presents trace
links as a hyperbolic tree to enable users to focus
on one link endpoint, represented as a node, at a
time while viewing all the linked artifacts in the
background [125]. The tool also supports viewing
transitive links, filtering and searching, recording

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 11

user navigation across the hyperbolic tree, and
adding links within the visualization. TraVis ena-
bles the visualization of information from collabo-
rative software development platforms (CSDPs) to
display heterogeneous information unified by the
CSDP (e.g. documents, code, Wiki pages, tracker
items) [46]. TraVis extracts the information from
CSDP using remote APIs or Web interfaces. Both
Envision and TraVis present linked information as
graphs of links that can be filtered or searched

Visualization techniques have also been used to
determine the quality of candidate links. Duan us-
es cluster-based techniques to group trace results
that are presented to the user [50]. Meanwhile,
VisMatrix graphically represents the level of con-
fidence of candidate links in a traceability matrix
[49]. Other visualization techniques include tag
clouds to graphically display the frequency of
terms and a tree structure to represent the hierar-
chical structure in a requirements document [38].

While these visualization techniques are useful
in analyzing captured links, these techniques do
not take the extra step of extracting linked infor-
mation and aggregating this information around
the architecture. Presenting the links as a mashup
on top of the architecture graph can provide a
global view of the system and the linked infor-
mation.

3.2.4. RELEVANCE OF STAKEHOLDER-DRIVEN TRACEABILITY

In some settings, organizational interests in
traceability are not aligned with and take prece-
dence over stakeholder interests. In these con-
texts, project-specific customizations may be suf-
ficient [48].

3.3 CAPTURING LINKS PROSPECTIVELY

The third key element is the prospective capture
of traceability links which captures links in situ
while artifacts are generated or edited. This is
complementary to retrospective techniques which
recover links after the fact [17, 70]. Empirical evi-
dence from computer-human interaction and pro-
gram comprehension research communities reveal
that links captured in this manner are often useful
[107, 122]. In this section, we provide a brief
background on prospective link capture, the ra-
tionale for using prospective link capture, the cur-
rent state of the art in the automated link capture,
and the relevance of the technique.

3.3.1 BACKGROUND TO PROSPECTIVE LINK CAPTURE

The online capture of links can ensure that im-
portant information is not neglected or overlooked
due to lack of resources or time [120]. The idea of
prospectively capturing links is not new, but it was
not until recently that prospectively capturing
links has become a feasible technique [77, 97, 98].

One way to prospectively capture links is
through the recording of user interaction with arti-
facts. Other research areas have studied the rec-
orded user interaction to raise awareness and to
support program comprehension (PC). For in-
stance, computer human interaction and computer-
supported cooperative work employ user interac-
tion to raise awareness [73, 106, 122]. Recently,
the PC community has studied the capture of user
interaction to aid in program comprehension: us-
ing a team’s interaction with the code to create
links between source code files [47], using a de-
veloper’s navigation patterns between an IDE and
a browser to create links between code and docu-
mentation [63], and using navigation patterns in
the code to create links between tasks and source
code [79, 126]. The recording of user interaction
in these different research areas suggests that this
is a viable approach to capturing links between
artifacts. While PC techniques have focused on
user interaction with the artifacts represented as
text, namely source code, links can also be created
across heterogeneously represented artifacts, as
we demonstrate with our exemplar implementa-
tion in Section 5.

3.3.2 INTELLIGENT CAPTURE OR JUST NOISE?

This section elaborates on the rationale for the
prospective capture of links.

Insight #1: Prospectively capturing links, via
recording user actions, provides a vehicle for
knowledgeable capture of links. The prospective
approach has advantages over existing techniques.
It can capture contextual information and temporal
relationships between artifacts which can provide
information on how the artifacts are related (see
“Add relationship” rules in Section 3.5). For ex-
ample, accessing a requirements document while a
component is selected in a design diagram may
indicate that the requirements document is related
to the component.

In addition, we posit that the user interaction
record is a reflection, albeit perhaps at a low level,

12

of the developer’s understanding of how artifacts
are related. A developer’s navigation path reveals
a developer's mental model of the system [107].
We posit that stakeholders who generate or edit
artifacts also have a mental model of the relation-
ship(s) that exist between these artifacts. Prospec-
tive link capture exploits the developer’s first-
hand knowledge of the artifacts in the determina-
tion of related information. This contrasts with a
third party analyst tasked with a traceability activi-
ty of going through a list of candidate links to arti-
facts and potentially misclassifying correct links
as incorrect and vice versa [71, 68]. Thus, the tool
must be able to monitor user actions across the
tools that are integrated into the traceability sys-
tem.

Insight #2: Prospective link capture can be
supported by mechanisms that minimize noise.
Noise — the bane of automated capture — can be
minimized through directed link capture where
only a small subset of user actions will be cap-
tured. First, link capture can be directed by the
user’s explicit action to start recording. Secondly,
during a recording session, only user’s actions on
the set of tools with recording adapters will be
captured. Third, the recording adapter can also be
implemented such that it only detects specific user
actions or events, such as “open file” or “visit a
hyperlink” (see Section 3.4.2). Finally, rules can
be used to determine valid links before they are
added to the linkbase (see Section 3.5.2).

Insight #3: Prospective link capture is integrat-
ed with software development tasks. Literature
has shown that it is important to integrate tracea-
bility tasks with software development tasks in
order to ensure that links are captured even during
tight project deadlines [120]. Since links are cre-
ated in the background across different tools, pro-
spective link capture can be integrated with soft-
ware development tasks. Prospective link capture
also does not require drastic changes to existing
work practices.

Insight #4: Prospectively link capture is com-
plementary to other techniques. Prospective link
capture can also be integrated with other tech-
niques, such as retrospective and manual capture,
to produce higher quality links. Since link accura-
cy in prospective link capture depends on user
knowledge of the system, using retrospective
techniques can inform the user of possible rela-

tionships with other artifacts. (See Section 5.2.2.2
for a discussion of our implementation.)

3.3.3 STATE OF THE ART IN LINK CAPTURE

Retrospective capture. A prevailing technique
in automatically generating links is retrospectively
capturing links. Latent Semantic Indexing is a
technique used to cluster related documents [84].
Data mining techniques are also used to automati-
cally create trace links between files that are
checked-in or checked-out together in a configura-
tion management system [78]. In addition, Lean-
Art uses machine learning techniques to learn
from users’ manually created links on a small set
of artifacts. This linked set of artifacts serves as a
training set for LeanArt to increase the accuracy
of captured links [66]. These techniques, howev-
er, fall short of capturing the actual context where-
in the artifacts were manipulated. Our approach,
besides being contextual, can be easily integrated
with these retrospective techniques to arrive at po-
tentially much higher quality links (see Integrated
Search Tools in Section 5.2.2.2).

Transformations. Another set of techniques is
generating trace links based on transformations or
translations between artifacts. ATRIUM trans-
forms models from requirements to architecture
and generates links during the transformation [89].
Richardson and Green use a similar technique to
ATRIUM in that links are generated from the pro-
gram specification to the synthesized code [105].
Jouault enables user specification of trace links to
be created separately from the logic of artifact
transformation [77]. While these techniques also
enable the capture of trace links as a side-effect to
development tasks (links are captured during arti-
fact transformation), transformation is only possi-
ble across structured or semi-structured artifacts
through the use of metamodels. In contrast, our
technique is not limited to tracing structured arti-
facts. Translators may also be used to translate
heterogeneous artifacts into a homogeneous form
where the links can be automatically generated
[13]. Translators like InfiniTé enable the user to
continue working with their current toolsets.
However, not all artifacts can be translated to a
common form, such as graphics and media files.

3.3.4. RELEVANCE OF PROSPECTIVE LINK CAPTURE

Prospective link capture may be less applicable
in contexts where failure to capture some correct

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 13

links (false negatives) has negative consequences.
The richness of captured links is highly dependent
on user interaction with artifacts. This drawback
can be mitigated by incorporating other techniques
such as search tools (see Section 5.2.2.2)

3.4 SUPPORTING MECHANISM: OPEN HYPERMEDIA

This section provides a brief background to
open hypermedia. We also discuss our extensions
to existing open hypermedia concepts and briefly
discuss the state of the art in capturing links across
heterogeneous tools.

3.4.1 CONCEPTS FROM OPEN HYPERMEDIA

Although the World Wide Web is the most
dominant example of a hypermedia system today,
it is critical to separate a general understanding of
hypermedia from the capabilities of the Web. The
Web was constructed with some design choices
that maximize scalability and extensibility (to a
global scale), but limit the usefulness of hyperme-
dia concepts. Meanwhile, open hypermedia sys-
tems (OHS) [57, 14, 15, 123, 96] provide a richer
set of capabilities at the cost of some scalability
and robustness. In OHS’s, links are not embedded
in documents and files as in the Web; rather, they
are stored externally to the artifacts. Thus, OHS’s
can embrace a wider variety of file types and edi-
tors. Links may have more than two endpoints, in
contrast to the Web’s unidirectional links. Link
endpoints can also be specified in flexible terms,
in contrast to fixed Web links. For example, an
endpoint to a piece of code may be a method name
or queries over the targets that are executed when
the link is traversed or examined. Additionally,
links can be link targets themselves, creating me-
ta-link structures to represent more powerful con-
ceptual relationships. Flexible link endpoints are
potentially more robust in the face of changing
documents.

Consequently, open hypermedia systems offer
advantages for managing and manipulating trace-
ability links. More specifically, these advantages
are the modeling of links as first class entities, the
usage of an independent linkbase, and the integra-
tion of third party tools using adapters. We dis-
cuss these in the next paragraphs.

First class links with n-ary endpoints are used to
represent semantically rich links. These links can
store the type of relationship between artifacts, as
is done in Topics Maps [4], and capturing proper-

ties about artifacts, as is done in Resource De-
scription Frameworks (RDFs) [3]. First class n-ary
links can also store the path to the tool that will
render an artifact . The ability to link on links
(which creates a hierarchy) enables capturing trac-
es at different levels of granularity and abstrac-
tion.

Next, open hypermedia links are stored outside
the artifacts they connect, in an independent link-
base. The external management of links enables
tracing heterogeneous artifacts even though they
are maintained in diverse formats with different
tools. Not only does this enable stakeholders to
trace artifacts without switching their tools, but it
also enables tracing read-only third party artifacts.
External links also enable stakeholders to define
and maintain their custom trace links. The inde-
pendent linkbase provides users the possibility of
using a variety of techniques to explore link struc-
tures—links can be traversed in any direction, ar-
bitrary operations can be executed on links or their
endpoints, etc.

