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Abstract— Software traceability, is recognized for its utility in many development activities.  Achieving traceability in practice, 
however, is difficult because of the complex interaction between factors like high costs, heterogeneous artifacts and tools, and 
varied stakeholder interests.  Architecture-Centric Traceability for Stakeholders (ACTS) is a technical framework that considers 
the economic and social challenges to traceability.  This framework connects distributed and varied artifacts around concepts 
represented by the architecture, enables stakeholders to control the traceability capture via tool extensibility and customization, 
and prospectively captures links in the background as users perform their development tasks.  We discuss open hypermedia 
and rules as the supporting mechanisms of our framework.  We demonstrate the technical feasibility of our approach through a 
case study in software acquisition research and an exemplar implementation.  We also discuss means of increasing the 
practicability of our framework based on user feedback.  

Index Terms— Documentation, Hypertext/Hypermedia, Software Architectures, Software Traceability  

——————————      —————————— 

1 Introduction

oftware development is a complex process 
that rests upon creating, arranging, juxtaposing, 

analyzing, and transforming information artifacts. 
These myriad heterogeneous artifacts are interre-
lated in numerous ways.  Recognizing, maintain-
ing, and using these relationships is fundamental 
to development and subsequent system evolution.  
Too often, however, these relationships are only 
“maintained” in the minds of software engineers 
and eventually forgotten. The isolation of artifacts 
by tools, development teams, and geographic loca-
tions causes related information to drift apart, 
leading to obsolescence and inconsistencies be-
tween these information units.  Software traceabil-
ity aims to cross these barriers to explicitly con-
nect related information artifacts.  When success-
ful, software traceability facilitates system com-
prehension, impact analysis, system debugging, 
and communication between stakeholders [48, 
100, 76, 103, 105]. Not only does traceability sup-
port software development by making relevant 
artifacts accessible to all members of the devel-

opment team, but it also lowers the cost of soft-
ware maintenance [103] – at a minimum by speed-
ing up access to the information needed when 
making changes.  

Despite these benefits, the lack of effective 
traceability, which we call the traceability prob-
lem, is a long-standing shortcoming in software 
development [64]. Many approaches have proven 
infeasible in practice [9, 25, 110]. Manual tech-
niques for establishing and maintaining traceabil-
ity links are tedious and error-prone. Consequent-
ly, software engineers generally view traceability 
obligations as additional imposed work with no 
direct benefits [76]. In addition, automated tech-
niques often require human intervention [70]. 
Thus, high overhead remains an issue. 

We posit that these limitations stem from a nar-
row understanding of the traceability problem.  
Our survey of reported difficulties with traceabil-
ity reveals that many interacting factors hinder 
effective traceability, including high costs [76, 
104], complex interrelationships between artifacts 
[9, 13], heterogeneity of artifacts and tools [48, 
82], and varied stakeholder interests [64, 104, 
120].  These factors, which reflect economic, 
technical and social perspectives, must all be ad-
dressed to realize the benefits of traceability.   
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We recognize the complexity of the traceability 
problem, and thus, the purpose of this paper is to 
lay the technical foundations for building a highly 
customizable traceability tool that can integrate 
current techniques while considering the economic 
and social perspectives.  We demonstrate the 
technical feasibility of our approach through a 
case study in software acquisition research and an 
exemplar implementation.  We also provide user 
feedback regarding the usage of a tool built upon 
these foundations.  The contributions of our ap-
proach, Architecture-Centric Traceability for 
Stakeholders (ACTS) are as follows: 
 A means of connecting distributed and var-

ied artifacts by linking them to concepts rep-
resented by the architecture 

 The ability of stakeholders to control trace-
ability capture via tool extensibility and cus-
tomization features  

 The prospective capture of links in the 
background, as software engineers perform 
development tasks 

 The ability to automatically capture links to 
heterogeneously represented artifacts such 
as graphic files, presentation files, and vari-
ous media files 

 The decoupling of heuristics for capturing 
links from the underlying capture mecha-
nisms, facilitating the adaptability of the tool 
to different contexts. 

 

Our previous work discusses the similarities be-
tween traceability and data provenance in e-
Science and introduces possibilities for leveraging 
e-Science techniques in software engineering [26].   
Our more recent work, which combines ACTS 
with a machine learning technique known as topic 
modeling, demonstrates the feasibility of integrat-
ing existing information retrieval techniques with 
the ACTS framework [24].  While that work fo-
cuses on the semantic analysis and visualization of 
software artifacts within a traceability context, this 
work focuses on the core mechanisms of prospec-
tive traceability, which are open hypermedia tech-
niques and rules.   