There is, however, an additional cost to main-
taining links externally. Changes to artifacts re-
quire that links be updated by the traceability sys-
tem. Consequently, both the traceability system
and the tool adapters need to perform the extra
work of monitoring changes to the artifacts in or-
der to keep the links from becoming obsolete.
While this additional work does not exist with
embedded links such as those in web pages, em-
bedded links also have a drawback of pointers that
link to resources that may no longer exist (i.e.
broken links).
Finally, integrating third-party tools into an open
hypermedia system requires the use of an adapter.
A basic integration simply requires the construc-
tion of an adapter that allows the system to identi-
fy and locate endpoints (anchors) within a target
document. An adapter may use the built-in capa-
bilities of third party tools such as keyword search
or hyperlinks to locate a specific location within
an artifact. More advanced integrations that allow
anchor tracking and in-tool link examination and
traversal is also possible, depending on the exten-
sibility and openness of the tool.

3.4.2 EXTENDING OPEN HYPERMEDIA WITH OPEN APIS

Although the idea of linking artifacts across dif-
ferent tools is not new [41], it was only possible to

14

do so within a limited set of tools. Now, given the
availability of open source software and many
proprietary tools with open application public in-
terfaces (APIs), it is feasible to automatically cap-
ture links across a broad set of off-the-shelf tools
at different levels of granularity. This section de-
scribes three types of hypermedia adapters that
support the capture, rendering, and maintenance of
traceability links. Independent of each other,
these hypermedia adapters are external to the trace
tool, enabling customization of the trace links cap-
tured. The implementations of these adapters are
described in Section 5.2.

 Recording adapters encapsulate tool-specific
recorders (discussed in detail in Section 5.2.2) that
enable the prospective capture of links. Recorders
minimize noise by attempting to only capture rel-
evant user actions. In addition, recorders enable
the automatic capture of tool-specific events that
provide the context of how the artifact is manipu-
lated within its native editor. Recorders may lis-
ten to events fired by a third party tool or extract
the tool’s captured history (e.g. a web browser’s
history). The events captured carry meaning that
pertains to the artifact and native tool editor. The-
se events can then be used by the rules to assign
link information, such as the trace relationship
(see Section 3.5).

Rendering adapters are used to display the se-

lected endpoint at the specific location marked by
the recording adapter (see Figure 3). For instance,
rendering a cell location in a spreadsheet location
entails invoking the native editor, opening the
spreadsheet, and using the native editor’s API to
render the specific worksheet and cell location. If

a rendering adapter does not exist for an artifact,
the operating system’s default editor will be used
to render the artifact at the default location.

Notification adapters are used to monitor
changes to linked artifacts in order to automatical-
ly update link metadata. For example, a notifica-
tion adapter may monitor whether the bug reports
linked to a component have been closed. If so,
then the link status can be changed to “obsolete”.
Notification adapters may listen to change events
when a linked artifact is opened or may be sched-
uled to regularly check for changes by other users.

3.4.3 STATE OF THE ART IN CAPTURING AND RENDERING LINKS
ACROSS HETEROGENEOUS TOOLS

Open hypermedia based tools such as Software
Concordance, InfiniTé, and Chimera enables links
to be captured across tool boundaries. Software
Concordance, however, requires the main repre-
sentation of source code be an abstract syntax tree,
instead of the programmer’s native text editor, in
order to effectively insert hyperlinks within source
code [87]. InfiniTé is limited to tracing to artifacts
that can be translated into a common text format
[13]. Chimera enables users to manually capture
links across tool boundaries [15]. Other tools al-
low the automatic capture of links across a pre-
determined set of tools: Codetrail (between
Eclipse and Mozilla Firefox), Jazz (between
Eclipse and collaboration tools), Mylar/Mylyn
(between Mylar and Eclipse), and Hipikat (be-
tween Eclipse, Bugzilla, CVS repository, and a
web browser) [63, 42, 2, 79]. Our extensible ap-
proach enables the integration of any third party
tool as long as it provides open APIs for querying
or detecting user actions.

3.5 SUPPORTING MECHANISM: DECOUPLED RULES

Rules allow users to determine the type of trace
relationship to assign. This section discusses the
usage of rules in traceability. We also discuss
how rules can be customized and the state of the
art in the automatic capture of custom links. (See
Section 5.3 for the implementation of these rules)

3.5.1 USAGE OF RULES IN TRACEABILITY

Rules have been used to specify link type relation-
ship between a pre-defined set of artifacts [109,
32]. Rules, in the form of policies, may also be
used to manage the link updates [88]. Oftentimes,
these rules are built into the traceability system.

Fig 3: Linking across heterogeneous tools with hypermedia render-

ing adapters

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 15

3.5.2 CUSTOMIZING RULES

We use rules to analyze a potentially large set
of events captured, to automate the capture of link
information, and to support link analysis. The ex-
ternally pluggable rules enable users to customize
the links captured as illustrated below. The types
of rules include “record” rules, “add relationship”
rules, and “assign link quality” rules.

 “Record” rules. Record rules analyze user in-
teraction events to filter out noise and to generate
trace links. To filter out noise, rules may be used
to ignore user interactions based on an artifact
type (e.g. ignore Word documents, emails, mani-
fest files), artifact naming convention (e.g. ignore
all files *ProjectX.*), or event source or event
type (e.g. ignore all Save events). Rules may also
be used to customize the granularity of link cap-
ture. For instance, if a user is interested in only
capturing links to a spreadsheet at the cell level,
then rules may be used to filter out links at the file

or worksheet level.
 To generate trace links, rules may use a criteri-

on (e.g. time of access, patterns of events, primary

trace artifact). Since related artifacts may be ac-
cessed concurrently or sequentially, the time that
the artifact was accessed can be a basis for creat-
ing links. Analyzing patterns of events is another
criterion for generating links between artifacts.
For instance, patterns of interaction with a set of
artifacts may indicate that the artifacts are related
to each other. Finally, artifacts may be related to a
primary artifact. For instance, if the architecture is
determined to be the primary artifact, then arti-
facts subsequently accessed will be linked to se-
lected elements in the architecture (e.g. compo-
nents or connectors).

“Add relationship” rules. To add trace link re-
lationships, rules can use contextual information
such as the surrounding events captured by the
recording adapters, the trace link metadata, and
the surrounding software development practices.
For instance, trace links captured from a web
browser may be automatically assigned as “do-

main-specific” links. Context includes assump-
tions made when artifacts were generated (e.g.
regulatory requirements, time restrictions) and the

Fig 4: Illustration of an “Add Relationship” Rule

16

order that artifacts are generated. We posit that
company conventions, procedures, or personal
work habits induce observable patterns of stake-
holder interaction with artifacts. In our previous
work, we observed such patterns of interaction as
a result of stakeholders following an established
workflow [25]. These known patterns of user in-
teraction can then be encoded as rules. When a
rule matches a series of captured events, the speci-
fied link relationship is automatically assigned. In
Figure 4, we show an example of an “add relation-
ship” rule, which specifies the conditions neces-
sary for assigning a link relationship. The trace
tool processes the event log, determines whether
the conditions are met, and assigns the appropriate
relationship. Thus, rules can take advantage of
contextual information to automatically assign
trace relationships.

“Assign link quality” rules. Links may be as-
signed link quality based on interaction statistics
and whether the links are captured using multiple
methods. For instance, if a user repeatedly ac-
cesses the same set of artifacts, then the links be-
tween these artifacts would be assigned a higher
quality since there is a higher likelihood that they
are related. Furthermore, consider the case where
links are captured by multiple methods. A link
captured using both prospective techniques (using
a recording adapter) and a search tool (e.g. using
the Lucene search engine [18]) will be assigned
higher link quality than links captured using one
method.

3.5.3 CURRENT STATE OF THE ART IN CAPTURING CUSTOM
LINKS

Automated Capture of Link Types: Automat-
ically capturing link relationships between differ-
ent artifacts has been tackled by the areas of natu-
ral language processing (NLP) and information
retrieval (IR). Rules can be used to automatically
generate trace links with relationship types based
on syntactic analysis [109]. Links are created be-
tween requirements specifications and use cases
(both expressed in structured natural language)
and a UML object analysis model. The rules look
for patterns of terms which are assigned grammat-
ical roles. These rules assign two types of depend-
ency trace relations and two types of satisfiability
trace relations. Camacho-Guerrero also uses NLP
techniques with latent semantic indexing to auto-
matically create semantic hyperlinks [32]. Finally,

Basili et al. use co-occurrences of concepts in
documents to generate typed hyperlinks [27].
Geared toward the recovery of link semantics, the-
se approaches analyze the textual content, but not
the context in which the documents are created or
edited. In contrast, ACTS uses rules to examine
patterns in user interaction as well as other cap-
tured contextual information. This contextual
analysis enables the automatic linking of non text-
based artifacts. Our rule technique also comple-
ments these text-based NLP and IR techniques.

User-Specified Heuristics: Hipikat uses vari-
ous heuristics in creating links between artifacts
from different sources [42]. TraCS also combines
best-of-breed approaches to increase the benefit of
captured links [40]. Unlike the ACTS technique,
these heuristics are pre-determined.

4 Case Study: Software Acquisition

This section demonstrates the technical feasibil-
ity and utility of architecture-centric links through
its application to the software acquisition domain
[23]. This section briefly introduces the reader to
software acquisition research and software licens-
es. It then shows that license links to the architec-
ture, albeit a simplistic link in the form of an an-
notation is necessary to support automated license
conflict analysis.

4.1 BACKGROUND IN SOFTWARE ACQUISITION RESEARCH

Software acquisition research is concerned with
increasing the quality and reliability of software-
intensive systems obtained from subcontractors or
various off-the-shelf components [11]. There is a
growing trend of composing software systems us-
ing third party components with different licenses
to lower development costs. These components
may be open source software or proprietary tools
with open APIs [117]. This strategy, however,
may result in substantially higher liabilities from
incompatible licenses. Consequently, the ability to
identify the origin of source code, ascertain its li-
cense, and analyze license interactions within a
system is necessary to mitigate liability costs. The
resulting system may not have a license that re-
sembles an existing license type [12]. Unity is an
example of a heterogeneously-licensed system
[117].

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 17

4.2 BACKGROUND IN SOFTWARE LICENSES

There are numerous license types, variants, and
versions [93]. Consequently, analyzing the com-
patibility or lack thereof between the various li-
censes in a system is extremely difficult. License
types include General Public License (GPL),
Mozilla Public License (MPL), Apache Public Li-
cense (APL), academic licenses such as Berkeley
Software Distribution (BSD) and MIT, Creative
Commons, Artistic, and Public Domain. Each li-
cense type can have multiple variants and these
variants can evolve over time, resulting in new
versions over time.

In addition, manually analyzing licenses is dif-
ficult because of the way they are expressed. Li-
censes are often incomplete and legally ambigu-
ous or exact but difficult for individuals without a
legal background to comprehend.

Furthermore, the license of the overall system
may be affected by component configuration or
software maintenance [12]. Components that are
dynamically linked at runtime may not be includ-
ed in the software release; thus, their licenses

need not be included in the overall system license.
Software maintenance, such as using alternative
components with different licenses, changes the
overall system license. In addition, using different
connectors, such as replacing a procedure call
with an HTTP request, can alter the overall system
license.

It is in this context that architecture-centric
traceability is shown to be particularly suited. The
linking of license information, formally expressed
as a license metamodel, to the system information,
as represented by the structural architecture or
xADL, enables system designers to understand the
design and license tradeoffs to allow for the sys-
tem’s redistribution and licensing (see Figure 5).

4.3 AUTOMATED SOFTWARE LICENSE ANALYSIS

The architecture is the central artifact that ena-
bles the analysis of whether license constraints,
such as legal obligations, are satisfied. Automated
analysis of system properties such as adherence to
communication constraints is currently supported
in ArchStudio [45]. This type of analysis is solely
based on information encapsulated by the archi-

Fig 5: Architecture-centric links facilitate automating software license analysis

18

tecture. Adding information to the architecture
through links to external information enables a
wider range of analysis on the system. In this case,
linking license information to the architecture el-
ements, specifically components, facilitates the
automated license analysis. For instance, it is pos-
sible to calculate the scope of a reciprocal obliga-
tion imposed by a component with a GPL license.
This calculation is simply done by traversing the
architectural graph and including all the connected
components that are not separated by a license
firewall [11]. It is also possible to calculate sys-
tem-wide obligation conflicts by traversing the
architectural graph. For each visited component,
one should traverse the link to the license infor-
mation in order to extract the license obligation.
The obtained union of all the license obligations
can then be analyzed for conflicts. Similarly, it is
possible to find the overall system rights by taking
an intersection of all the rights in the system.
Many other types of analysis are made possible by
linking the architecture and software license in-
formation. For a more detailed discussion of these

heuristics, the reader is referred to [12].
To demonstrate the possibility of automating

software license analysis, the ACTS Traceability
System has been extended with a Software Archi-
tecture License Traceability Analysis module (see
Figure 6). This allows for the specification of li-
censes as a list of attributes (license tuples) using a
form-based user interface in ArchStudio4.

The tool has been used to analyze a heterogene-
ously composed system that is characteristic of a
typical e-business system. The system depicted in
Figure 6 has three different licenses: GPL, BSD,
and Corel Transaction License (CTL). Running
the license analysis produces the report shown at
the top of the figure. The tool is able to support
linking licenses at different levels of granularity:
at the component level and at the subsystem level.
It can also support analyzing license interaction
across these different levels of granularity. In this
figure, for example, the GPL license propagates to
all the subcomponents of the Mozilla component:
GUIDisplayManager, GUIScriptInterpreter, and
mozilla.

Fig 6: Software Architecture License Traceability Analysis module

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 19

4.4 DISCUSSION

This section discussed a specialized application
of architecture-centric traceability in the context
of software acquisition research. This section has
illustrated that architecture-centered traceability
links not only provide a system view of traced in-
formation, but they can also be used to support
automated analysis of system properties, which in
this case is the license compatibility of heteroge-
neous components in a system. In this context,
architecture-centered links coupled with a formal
description of the software system (i.e. xADL) and
a formal description of software licenses provide a
solution to an otherwise intractable problem. Au-
tomated analysis is necessary in the face of evolv-
ing software licenses and changing organizational
policies regarding acceptable software licenses.

Other approaches have focused on analyzing
software licenses or on reverse engineering [61,
118, 116], but have lacked the capabilities of
providing tool support for automatically analyzing
license interactions within a system, especially
during design time.

Beyond the software acquisition domain, archi-
tecture-centric traceability links can also support

the analysis of other system properties. Example
analyses are determining the level of coupling be-
tween components in an architecture (links be-
tween architecture and source code), the level of
“bugginess” of a system (links between architec-
ture and bug tracking repository), the level of de-
pendency on third-party software (links between
architecture and source code), and test coverage of
a system (links between the architecture and quali-
ty assurance or QA test reports). The augmented
trace information can also support semi-automated
analysis of correctness with respect to require-
ments. For example, a functional requirement may
state “Environmental sensors must perform time
synchronization at regular time intervals”. A base-
line analysis can be performed by traversing the
architectural graph. For each environmental sensor
component, the component mapping to source
code can be used to locate a “timeSynchroniza-
tion” method. The lack of such a method can be a
baseline indicator that the requirement has not
been satisfied. If the method exists, then architects
can then proceed to determine the correctness of
the method. Thus, architecture-centric traceability,
while only scoping the capture of links to the con-

Fig 7: ACTS View displays the traceability links when a component is selected. ACTS is built on top of ArchStudio4.

20

cepts presented in the architecture, is technically
feasible and has utility.

5 An Exemplar Implementation

While the last section demonstrated the tech-
nical feasibility of architecture-centric links, this
section shows the technical feasibility of support-
ing the capture of user-customized links and the
prospective capture of links across heterogeneous
artifacts. The first subsection provides an over-
view of prospective capture and the overarching
design goals followed. Details of the design and
implementation of the tool’s supporting mecha-
nisms (open hypermedia and rules) follow in the
next two subsections.

The tool development focused on capturing
links to and from the structural representation of
the architecture. The ACTS Traceability System is
built on top of ArchStudio [45], an architecture-
centric development environment that is integrated
with Eclipse. Users can access the traceability
support through the ACTS View in ArchStudio
(see Figure 7).

5.1 OVERVIEW AND DESIGN GOALS

5.1.1 OVERVIEW OF PROSPECTIVE LINK CAPTURE

Prospective link capture is supported by open
hypermedia recording adapters and rules. Figure 8
shows an overview of the process of prospectively
capturing links -- the numbers denote steps, trian-
gled steps denote user actions, and circled steps
denote automated tool support. A user may select
which rules to apply prior to any recording session
(Step A). The user initiates a recording session in
the trace tool (Step 1). The trace tool invokes ap-
propriate tool-specific recorders (Step 2) whenev-
er the user opens specific artifacts. As the user
performs development tasks and accesses, gener-
ates, or edits artifacts (Step 3), each recorder cap-
tures the user interaction events. Each event cap-
tured is associated with the resource path and op-
tionally a location within the resource. When the
user ends the recording session of the trace tool
(Step 4), the adapters output the captured events to
a common event log (Step 5). The trace tool or-
ders the events sequentially. Rules may be auto-
matically applied to transform the event log into
traceability links (Step 6). Finally, the new tracea-
bility links are added to the linkbase (Step 7). Us-
ers are not required to validate the links as a sepa-

rate task. As they go back and use the links, users
are allowed to remove any invalid links they en-
counter.

The level of granularity of link capture is de-
pendent on both the artifact and the tool’s APIs.
For instance, Eclipse allows recording at both the
file level, such as a file selection in the Navigator
View, and at the element level, such as an element
selection in an editor view. Meanwhile, MS Excel
allows recording at the file level, at the worksheet
level, and at the cell level. Since recorders are ex-
ternal to the trace tool, the granularity of recording
may be user-customized.

5.1.2 LIGHTWEIGHT, CUSTOMIZABLE, AND INTEGRATED LINK
CAPTURE

We built the open hypermedia adapters and
rules with the goal of supporting lightweight, cus-
tomizable, and integrated link capture.

Lightweight. The tool is designed to limit the
overhead in the tool setup and the link capture. In
contrast to previous prospective approaches where
a development process needs to be specified [98]
or where all possible links between artifacts are
pre-specified [97], the setup is limited to the tools
and heuristics the user is interested in integrating
into the trace environment. A tool adapter must
also be constructed for each third party tool to be
integrated into the ACTS Traceability system. We
minimize overhead in the tool usage through the
background capture of links while users perform
their development tasks.

Customizable. The tool is also designed to be
customizable. It supports the user-directed capture
of links through selective hypermedia recording of
user interaction, and the selective generation of
links from the recorded user interaction. Link in-
formation is also automatically assigned via rules
(detailed in Section 5.3). Furthermore, users may
choose the level of interaction with the tool. They
may have the record button turned on all the time
or explicitly switch to the record mode whenever
they choose to capture links in the background.

Integrated. Unique to the ACTS tool is the ex-
ternalization of the recording mechanisms and the
heuristics used to generate trace links. The exter-
nal hypermedia adapters make it possible for third
party tools to be integrated into the trace tool.
Moreover, external heuristics in the form of rules
also enable users to integrate their custom heuris-
tics. Once users specify the location of their cus-

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 21

tom rules and adapters, they are integrated into the
system.

5.2 SUPPORTING THE CAPTURE AND USAGE OF LINKS

Open hypermedia techniques and mashups are
used to support the capture, usage, and analysis
links. Hypermedia adapters capture and render
links within their native editors. Link usage and
analysis is enhanced by mashups which graphical-
ly renders the extracted information from the
linked artifacts.

5.2.1 INCREASING OPENNESS, ACCESSIBILITY, AND USABILITY

The tool is designed to support the capture of
links across distributed information residing in
heterogeneous tools. It is important to note that
not all user interaction events are captured, but
only those that can be intercepted by the hyper-
media adapters. This section discusses how the
ACTS approach achieves openness and enhances
accessibility and usability of linked information.

To increase openness among heterogeneous
tools, the tool has explicit extension points where
users can integrate their tool-specific hypermedia
adapters. Users simply add the path to their cus-
tom adapter to the trace tool’s list of hypermedia

adapters. When the recording session starts or
when the links are traversed, the tool automatical-
ly invokes the appropriate adapter.

To increase accessibility, we implemented the
following. All the trace links are presented
through a unified interface, which is the graphical
rendering of the architecture. Links to artifacts at
different levels of granularity are supported (e.g.
file level, page level, section level) to facilitate
accessibility to specific locations within an arti-
fact. Linked artifacts are also rendered within their
native editors.

To increase the usability of captured links and
to facilitate link analysis, mashups are designed to
overlay linked information to the architecture. It
not only supports the traversal of the captured
links, but it also extracts the information from the
captured links to provide users a comprehensive
view of the system along with the related infor-
mation.

5.2.2 TOOL IMPLEMENTATION

This section discusses the implementation of first-
class n-ary traceability links, and hypermedia re-
cording, rendering, and notification adapters.
Mashups are also used to provide link visualiza-

Fig 8: Overview of Prospective Capture of Links

22

tion.
5.2.2.1 First Class N-ary links

First class n-ary links group artifacts with a
common relationship (e.g. satisfaction, rationale).
These first class links not only store link infor-
mation, but they also support modeling link hier-
archies to present linkages between course-grained
and fine-grained artifacts. A trace link consists of
a set of two or more endpoints. A trace endpoint
includes an artifact location, timestamp of link
capture, method of link capture, and it may op-
tionally include link quality status, the user who
captured the link, the custom action performed
when navigating a link, and a link to another trace
link object. Custom actions point to a script or ex-
ecutable code that is launched when the link is
navigated.

The traceability links are stored in a xADL file,
an XML-based architecture description language
[44]. xADL was extended with a traceability
schema extension.

5.2.2.2 Recording Adapters and Uniform Event
Model

Recording adapters were implemented for
Eclipse 3.4, Microsoft Office 2007, Adobe Acro-
bat 9, and Firefox 3.