The rest of the paper is organized as follows.  
The next section briefly analyzes the problem and 
presents current approaches.  Section 3 presents 
ACTS and the main elements of our framework.  
We demonstrate the technical feasibility of archi-

tecture-centric links in a case study of software 
acquisition research in Section 4.  We then 
demonstrate the technical feasibility of prospec-
tively capturing user customized links across het-
erogeneous artifacts through an exemplar imple-
mentation in Section 5.  Section 6 provides user 
feedback. We conclude with open research areas 
and future work. 

2 Problem Analysis & Existing Techniques 

Hindering factors to traceability stem from eco-
nomic, technical, and social perspectives.  An in-
terplay also occurs between these perspectives 
such that factors from one perspective affects or is 
affected by factors from another [25].    This sec-
tion presents our survey of these challenges and 
how current approaches address them [23]. 

2.1 ECONOMIC PERSPECTIVE 

The economic perspective focuses on the cost 
of supporting traceability. Capturing and main-
taining traceability links incurs high costs in terms 
of labor hours [7, 103, 76, 81], and high cost is 
one of the major hindering factors to traceability 
[54, 76].  A case study of a large government-
funded project reports that the costs of implement-
ing traceability is more than double the normal 
documentation costs [103]. Some practitioners 
argue that time spent in traceability tasks could 
have been allocated to writing software code [28, 
36]. Even with companies that are willing to pay 
the high costs of traceability, the expected benefits 
are often not realized [112, 104]. Other sources of 
costs include increased documentation, purchase 
or development of a trace tool, and user training 
[25, 103]. 

To mitigate the cost, some approaches examine 
the tradeoffs between cost and quality [52] or be-
tween cost and benefit [53]. Regarding cost and 
quality tradeoff, one can attempt to reduce the lev-
el of granularity of traces in order to save costs 
while still maintaining an acceptable level of link 
quality [52]. For instance, it has been shown that 
tracing at the method source code level is more 
expensive than tracing at the class source code 
level even though there is usually not much differ-
ence in the quality of information obtained. 
Meanwhile, approaches that examine the cost-
benefit tradeoff concentrate on tracing only higher 
value links in order to minimize cost [53]. This 
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scheme may require a cost-benefit analysis for 
each project. A similar approach allocates more 
trace support to the crucial parts of the software 
system [40].  Another technique is to take a mini-
malist approach and only capture links that are 
important to a class of users, such as developers 
[36]. 

2.2 TECHNICAL PERSPECTIVE 

While the economic perspective examines the 
costs in supporting traceability, the technical per-
spective looks at the complexity of tracing due to 
the heterogeneity of artifacts, the heterogeneity of 
tools, the combinatorial explosion of the artifact 
space, and the continuous and independent evolu-
tion of artifacts.  

2.2.1 HETEROGENEITY OF ARTIFACTS 

The heterogeneity of artifacts is a factor that 
contributes to the traceability problem. Artifacts 
produced in the course of software development 
vary in their levels of formality, ranging from un-
structured documents to highly formal code. The 
differing formats and notations by which artifacts 
are expressed as well as the different levels of ab-
stractions represented by the artifacts present chal-
lenges to establishing traces across different arti-
fact types [69]. 

Approaches that address the heterogeneity of 
artifacts include natural language processing, two-
dimensional traceability, model transformation, 
and artifact translation. Natural language pro-
cessing techniques use language structure to de-
termine links between various text artifacts [27, 
32, 109]. Two-dimensional traceability enables 
tracing between information within an artifact 
(vertical traceability) and information across dif-
ferent types of artifacts (horizontal traceability) 
[82]. Another approach, model transformation, 
enables tracing design artifacts across different 
levels of abstraction. Transformations can vary in 
the level of automation. Fully automated trans-
formation use a transformation specification on a 
design artifact to produce a realization that is at a 
lower level of abstraction [10, 77, 89, 105]. Still 
another approach translates heterogeneous arti-
facts into a common format in a repository. Trace 
relationships between artifacts are automatically 
generated within the repository [13, 39].  These 
approaches are generally limited to text-based arti-
facts. 

2.2.2 HETEROGENEITY OF TOOLS 

Tracing software artifacts across different tools 
is also difficult due to the lack of interoperability 
between tools [48, 65, 103]. The separation of in-
formation by tools is known as the “islands of in-
formation” problem [13]. Changing the artifacts 
outside a trace tool does not guarantee that the ar-
tifacts inside the trace tool are updated [48, 39]. 
The lack of interoperability between different 
tools necessitates redundant data entry [20] which 
adds to the overhead of reconciling data [13]. 