Eclipse 3.4: The Eclipse recorder listens to Se-
lectionEvents fired when user selects elements
within the Eclipse Views and Editors. When these
events are fired, the recorder obtains an ISelec-
tionModel which specifies the selected element
and the view or editor where the event was fired.

Microsoft Office 2007: Microsoft Office tools
fire events when the user modifies the artifact, se-
lects a section of the artifact (e.g. a slide or a page)
or invokes built-in commands (e.g. open, close,
save). The recording adapters for Microsoft Office
listen to these events to detect user actions. We
built a different adapter for the following tools:
MS Word, MS Excel, and MS PowerPoint. Each
adapter is implemented as a standalone Visual
Basic executable, although they could have also
been implemented in C++ or C#.

Adobe Acrobat 9: Adobe Acrobat does not
provide an API for listening to user navigation.
Instead it provides APIs, called the Interapplica-
tion Communication (IAC) [6], for enabling third
party developers to programmatically invoke the
capabilities within Adobe Acrobat. The recording

adapter for Adobe Acrobat simply extracts all the
user changes to the Acrobat file along with the
change timestamp. The adapter is implemented as
a Visual Basic executable.

Firefox 3: Similar to the previously discussed
tools, Mozilla Firefox provides mechanisms for
customizing the capabilities of the browser. We
implemented a recording adapter that captures
course-grained links to visited sites by directly
querying the browser’s history database, stored in
a SQLite database [5]. The recorder extracts the
visited sites along with their timestamp. We also
implemented a prototype Firefox adapter which
uses Mozilla’s XML User Interface Language
(XUL) and JavaScript [86]. This adapter extends
the browser’s capability to listen to finer-grained
user actions within a webpage such as button
clicks and mouse-over text actions. This adapter
is also more flexible since it is not affected by
changes in the underlying data model of the tool.

Uniform Event Model: Once the recording
session is completed, a recording adapter stores
the recorded events into an XML event log file. In
order to unify the extracted information from the
different recorders, a standard data model is used.
An action tag represents a recorded user interac-
tion. Each action is associated with the detected
event, the resource, and the timestamp. The re-
source represents the path of the artifact on which
the event was detected. The “#” sign delimits the
path to the artifact and the specific location within
the artifact. The selected item in Figure 7 shows
the file path and slide number in the PowerPoint
file.

Integrated Search Tools: We integrated Lu-
cene, Trac and Google into our ACTS framework.
Lucene is a well-known third party tool that pro-
vides text matching between sets of documents
[18]. When a component or connector is selected,
we use Lucene to link to all the documents in a
given file directory with the matching component
or connector name. We also integrated the Trac
issue tracking system [51]. When a component or
connector is selected and a link to the Trac reposi-
tory is navigated, a query is automatically invoked
to display the issues reported against a selected
component. Finally, we also integrated Google
search for searching artifacts on the Internet.

Google may also be used to guide the prospec-
tive capture of links. An example scenario is (a)

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 23

using Google to find related links, (b) turning pro-
spective capture on, and (c) recording which can-
didate links generated by Google are actually used
– perhaps repeatedly – by the architect.

We have also illustrated with our more recent
work how prospective capture can be combined
with an advanced machine learning technique
called topic modeling [24].

Implementation challenges of recording
adapters: Implementation challenges include
supporting extensibility, intercepting user interac-
tion, building platform and version independent
adapters, and synchronizing time.

The first challenge is supporting extensibility to
accommodate various third party tools. This chal-
lenge is addressed by using a combination of a
procedure call and shared repository. When users
open a file, the ACTS environment calls and pass-
es control to the appropriate recording adapter.
While the recorder is running, interaction events
are stored in a shared repository. When the user
closes the application, the recorder shuts down
and hands control back to the ACTS tool. The
ACTS tool then takes the interaction events from
the shared repository and transforms them into
links. Thus, the integration of third party tools is
greatly simplified by the indirect data transfer
from the external recorders to the tool.

The second challenge is in regards to imple-
menting the recording adapters to intercept the
user interaction with the third party tools. Some of
the integrated third party tools do not have public
APIs for listening to user navigation within the
tool. In implementing the Adobe Acrobat adapter,
only specific changes to the file are intercepted,
such as comments or strikethroughs. Consequent-
ly, links to specific locations within Acrobat file
may only be captured if the file is modified.
Meanwhile, in implementing adapters for the Mi-
crosoft Office suite, it is necessary to get a handler
to the specific file that the user is editing in order
to be able to listen to the commands invoked by
the user.

Still another challenge is building platform and
version independent adapters. Recording adapters
depend on the third party tool’s API or data model
and are thus sensitive to the tool’s changes. Such
was the case with Adobe Acrobat and Firefox.
The adapter for Adobe Acrobat 9 will not work
with earlier versions because it is using advanced

features that are specific for version 9. Similarly,
Firefox Mozilla’s data model changed between
Firefox 2 and Firefox 3. Thus, it was necessary to
create a new adapter for Firefox 3. A more elegant
adapter for Firefox is to use XUL and JavaScript
that would be independent of the internal Firefox
data model. This adapter, however, is still subject
to changes in the Firefox API. The adapters for
some tools can also constrain the tool to a specific
platform. For example, hypermedia adapters we
built for MS Office require that the ACTS trace
tool run on the Windows Operating System be-
cause OS libraries are used to obtain a handler to
the file being accessed. A different set of adapters
is then needed to have the ACTS trace tool and
MS Office adapters run in a different operating
system. Thus, adapters are currently limited to the
version or platform for which it is developed.

Finally, time synchronization is an important is-
sue when integrating the various events from the
different recorders. It was observed that the dif-
ferent recorders were synchronized, since they
were running on the same host, but they store the
time in different formats. Consequently the Java
Date class which represents the Universal Time
(UT) was used as a standard time. The various re-
corders were modified to translate their default
time into the Java time format. If the recorders
were running on different hosts, then it is im-
portant to account for any time differences be-
tween the hosts.

5.2.2.3 Rendering Adapters

This section discusses the corresponding ren-
dering adapters for the tools discussed in the pre-
vious section. To render an artifact, the ACTS
Traceability System first checks the path of the
link to be traversed and then invokes the appropri-
ate rendering adapters. Analogous to the anchor
concept within a webpage, the adapters render the
artifacts to a specific location within the document
if a “#” delimiter exists in the linked artifact.

Implementation challenges of rendering
adapters: Implementation challenges, such as
minimizing lag and identifying an anchor within
the artifact, were encountered. Course-grained
rendering support (at the file level) was initially
provided for Word documents, Excel spreadsheets
and PowerPoint slides within Eclipse workbench
default editor. However, due to the observed per-

24

formance lag and difficulties with manipulating
the artifact within Eclipse, the rendering adapters
were implemented outside of Eclipse.

Another challenge is in the fine-grained render-
ing of artifacts. The rendering capability is limited
by the third party API. For instance, the MS Pow-
erPoint renderer is limited to rendering at the file
and slide level while the Excel renderer can render
at the file at finer levels of granularity: worksheet,
row, column, and cell levels.

5.2.2.4 Notification Adapter

To support link maintenance, we implemented a
notification adapter for MS Excel 2007. Imple-
menting a notification adapter requires determin-
ing how to handle the different types of updates as
well as determining the frequency of updates.

We define three types of updates: deletion, revi-
sion, and relocation. Deletion is when the re-
source has been deleted within a given search
space. Revision is when the resource has been
modified. Relocation is when the resource has
moved to another location. These updates may
take on different forms, depending on the level of
granularity of the linked resource. (See the Im-
plementation Challenges below for details on how
these updates are handled.)

 We also determined the frequency of updates
for our notification adapter. Updates can be per-
formed as a result of continuous monitoring of the
linked artifacts or on demand update. We opted
for the on demand update since it is a more effi-
cient approach in terms of processing time re-
quired. When the user is ready to use the links,
the user can simply invoke the notification update
to determine which links have changed since the
last session.

Implementation challenges of notification
adapter: We discuss issues encountered in our
implementation of the deletion and relocation up-
dates. Although we did not implement the revi-
sion update, we offer some implementation in-
sights.

The notification adapter handles updates at the
same level of granularity as the link captured. De-
letion updates are handled at the file level, work-
sheet level, and cell level while relocation updates
are handled only at the content level. The current
implementation handles updates at these levels
differently. If the link is at the file or worksheet

level, the notification adapter checks if the file or
the worksheet exists at the specified path. If not,
the link status is updated as “deleted”. If it does
exist, the link status is left blank, indicating that it
is a valid link. If the link is at the cell level with
no specified content, then the adapter checks if the
specified worksheet exists. If the link is at the
content level, then the adapter checks if the con-
tent is found at the specified cell. If it is found,
then the link is valid and the status is left blank. If
it is not found, the adapter searches for the content
throughout the file. If a match is found, the status
is updated to “moved” and the link itself is modi-
fied to point to the new cell location. If no match
is found the status is updated to “deleted”.

Implementing relocation update is a function of
the search space. In the case of our Excel notifica-
tion adapter, handling the relocation case at the
content level was fairly straightforward. It simply
required searching for the given content within the
Excel file. To implement the relocation update at
the file level, one must decide if the search space
is within a given directory, within a given ma-
chine, within the company intranet, or within the
Internet. As the search space increases, more so-
phisticated searching algorithms become neces-
sary.

Implementing the revision update is a function
of the user interest in the change and the granulari-
ty of the resource. If a change has been made to
the text font or color of the resource and the user
is not interested in tracking this change, then from
the user’s perspective, the resource has not
changed. Otherwise, the adapter must detect the
change and update the status to “revised”.

The granularity of the resource is another factor
in handling the revision update. The courser
grained the linked artifact, the more sophisticated
the change detector must be. To implement a re-
vision update at the cell level, it would simply
check if the value of the cell matched the content
that it was intended to point. This could simply be
a string or a numerical match test, depending on
the cell content. However, in the event that the
resource is at the file level, a different technique is
needed to determine if the file has changed. One
could do a simplistic comparison of the file modi-
fied date, a more sophisticated check of the latest
changes made based on a repository check-in, or a
still more sophisticated scheme of running a diff

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 25

algorithm on a snapshot of the previous linked ar-
tifact and the current artifact. The last option
would require more storage overhead for storing
the artifact’s snapshot.

5.2.2.5 Aggregate Link Information

Once links are captured, the linked information
can be aggregated and presented to a wider range
of users visually as a mashup to support link usage
and link analysis. A Mashup Link Processor and
an Information Extractor which queries the Trac
Issue and Bug Tracking System were implement-
ed. The Mashup is implemented as a server-side
Flash CS4 script. The user simply loads the xADL
file which contains the architecture as well as the
linkbase. The Flash script then renders the archi-
tecture in a browser. Figure 9 shows the mashup
of the ArchStudio 4 architecture with bug and
source code information overlaid on top of it. Blue
shading represents components and yellow shad-
ing represents connectors. The border shading rep-
resents whether the components have reported
bugs (yellow), lack source code (red), or have
source code and no reported bugs (black). The
figure at the top shows an actual bug reported
against one of the ArchStudio components,
Launcher. When a user clicks on a component, a
pop-up table of the traceability links appears. A

user can then navigate to a linked artifact. In this
example, a link to a reported bug displays the bug
within the Trac bug database. This example illus-
trates how linked information can provide real-
time project status as far as component implemen-
tation and component errors are concerned.

Implementation challenges of aggregating
link information: A couple of performance issues
were encountered in the implementation of the
mashups: 1) parsing the xADL which contains the
linkbase and 2) data extraction especially from
remote servers. To address the first challenge, the
mashup stores the parsed xADL file so that the
repeated rendering of the unmodified file does not
require reparsing the xADL file again. To address
the second challenge, a timeout was used to limit
the user wait time and to only render the available
information prior to the timeout. In addition,
HTTP requests to SVN and Trac bug tracking sys-
tem were placed on parallel threads to minimize
the lag in extracting the linked information.

5.3 USING RULES

Rules encapsulate the heuristics for creating
links, filtering links, and capturing link infor-
mation. This section covers the implementation of
rules.

Fig 9: Sample Mashup of ArchStudio 4

26

5.3.1 ADAPTABLE, MODULAR, & CONTEXTUALLY-AWARE RULES

The tool is designed to support the custom cap-
ture of trace links through the use of adaptable,
modular, and contextually-aware but content-blind
rules.

Adaptable rules: In order to support the cus-
tom capture of traceability links, users may adapt
the rules according to their heuristics. Rules,
which are external to the tool, may be created for a
class of users or for individual users. Users simply
specify in the tool which rules to apply when cap-
turing traceability links.

Modular rules: A rule is a self-contained heu-
ristic unit. This modularity enables users to easily
evolve each rule over time. This modularity also
enhances the interchangeability of rules, enabling
users to swap rules when they change their heuris-
tics. Rules may also be combined with each other
to form more complex rules.

Contextually-aware but content-blind rules:
Designed to be contextually-aware but content-
blind, rules operate on the captured contextual in-
formation, making it possible to create links and
assign link types to heterogeneously represented
artifacts. Rules are content-blind since the basis of
link creation is not the content of the artifacts, but
the users’ activity surrounding the creation or
modification of artifacts. Rules, working in tan-
dem with open hypermedia adapters, enable cus-
tom links to be captured across heterogeneous arti-
facts. This is an important distinction from previ-
ous traceability approaches that tended to employ
content-aware but context-blind approaches.
Techniques from natural language processing
(NLP) and information retrieval (IR) are excellent
in determining possible links using the textual
content of an artifact [109, 32, 27]. Meanwhile,
contextual awareness enables existing develop-
ment processes, company conventions, or devel-
oper work habits to be loosely integrated into the
link capture without heavily or completely speci-
fying a development process.

5.3.2 TOOL IMPLEMENTATION

Rules are used to create traceability links and to
capture the trace link information. Current rule
support includes “record” rules (filter events rule,
generate trace links rule) and “add relationship”
rules. The rules are currently implemented as XSL
Transformations (XSLT) on XML; Xalan-Java

acts as the rule engine [19]. (Alternatively, an off-
the-shelf inference engine could be used.) XSLT
has been commonly used to transform XML doc-
uments. In the ACTS Traceability System, XSLT
is used to encapsulate the action to take (i.e. trans-
formation on the event log file) when a pattern of
events has been detected. Usually, a rule is repre-
sented by a single XSLT file, while some rules
may span multiple XSLT files.

Users also have the option of either interactive-
ly applying the rules or applying them in the
background. For background rule application, us-
ers can specify the rules to apply prior to any re-
cording session (as shown in Figure 8). For inter-
active rule application, users select the rules inter-
actively after each recording session. A dialog box
shows the status of the rule application and
prompts the user for additional rules to apply.

When the recording session is completed, the
captured user interaction logs of the hypermedia
recording adapters are ordered by time to recreate
the sequence of user interaction across different
tools. Rules are then applied to transform the
event logs into trace links. Rules that filter events
may be first applied to the event logs to eliminate
the noise captured. Furthermore, rules may be
applied after trace link generation to remove any
duplicate links to the same artifact. The duplica-
tion of links occurs when multiple commands are
invoked on the same artifact.

“Record Rule”: We can generate trace links
based on grouping by architectural elements. After
a component selection, all the artifacts that the us-
er selected is automatically linked to the selected
component in Archipelago, ArchStudio’s graph-
ical editor. The rule checks if the selection is an
architectural element in the Archipelago Editor. If
so, the assigned group number is incremented by
one to indicate that the architectural element and
the succeeding artifacts are assigned a new group
number. Otherwise, the group number remains
unchanged.

“Add Relationship” Rule: Figure 10 shows an
excerpt of the rule that assigns the type of trace
link relationship based on the file format of the
artifacts (see lines 174 to 192). A more complex
rule is illustrated in Figure 11. This rule assigns
the trace relationship type based on the set of sur-
rounding artifacts that the user accessed. In this
particular example, if the set of accessed artifacts

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 27

includes a PowerPoint file and a graphic file (i.e.
jpg), then the rule assigns a rationalization link
type. If the set of accessed artifacts only include a
PowerPoint file, but not a graphic file, then the
rule assigns the generalization link type. The link
types are currently arbitrarily assigned by the rule
author. Future implementations may incorporate
alink type ontology or a classification scheme.

Implementation Challenges of Rules: Several
implementation challenges were encountered in
transforming captured events to links and filtering
the captured links. Possible scalability issues and
understandability issues in writing rules are also
discussed.

Transforming Events to N-ary Links: It is
challenging to group selection events to create a
valid set of trace links. Since we use a more flexi-
ble means of grouping artifacts, n-ary linking as
opposed to bidirectional links, it is necessary to
determine the boundary of a link. Selections may
be grouped by time, by primary artifact, or by ex-
plicitly turning on or off of the record mode.

Grouping events by time entails grouping arti-
facts based on the time of the previous event to
time of the current event. If the time difference is
within a certain period, the artifacts are linked to-
gether. This proved to be an inflexible approach
since users can easily exceed the time group
boundaries.

Grouping events by primary artifacts (e.g., us-
ing architecture elements like components and
connectors as group boundaries) is a reasonable

approach, since artifacts may be related to a pri-
mary artifact. This approach is not necessarily re-
stricted to the architecture as a primary artifact,
but may be applied to any primary artifact as long
as the elements within the artifact are uniquely
identified.

Grouping events by explicitly by turning the
record mode on and off is an approach that col-
lects all the artifacts captured during the recording
session as a set of endpoints belonging to one
(large) trace link. This means of grouping events
requires manual intervention, but it addresses the
difficulty with grouping different units of a prima-
ry artifact together. Thus, any number of elements
may be linked to each other as well as other arti-
facts.

Grouping events using navigational cycles is
another means of determining links between arti-
facts [107]. Accessing a previously visited artifact
creates links between the artifact and all other arti-
facts visited prior to the return visit.

Filtering Events: It has been observed that
multiple filtering mechanisms are needed to effec-
tively remove noise and ensure that correct links
are not discarded. One example is filtering by
timestamps. This filter can remove jitters, quick
movements across artifacts [107], or unnecessary
events captured by a tool like Eclipse. For each
discrete Eclipse event detected, prior selections in
a view are captured as well as new selections. In
order to filter out the prior selections, a timestamp
filter is used. However, filtering by time can po-

Fig 10: Add Relationship Rule

Fig 11: Add Relationship Rule based on co-accessed artifacts

28

tentially eliminate valid links. This issue can be
addressed by coupling a timestamp filter with oth-
er types of filters (e.g. filters that check for the
selected elements), or using event patterns as a
basis for filtering selections.

Scalability: The current rule implementation,
which uses the XSLT engine, may incur perfor-
mance overhead in processing thousands of
events. To mitigate this performance overhead,
offline processing of events and rule engines can
be used.

Understanding Rules: Rules are currently ex-
pressed as an XSLT which is based on template
matching as opposed to the more commonly used
procedural programming paradigm. Rules, which
require examining the elements before or after the
current node, may require the use of recursion to
properly transform the event log file. Thus, writ-
ing rules may not be accessible to some users.
This difficulty can be addressed by having a tech-
nically proficient trace tool administrator who can
write the rules for the other members of the devel-
opment team. Another possibility is to develop a
user interface that allows users to graphically
specify the rule and have the tool automatically
generate an XSLT files. Off-the-shelf tools that
support the editing and debugging XSLT files are
also available [113, 102].

6 User Feedback

To help evaluate the usability of our approach,
we solicited the feedback of 33 users: 12 from in-
dustry, 18 PhD students and 3 undergraduate stu-
dents in either Computer Science or Informatics at
the University of California, Irvine. Feedback
was obtained either through online surveys, paper
surveys with unstructured interviews, or personal
communication. While this study is limited and
artificial in several respects, it did yield worth-
while feedback.

Our study did not fully investigate the ability of
users to control link capture through custom rules
or the ability of the tool to adapt to different set-
tings by integrating user selected tools. The tool
was used in various settings (personal projects and
trial usage) with a set of readymade rules. Some
users only used the Firefox adapter to link to
online resources, while others used the MS Word
and Adobe Acrobat adapters to link to local re-

sources. One participant used the MS Excel
adapter.

The users were asked to perform the following
tasks. The users were asked to use ArchStudio and
the ACTS View to capture links while they edited
a structural design and viewed or edited documen-
tation files. Some of the users were asked to man-
ually apply four rules while others had the rules
applied in the background. All users were also
asked to retrieve the captured links.

We sought to understand user perception on
usefulness of architecture-centric links, overhead
of capturing links, ease of accessing artifacts, ten-
sion between automated and user-controlled cap-
ture, privacy concerns, and tool usability.

6.1 USEFULNESS OF ARCHITECTURE-CENTRIC LINKS

Linking artifacts to the architecture (or design)
is a useful feature to some of our participants.
Eight participants (three of whom have industry
experience) expressly identified this feature as the
feature they liked about the tool. Two participants
with industry experience, however, said that link-
ing to the architecture was not applicable to their
work contexts. Still another industry participant
said that the tool has “potential use in Safety Criti-
cal Applications”.

6.2 OVERHEAD IN CAPTURING LINKS

The participants generally felt that the time
spent in capturing links was acceptable. One user
commented that the tool “make[s] the linking job
easier” and another user stated “The tool saved me
lots of time. Thanks!”

Users who applied the rules manually felt that
turning the record button on and off was “some-
what distracting” while users who applied the
rules automatically in the background found it less
distracting. One of the users who applied the rules
manually described the switching between record
on and off to be “tedious”. Since the tool offers
both manual and background application, one way
to address this issue is to have users simply use
the manual application during the tool setup as a
test mode and then apply them in the background
when they have created an acceptable set of rules.

6.3 LINK USABILITY: EASE OF ACCESSING ARTIFACTS

User feedback indicates that the captured links
were usable to the participants. Most of the par-
ticipants liked the ability to link design elements

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 29

to documentation, the ability to link to specific
points within the documentation, and the ease of
navigating to the documentation from design. One
participant commented, “It could take me back to
the exact location of the comments made in doc-
umentation files.” Another participant stated that it
is “easy to link & view artifact from tool itself.
Jumps to edits automatically”. Still another partic-
ipant liked “linking to precise points in the docu-
ment”. One participant liked the ability to view
the artifacts in their native tool: “Simplifies the
process, everything is integrated into one work-
space”.

6.4 TENSION BETWEEN AUTOMATIC AND USER-
CONTROLLED CAPTURE

There is a tension between the automated cap-
ture and user-controlled capture of links. Even
though increasing user control requires more time
from the user, some participants preferred the abil-
ity to manually map artifacts to design via “drag
and drop”. Two participants would like to be able
to explicitly indicate the artifacts they are linking
through a button in the native editor. One partici-
pant even suggested displaying a dialog box to
manually confirm the links to add after each re-
cording session: “I’d like to have more control
over the links. I’d like to have checkboxes to
manually pick the one link I wanted.” One partic-
ipant also wanted to be able to manually enter la-
bels for the captured links.

On the other hand, some users prefer less user
control and more automated capture. Three users
disliked explicitly turning the record button on and
off, with one user commenting “Start / stop re-
cording button kinda distracting.”

6.5 PRIVACY CONCERNS

Since capturing user interaction takes place in
the background, participants were asked if they
had privacy concerns over the logging of their in-
teraction events. One participant stated that there
was no privacy concern “if I can clearly see and
select what is recorded. Otherwise, yes”. Two par-
ticipants stated that as long as the logging only
takes place within the ACTS tool, they have no
privacy concerns. However, once the logging goes
outside the tool, e.g. logging visited sites on a
browser, it may become a privacy issue. To ad-
dress privacy concerns, one participant suggested,
“Maybe allow me to specify (Black/White list)

which apps are/are not recorded”. Thus, as long as
the recording is limited within the tool or is trans-
parent, the participants are amenable to logging
their user interactions.

6.6 USABILITY OF THE TOOL

While the participants like the idea of being
able to automatically capture links to documenta-
tion, they expressed several usability issues re-
garding the current tool implementation. Some
participants would like more visual feedback on
the status of link capture. For instance, they would
like a better visual indicator that the recording is
taking place. One user would like more “on-the-
fly” directions to know what actions to take while
recording. These usability issues can be addressed
by further tool development.

Another usability issue is in the imposed actions
that the participants must follow to indicate links
between elements in the design and the related
documentation. For instance, participants have to
explicitly select an element in the design (via
clicking or double-clicking a component) prior to
opening a related artifact in order for the tool to
create traceability links. In addition, participants
must explicitly turn on the record button to start
capturing links, must save the PDF file using an
external button, and must open the files through
ACTS in order to capture the links. Two partici-
pants felt so constrained by these requirements
that one participant called the recording approach
as “heavyweight” while another participant re-
ferred to the tool as “clunky”. The tool limitations
regarding link capture can be addressed by devel-
oping more sophisticated rules that can understand
a wider range of user events. In addition, provid-
ing user preferences for recording as well as min-
imizing additional user required actions to capture
the links can address the other usability issues.

Still another usability issue is in understanding
the rules. The current representation of rules as
XSLT is difficult to understand and create for an
average user. One way to address this is by
providing a form-based user interface that users
can use to enter their rules. Some users would al-
so like to see a visualization of how links are be-
ing transformed by the rules, or a preview of what
the links would look like after the rule has been
applied.

30

6.7 DISCUSSION

The user feedback helps us understand some of
the desirable features as well as concerns the users
have with the current implementation of ACTS.

Based on user feedback, the overhead incurred
in link capture seems to be generally acceptable to
the participants. The features that most users liked
about the tool are the automatic linking from the
structural design to documentation and the auto-
matic linking to specific locations within the doc-
umentation. Most users expressed usability issues
with the current tool implementation.

As far as the capturing the links in the back-
ground, we received mixed results, as indicated by
Section 6.4. It seemed that some users prefer
more implicit capture while others prefer more
explicit capture. For instance, some users disliked
turning the record button on and off while some
prefer more user interaction with the tool. The
latter may be attributed to the following reasons.
First, some users had a limited understanding of
the capabilities of the rules. Secondly, some users
did not want to lose the links they identified with-
in the context of the tool. In the current imple-
mentation of ACTS, users may examine the links
and interactively apply the rules after a recording
session, which means that some time has elapsed
and they are required to remember the context of
the artifact. Thus, enabling users to interactively
specify which artifacts to link during the recording
session is also important.

 While the participants found many usability
issues with the tool, some of them indicated con-
tinued usage of the tool. Fifteen of the partici-
pants would like to use the tool in the future and
an additional 5 would “maybe” use the tool if their
task required linking documentation to design.

7 Conclusion

This paper examined the traceability challenges
and showed that the complexity of the problem
stems from multiple interacting factors: economic,
technical, and social. The ACTS traceability
framework begins to tackle these challenges by
unifying distributed and varied artifacts around the
architecture, by supporting stakeholder customiza-
tion, and by prospectively capturing links. This
paper discussed the technical challenges involved
in tracing across heterogeneous artifacts at differ-
ent levels of granularity, at integrating third party

tools into a traceability system, at maintaining
traceability links, and at decoupling the heuristics
from the underlying trace mechanisms. Our trace-
ability framework is extensible and can integrate
existing trace search techniques. We have demon-
strated the technical feasibility of our approach
through a case study, an exemplar implementa-
tion, and user feedback.

Further work is needed in relating different
types of architectural models such as behavioral
and interaction models and in understanding the
effectiveness of the notification adapter. In addi-
tion, more work is needed to understand the social
and economic implications of the ACTS frame-
work. For instance, it is important to understand
how to balance the cost of creating custom rules
versus achieving better precision/recall rates. It is
also important to understand how to balance indi-
vidual versus organizational priorities in capturing
traceability links. Another open research topic is
minimizing the cost while scaling the approach to
hundreds or perhaps thousands of links.

8 Acknowledgment

The authors are grateful to Gloria Mark for
providing guidance on the user study. The authors
would like to thank S. Hendrickson for ArchStu-
dio support, A. Baquero, E. Dashofy, K. Strasser,
N. Takeo, Y. Zheng, and other ArchStudio users
for feedback, and S. Cutler, D. Kwok, C. Leu, A.
Marron, J. Meevasin, H. Pham, D. Purpura, and A.
Rahnemoon for tool development. This research
has been supported by grants from the National
Science Foundation IIS-0808783, CCF-0917129,
and the Naval Postgraduate School, Acquisition
Research Program, through grant N00244-10-1-
0038. No review, approval, or endorsement im-
plied.

9 References
[1] IBM Rational Requisite Pro. http://www-
01.ibm.com/software/awdtools/reqpro/.
[2] The Jazz Project. http://jazz.net.
[3] Resource description framework (RDF): Concepts and abstract
syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.
[4] Topic maps. http://www.topicmap.com/.
[5] SQLite. http://www.sqlite.org/, 2009.
[6] Adobe Systems Incroporated. Adobe Acrobat.
http://www.adobe.com/products/acrobat/, 2009.
[7] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni. Model traceability. IBM Systems Journal, 45(3):515–26, 2006.
[8] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting
software architecture to implementation. In Proc of the 24th Int’l Confer-
ence on Software Engineering, pages 187–197, Orlando, FL, 2002.

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 31

[9] Ian Alexander. Towards automatic traceability in industrial
practice. In Proc of the 1st Int’l Workshop on Traceability, pages 26–31,
Edinburgh, September 2002.
[10] Joao Paulo Almeida, Pascal van Eck, and Maria-Eugenia Iacob.
Requirements traceability and transformation conformance in model-driven
development. In Proc of the 10th Int’l Enterprise Distributed Object Com-
puting Conference, Hong Kong, 2006.
[11] Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi.
Analyzing software licenses in open architecture software systems. In 2nd
Int’l Workshop on Emerging Trends in Free/Libre/Open Source Software
(FLOSS) Research and Development, pages 54–57, Vancouver, 2009.
[12] Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi.
Intellectual property rights requirements for heterogeneously-licensed sys-
tems. In Proc of the 17th Int’l Requirements Engineering Conference, At-
lanta, 2009.
[13] Kenneth M. Anderson, Susanne A. Sherba, and William V.
Lepthien. Towards large-scale information integration. In Proc of the Int’l
Conf on Software Engineering, Orlando, 2002.
[14] Kenneth M. Anderson, Richard N. Taylor, and E. James Jr.
Whitehead. A critique of the open hypermedia protocol. Journal of Digital
Information (JoDI), 1(2), 1997.
[15] Kenneth M. Anderson, Richard N. Taylor, and E. James Jr.
Whitehead. Chimera: Hypermedia for heterogeneous software development
environments. ACM Trans on Information Systems, 18(3):211–245, July
2000.
[16] Luis Filipe Andrade and José Luiz Fiadeiro. Architecture Based
Evolution of Software Systems, volume 2804/2003 of Formal Methods for
Software Architectures - Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2003.
[17] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, An-
drea De Lucia, and Ettore Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.
[18] Apache Software Foundation. Lucene. http://lucene.apache.org,
2006.
[19] Apache Software Foundation. Xalan-Java.
http://xml.apache.org/xalan-j/, 2007.
[20] Paul Arkley and Steve Riddle. Overcoming the traceability
benefit problem. In Proc of the 13th Int’l Conference on Requirements
Engineering, pages 385–389, Paris, 2005.
[21] Paul Arkley and Steve Riddle. Tailoring traceability information
to business needs. In Proc of the 14th Int’l Requirements Engineering Con-
ference, Minneapolis, St. Paul, MN, 2006.
[22] Ove Armbrust, Alexis Ocampo, Jürgen Münch, Masafumi Kata-
hira, Yumi Koishi, and Yuko Miyamoto. Establishing and maintaining
traceability between large aerospace process standards. In Proc of the 5th
Int’l Workshop on Traceability in Emerging Forms of Software Engineer-
ing, pages 36–40, Vancouver, Canada, May 2009.
[23] Hazeline Asuncion. Architecture-Centric Traceability for Stake-
holders (ACTS). Ph.D. Thesis (Info & Computer Science), UC, Irvine,
2009.
[24] Hazeline Asuncion, Arthur Asuncion, and Richard N. Taylor.
Software traceability with topic modeling. In Proc of 32nd Int’l Conference
on Software Engineering, Cape Town, 2010.
[25] Hazeline Asuncion, Frédéric François, and Richard N. Taylor.
An end-to-end industrial software traceability tool. In Proc of the 6th Joint
Meeting of the European Software Eng Conf and the ACM SIGSOFT Int’l
Symp on the Foundations of Software Engineering (ESEC/FSE), Dubrov-
nik, 2007.
[26] Hazeline Asuncion and Richard N. Taylor. Capturing custom
link semantics among heterogeneous artifacts and tools. In 5th Int’l Work-
shop on Traceability in Emerging Forms of Software Engineering, Vancou-
ver, British Columbia, 2009.
[27] Roberto Basili, Maria Teresa Pazienza, and Fabio Massimo
Zanzotto. Inducing hyperlinking rules in text collections. In Recent Advanc-
es in Natural Language Processing, pages 131–140, Borovets, Bulgaria,
2003.
[28] Steve Berczuk, Brad Appleton, and Robert Cowham. The trou-
ble with tracing: Traceability dissected.
http://www.cmcrossroads.com/content/view/6685/264/, May 2005.
[29] Alessandro Bianchi, Anna Rita Fasolino, and Guiseppe Visag-
gio. An exploratory case study of the maintenance effectiveness of tracea-
bility models. In Proc of the 8th Int’l Workshop on Program Comprehen-
sion (IWPC), page 149, Limerick, Ireland, 2000.

[30] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley Object Technology
Series. Reading, Massachusetts, Addison-Wesley Professional, 2nd edition,
2005.
[31] Jan Bosch. Architecture-centric software engineering. In Proc of
the 24th Int’l Conference on Software Engineering, pages 681–682, Orlan-
do, 2002.
[32] José A. Camacho-Guerrero, Alex A. Carvalho, Maria G. C.
Pimentel, Ethan V. Munson, and Alessandra A. Macedo. Clustering as an
approach to support the automatic definition of semantic hyperlinks. In
Proc of the 18th Conf on Hypertext and Hypermedia, Manchester, 2007.
[33] John M. Carroll and Mary Beth Rosson. Deliberated evolution:
Stalking the view matcher in design space. In Design Rationale: Concepts,
Techniques, and Use, pages 107–145. Lawrence Erlbaum Associates, Inc.,
1996.
[34] Shang-Wen Cheng, David Garlan, Bradley Schmerl,
JoÃ£o Pedro Sousa, Bridget Spitznagel, Peter Steenkiste, and Ningning Hu.
Software architecture-based adaptation for pervasive systems. In Int’l Con-
ference on Architecture of Computing Systems (ARCS 2002), Karlsruhe,
Germany, 2002.
[35] Jane Cleland-Huang. Toward improved traceability of non-
functional requirements. In Proc of the 3rd Int’l Workshop on Traceability
in Emerging Forms of Software Engineering, pages 14–19, Long Beach,
CA, 2005.
[36] Jane Cleland-Huang. Just enough requirements traceability. In
Proc of the 30th Annual Int’l Computer Software and Applications Confer-
ence (COMPSAC), Chicago, 2006.
[37] Jane Cleland-Huang, Carl K. Chang, and Mark Christensen.
Event-based traceability for managing evolutionary change. IEEE Transac-
tions on Software Engineering, 29(9):796–810, 2003.
[38] Jane Cleland-Huang and Rafal Habrat. Visual support in auto-
mated tracing. In 2nd Int’l Workshop on Requirements Engineering Visuali-
zation, New Delhi, 2007.
[39] Jane Cleland-Huang, Raffaella Settimi, Eli Romanova, Brian
Berenbach, and Stephen Clark. Best practices for automated traceability.
Computer, 40(6):27–35, June 2007.
[40] Jane Cleland-Huang, Grant Zemont, and Wiktor Lukasik. A
heterogeneous solution for improving the return on investment of require-
ments traceability. In Proc of the 12th Int’l Requirements Engineering
Conf, Kyoto, 2004.
[41] Jeff Conklin and Michael L. Begeman. gIBIS: A hypertext tool
for exploratory policy discussion. ACM Transactions on Information Sys-
tems (TOIS), 6(4):303–331, 1988.
[42] Davor Cubranic, Gail C. Murphy, Janice Singer, and
S. Booth Kellogg. Hipikat: a project memory for software development.
ÍEEE Transactions on Software Engineering, 31(6):446–65, 2005.
[43] Eric Dashofy. Supporting Stakeholder-driven, Multi-view Soft-
ware Architecture Modeling. Ph.D. Thesis, University of California, Irvine,
2007.
[44] Eric Dashofy, André van der Hoek, and Richard N. Taylor. A
comprehensive approach for the development of XML-based software
architecture description languages. ACM Trans on Software Eng and Meth-
odology, 14(2):199–245, 2005.
[45] Eric M. Dashofy, Hazel Asuncion, Scott A. Hendrickson, Girish
Suryanarayana, John C. Georgas, and Richard N. Taylor. Archstudio 4: An
architecture-based meta-modeling environment. In Proc of the 29th Int’l
Conference on Software Engineering (ICSE 2007), volume Informal Re-
search Demonstrations, pages 67–68, Minneapolis, 2007.
[46] Cleidson R. B. de Souza, T. Hildenbrand, and David Redmiles.
Toward visualization and analysis of traceability relationships in distributed
and offshore software development projects. In First Int’l Conference on
Software Engineering Approaches for Offshore and Outsourced Develop-
ment (SEAFOOD), Zurich, Switzerland, 2007.
[47] Robert DeLine, Mary Czerwinski, and George Robertson. Eas-
ing program comprehension by sharing navigation data. In Proc of the 2005
Symposium on Visual Languages and Human-Centric Computing, pages
241–248, September 2005.
[48] Ralf Dömges and Klaus Pohl. Adapting traceability environ-
ments to project specific needs. Communications of the ACM, 41(12):54–
62, 1998.
[49] Chuan Duan and Jane Cleland-Huang. Visualization and analy-
sis in automated trace retrieval. In Proc of the 1st Int’l Workshop on Re-
quirements Engineering Visualization, Minneapolis/St. Paul, 2006.

32

[50] Chuan Duan and Jane Cleland-Huang. Clustering support for
automated tracing. In Proc of the 22nd Int’l Conference on Automated
Software Engineering, pages 244–253, Atlanta, 2007.
[51] Edgewall. Trac open source project: Integrated scm & project
management. http://trac.edgewall.org/.
[52] Alexander Egyed, Stefan Biffl, Matthias Heindl, and Paul
Grünbacher. Determining the cost-quality trade-off for automated software
traceability. In Proc of the 20th Int’l Conference on Automated Software
Engineering, pages 360–363, Long Beach, CA, 2005.
[53] Alexander Egyed, Stefan Biffl, Matthias Heindl, and Paul
Grünbacher. A value-based approach for understanding cost-benefit trade-
offs during automated software traceability. In Proc of the 3rd Int’l Work-
shop on Traceability in Emerging Forms of Software Engineering, Long
Beach, CA, 2005.
[54] Alexander Egyed and Paul Grünbacher. Automating require-
ments traceability: Beyond the record & replay paradigm. In Proc of the
17th Int’l Conf on Automated Software Engineering, pages 163–171, Edin-
burgh, Scotland, 2002.
[55] Michael Evans. SPMN director identifies 16 critical software
practices. CrossTalk, The Journal of Defense Software Engineering, March
2001.
[56] Peter H. Feiler, Bruce Lewis, and Stephen Vestal. The SAE
avionics architecture description language (AADL) standard: A basis for
model-based architecture-driven embedded systems engineering. In RTAS
2003 Workshop on Model-Driven Embedded Systems, Washington, D.C.,
2003.
[57] Roy Fielding, E. James Whitehead, Kenneth Anderson, Peyman
Oreizy, Gregory A. Bolcer, Peyman Oreizy, and Richard N. Taylor. Web-
based development of complex information products. Communications of
the ACM, 41(8):84–92, August 1998.
[58] David Garlan, Robert T. Monroe, and David Wile. Acme: An
architecture description interchange language. In CASCON ’97, pages 169–
183, Toronto, Ontario, Canada, 1997.
[59] John C. Georgas, Eric M. Dashofy, and Richard N. Taylor.
Architecture-centric development: A different approach to software engi-
neering. ACM Crossroads, issue on Software Engineering, 12(4), 2006.
[60] Mark J. Gerken, Nancy A. Roberts, and Douglas A. White. The
knowledge-based software assistant: A formal, object oriented software
development environment. In Proc of the National Aerospace and Electron-
ics Conference, volume 2, pages 511–18, Dayton, OH, 1996.
[61] Daniel M. German and Ahmed E. Hassan. License integration
patterns: Addressing license mismatches in component-based development.
In Proc of the Int’l Conference on Software Engineering, pages 188–198,
Vancouver, Canada, 2009.
[62] Martins Gills. Survey of traceability models in IT projects. In
Proc of ECMDA Traceability Workshop (ECMDA-TW), 2005.
[63] Max. Goldman and Robert C. Miller. Codetrail: Connecting
source code and web resources. In Visual Languages and Human-Centric
Comp, Herrsching am Ammersee, 2008.
[64] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the require-
ments traceability problem. In Proc of 1st Int’l Conf on Requirements Engi-
neering, Colorado Springs, 1994.
[65] Orlena Gotel and Anthony Finkelstein. Modeling the contribu-
tion structure underlying requirements. In 1st Int’l Workshop on Require-
ments Engineering: Foundations for Software Quality, 1994.
[66] Mark Grechanik, Kathryn S. McKinley, and Dewayne E. Perry.
Recovering and using use-case-diagram-to-source-code traceability links. In
Proc of 6th Joint Meeting of the ESEC/FSE, Dubrovnik, 2007.
[67] J. Gustafsson, J. Paakki, L. Nenonen, and A.I. Verkamo. Archi-
tecture-centric software evolution by software metrics and design patterns.
In Proc of the Sixth European Conference on Software Maintenance and
Reengineering, pages 108–115, Budapest, Hungary, March 2002.
[68] J. H. Hayes and A. Dekhtyar. Humans in the traceability loop:
Can’t live with ’em, can’t live without ’em. In Proc of the 3rd Int’l Work-
shop on Traceability in Emerging Forms of Software Engineering, pages
20–23, Long Beach, CA, 2005.
[69] Jane Hayes and Alex Dekhtyar. Grand challenges for traceabil-
ity. Technical Report COET-GCT-06-01-0.9, Center of Excellence for
Traceability, http://www.traceabilitycenter.org/files/COET-GCT-06-01-
0.9.pdf, 2007.
[70] Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan
Sundaram. Advancing candidate link generation for requirements tracing:
The study of methods. IEEE Transactions in Software Engineering,
32(1):4–19, 2006.

[71] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan
Sundaram, and Sarah Howard. Helping analysts trace requirements: An
objective look. In Proc of the 12th Int’l Requirements Engineering Confer-
ence, pages 249–259, Kyoto, Japan, 2004.
[72] Scott A. Hendrickson and André van der Hoek. Modeling prod-
uct line architectures through change sets and relationships. In Proc of the
29th Int’l Conference on Software Engineering (ICSE 2007), pages 189–
198, Minneapolis, MN, 2007.
[73] William C. Hill, James D. Hollan, Dave Wroblewski, and Tim
McCandless. Edit wear and read wear. In SIGCHI Conference on Human
Factors in Computing Systems, Monterey, California, 1992.
[74] John Horner and Michael E. Atwood. Design rationale: the
rationale and the barriers. In Proc of the 4th Nordic Conference on Human-
Computer Interaction: Changing Roles, Oslo, Norway, 2006.
[75] P Inverardi, H. Muccini, and Patrizio Pelliccione. Automated
check of architectural models consistency using SPIN. In Proc of the 16th
Int’l Conference on Automated Software Engineering, page 346, San Diego,
CA, 2001.
[76] Matthias Jarke. Requirements tracing. Communications of the
ACM, 41(12):32–36, 1998.
[77] Frédéric Jouault. Loosely coupled traceability for ATL. In Proc
of the European Conference on Model Driven Architecture (ECMDA)
Workshop on Traceability, pages 29–37, Nuremberg, Germany, 2005.
[78] Huzefa Kagdi, Jonathan I. Maletic, and Bonita Sharif. Mining
software repositories for traceability links. In Proc of the 15th IEEE Int’l
Conf on Program Comprehension, 2007.
[79] Mik Kersten and Gail C. Murphy. Mylar: A degree-of-interest
model for IDEs. In Proc of 4th Int’l Conf on Aspect-oriented Software
Development, Chicago, 2005.
[80] Jintae Lee. Extending the potts and bruns model for recording
design rationale. In Proc of the 13th Int’l Conference on Software Engi-
neering, pages 114–125, Austin, 1991.
[81] Jörg Leuser. Challenges for semi-automatic trace recovery in the
automotive domain. In Proc of the 5th Int’l Workshop on Traceability in
Emerging Forms of Software Engineering, pages 31–35, Vancouver, Cana-
da, 2009.
[82] Mikael Lindvall and Kristian Sandahl. Practical implications of
traceability. Software - Practice and Experience, 26(10):1161–80, 1996.
[83] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and
Thomas P. Moran. Questions, options, and criteria: Elements of design
space analysis. In Design Rationale: Concepts, Techniques, and Use, pages
53–105. Lawrence Erlbaum Associates, Inc., 1996.
[84] Andrian Marcus and Jonathan I. Maletic. Recovering documen-
tation-to-source-code traceability links using latent semantic indexing. In
Proc of the 25th International Conference on Software Engineering, Port-
land, 2003.
[85] Nenad Medvidovic and Richard N. Taylor. A framework for
classifying and comparing architecture description languages. In Proc of the
6th European Software Engineering Conference/5th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages 60–76, Zurich,
Switzerland, 1997.
[86] Mozilla. XUL. https://developer.mozilla.org/en/XUL, 2009.
[87] Ethan V. Munson. The software concordance: Bringing hyper-
media to software development environments. In Brazilian Symp on Multi-
media and Hypermedia Systems, Goiania, 1999.
[88] L.G.P. Murta, André van der Hoek, and C.M.L. Werner. Arch-
Trace: Policy-based support for managing evolving architecture-to-
implementation traceability links. In Proc of the 21st Int’l Conference on
Automated Software Engineering (ASE 2006), pages 135–144, Tokyo,
Japan, 2006.
[89] Elena Navarro. ATRIUM: Architecture Traced from RequIre-
ments by applying a Unified Methodology. Ph.D. Thesis, University of
Castilla-La Mancha, 2007.
[90] Christian Neumüller and Paul Grünbacher. Automating software
traceability in very small companies - a case study and lessons learned. In
Proc of the 21st Int’l Conference on Automated Software Engineering,
pages 145–156, Tokyo, Japan, 2006.
[91] Bashar Nuseibeh. Weaving together requirements and architec-
tures. Computer, 34(3):115–117, March 2001.
[92] Rob van Ommering, Frank van der Linden, Jeff Kramer, and
Jeff Magee. The koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, 2000.
[93] Open Source Initiative. http://www.opensource.org/, 2008.
[94] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis
Heimbigner, Greg Johnson, Nenad Medvidovic, Alex Quilici, David S.

ASUNCION AND TAYLOR: ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 33

Rosenblum, and Alexander L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.
[95] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.
Architecture-based runtime software evolution. In Proc of the 20th Int’l
Conference on Software Engineering (ICSE ’98), pages 177–186, Kyoto,
Japan, 1998.
[96] Kasper Osterbye and Uffe Kock Wiil. The flag taxonomy of
open hypermedia systems. In Proc of the 7th Conference on Hypertext and
Hypermedia, pages 129–39, Washington, DC, March 1996.
[97] Francisco A. C. Pinheiro and Joseph A. Goguen. An object-
oriented tool for tracing requirements. IEEE Software, 13(2):52–64, 1996.
[98] Klaus Pohl. PRO-ART: Enabling requirements pre-traceability.
In Proc of 2nd Int’l Conf on RE, Colorado Springs, 1996.
[99] Klaus Pohl. Process-Centered Requirements Engineering. John
Wiley & Sons, Inc., New York, NY, 1996.
[100] Klaus Pohl, Mathias Brandenburg, and Alexander Gülich. Inte-
grating requirement and architecture information: A scenario and meta-
model based approach. In Proc of the 7th Int’l Workshop on Requirements
Engineering: Foundation for Software Quality, pages 68–84, Interlaken,
Switzerland, June 2001.
[101] Klaus Pohl and Stephan Jacobs. Enabling traceability and mutu-
al understanding. Concurrent Engineering: Research and Applications,
2(4):279–90, 1994.
[102] Progress Software Corporation. XSLT Editor.
http://www.stylusstudio.com/, 2009.
[103] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards. Implement-
ing requirements traceability: A case study. In Proc of the 1995 Int’l Symp
on Requirements Engineering, York, 1995.
[104] Bala Ramesh and Matthias Jarke. Towards reference models for
requirements traceability. IEEE Transactions in Software Engineering,
27(1):58–93, 2001.
[105] Julian Richardson and Jeff Green. Automating traceability for
generated software artifacts. In Proc of the 19th Int’l Conf on Automated
Software Engineering, Linz, 2004.
[106] Till Schummer. Lost and found in software space. In 34th Annu-
al Hawaii Int’l Conference on System Sciences, 2001.
[107] Janice Singer, Robert Elves, and Margaret-Anne Storey.
Navtracks: Supporting navigation in software maintenance. In Proc of the
21st Int’l Conf on Software Maint, Budapest, 2005.
[108] Margaret E. Singleton. Automating Code and Documentation
Management. Prentice-Hall, Inc., Upper Saddle River, NJ, 1986.
[109] G. Spanoudakis, A. Zisman, E. Perez-Miñana, and P. Krause.
Rule-based generation of requirements traceability relations. Journal of
Systems and Software, 72(2):105–27, July 2004.
[110] George Spanoudakis and Andrea Zisman. Software Traceability:
A Roadmap, volume 3 of Handbook of Software Engineering and
Knowledge Engineering. World Scientific Publishing, 2005.
[111] John Spencer. Architecture description markup language (adml):
Creating an open market for it architecture tools. White Paper, The Open
Group, September 26 2000.
[112] R. C. Sugden and M. R. Strens. Strategies, tactics and methods
for handling change. In Proc of the IEEE Symposium and Workshop on
Engineering of Computer-Based Systems, Friedrichshafen, Germany, March
1996.
[113] SyncRO Soft Ltd. Oxygen XSL / XSLT editor.
http://www.oxygenxml.com/, 2009.
[114] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han.
A survey of the use and documentation of architecture design rationale. In
Proc of the 5th Working IEEE/IFIP Conference on Software Architecture,
pages 89–98, Pittsburgh, PA, 2005.
[115] R. N. Taylor, N. Medvidovic, and E.M. Dashofy. Software Ar-
chitecture: Foundations, Theory, and Practice. John Wiley & Sons, 2010.
[116] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. Au-
tomated software license analysis. Automated Software Engineering, 16(3-
4):455–490, 2009.
[117] Unity Technologies. End user license agreement.
http://unity3d.com/unity/unity-end-user-license-2.x.html, 2008.
[118] K. Ven and H. Mannaert. Challenges and strategies in the use of
Open Source Software by Independent Software Vendors. Information and
Software Technology, 50(9-10):991–1002, 2008.
[119] M. Vieira, M. Dias, and D.J. Richardson. Analyzing software
architectures based on statechart semantics. In Proc 21st Int’l Conference
on Software Engineering (ICSE 21), Limerick, Ireland, 2000.
[120] Antje von Knethen and Barbara Paech. A survey on tracing
approaches in practice and research. Tech Report IESE-Report Nr.

095.01/E, Fraunhofer Institut Experimentelles Software Engineering,
Fraunhofer Gesellschaft, 2002.
[121] Anke Weber, Holger M. Kienle, and Hausi A. Muller. Live
documents with contextual, data-driven information components. In Proc of
the 20th Annual Int’l Conference on Computer Documentation, 2002.
[122] Alan Wexelblat and Pattie Maes. Footprints: History-rich tools
for information foraging. In Proc of the SIGCHI Conf on Human Factors in
Computing Systems, Pittsburgh, 1999.
[123] Uffe K. Wiil and John J. Leggett. The hyperdisco approach to
open hypermedia systems. In Proc of the 7th Conference on Hypertext,
pages 140–148, Bethesda, MD, 1996.
[124] Lihua Xu, Scott A. Hendrickson, Eric Hettwer, Hadar Ziv, An-
dré van der Hoek, and Debra J. Richardson. Towards supporting the archi-
tecture design process through evaluation of design alternatives. In Proc of
the 2nd Int’l Workshop on the Role of Software Architecture in Testing and
Analysis (ROSATEA 2006), 2006.
[125] Xin Zhou, Zhenzhong Huo, Yaowen Huang, and Jian Xu. Facili-
tating software traceability understanding with ENVISION. In 32nd Int’l
Computer Software and Applications, pages 295–302, Turku, 2008.
[126] Lijie Zou, Michael W. Godfrey, and Ahmed E. Hassan. Detect-
ing interaction coupling from task interaction histories. In Proc of the 15th
Int’l Conference on Program Comprehension, 2007.

Hazeline U. Asuncion is an Assistant Professor at the Computing
and Software Systems Program, University of Washington, Bothell.
She was previously a Postdoctoral Researcher at the Institute for
Software Research at the University of California, Irvine. She has
worked in the industry in a variety of roles: as a software engineer at
Unisys Corporation, and as a traceability engineer at Wonderware
Corporation where she designed a successful in-house traceability
system. Her research emphasis is on software traceability. She has
also investigated the tracing of software license conflicts in hetero-
geneously composed software systems.

Richard N. Taylor is a Professor of Information and Computer Sci-
ences at the University of California at Irvine and Director of the
Institute for Software Research. He received the Ph.D. degree in
Computer Science from the University of Colorado at Boulder in
1980. His research interests are centered on design and software
architectures, especially event-based and peer-to-peer systems. He
was recognized as an ACM Fellow in 1998. In 2005 he was awarded
the ACM SIGSOFT Distinguished Service Award and in 2009 he was
recognized with the 2009 ACM SIGSOFT Outstanding Research
Award.