One way to address tool heterogeneity is 
through the use of a shared repository and special-
ized code. For instance, different tools can ex-
change data via a shared repository [25].  The 
tools communicate with the shared repository via 
customized code. This approach avoids the prob-
lem of redundant data entry since artifact changes 
are always reflected in a shared data repository. A 
similar approach is to use a shared data model and 
a communication channel where the subscribed 
tools, such as a browser and an IDE, listen for 
published updates to the data model [63]. When a 
matching criterion is found between the code in 
the IDE and the resource on the browser, the tool 
prompts the user whether to link the visited re-
source to the source code. 

Another approach is to use a shared repository 
with tool monitors and pre-defined heuristics [42]. 
The shared repository stores the metadata of new-
ly generated or modified artifacts. Tool monitors, 
invoked by an Update Module, track any changed 
artifacts from various sources (e.g. Bugzilla, CVS, 
mailing list archive) and updates the shared re-
pository. Links are generated by indexing the arti-
facts and applying pre-defined heuristics within 
the tool. These techniques, however, do not have 
extensible mechanisms by which users can inte-
grate their own tools into the traceability environ-
ment. 

Another way to tackle tool heterogeneity is 
through the use of open hypermedia concepts. 
Open hypermedia adapters can be used to manual-
ly create links across tools boundaries [15].  Later 
in the paper, we will show how we build upon 
open hypermedia concepts to automatically cap-
ture trace links. 



4  

 

2.2.3 EXPLOSION OF THE ARTIFACT SPACE 

Tracing across various artifacts in a software 
development lifecycle is difficult due to the sheer 
number of artifacts and the complex relationships 
between these artifacts [13]. Capturing an insuffi-
cient number of trace links can have negative ef-
fects such as lower system quality and increased 
project costs and time [37, 100]. On the other 
hand, capturing too many traces is unwanted. Ex-
cessive traceability is known to be unmanageable 
[37, 48] and can negatively impact the accuracy of 
links [52]. Thus, it is important to know the 
boundary between adequate and excessive tracing.  

There are different ways of bounding the prob-
lem space of artifacts and artifact-relationships. 
The agile community advocates a lean traceability 
approach where only relevant traces to the devel-
opers are captured [36]. The selection of specific 
artifacts to trace can also be based on the project 
manager’s discretion or the information gleaned 
from past projects [48]. These approaches require 
a basic understanding of the system or previous 
experience.   

Another approach is recovering candidate trace 
links automatically through information retrieval 
(IR) techniques. To date, trace recovery tech-
niques have not been able to provide fully accu-
rate links [39, 68]. Captured traces may only be as 
accurate as the user input [52]. One requirement of 
these techniques is artifact preprocessing [35]. 
Even with sophisticated IR techniques, it is diffi-
cult to achieve high recall and precision rates, 
where recall is defined as the percentage of re-
trieved links out of all relevant links and precision 
is the percentage of correct links out of the re-
trieved links [36]. 

2.2.4 MAINTENANCE OF TRACEABILITY LINKS 

Maintaining trace links is also challenging. 
Links quickly deteriorate because artifacts change 
continuously and independently and the changes 
are not reflected in the related artifacts [62].  For 
example, changing a requirement necessitates the 
update of all the corresponding links and related 
artifacts. Without a systematic update approach, 
the cost of maintaining traceability can be very 
high. There is also no guarantee that all the im-
pacted links are updated.  

Techniques to maintain trace links include pro-
cesses to control artifact changes. Artifact changes 

can be controlled by establishing a development 
process to disallow software engineers from di-
rectly changing artifacts. One such technique re-
quires changes to be approved by a review board 
[108]. Since this process imposes high overhead, 
only high visibility documents go through review 
boards. Another technique is providing a down-
stream development team a process whereby they 
can control changes to the requirements made by 
an upstream functional development team [20].  

Changes can also be automatically cascaded be-
tween tools or artifacts [25, 37, 1, 121]. For in-
stance, Rational RequisitePro automatically up-
dates its data when the related Word documents 
change [1]. Embedding information objects, which 
are automatically updated, into various documents 
is another means of cascading changes across dif-
ferent artifacts [121].  Moreover, artifact changes 
can be cascaded through event-based traceability 
(EBT).  EBT uses a publish-subscribe mechanism 
to relate various artifacts to the requirements arti-
fact [37]. Thus, when a requirements artifact 
changes, the subscribed artifacts are notified. This 
approach requires a manual registration of arti-
facts with the requirements artifact. 

Still another approach is to manage the relation-
ships of all artifact types within a tool so that 
changes can automatically be reflected in the links 
[97]. This requires a pre-specification of the arti-
fact types and their relationships. 

2.3 SOCIAL PERSPECTIVE 

The social perspective is equally important, 
since it focuses on the interaction of stakeholders 
with traceability, such as differing expectations, 
low motivation, and lack of artifact visibility. It is 
recognized that people play a crucial part in de-
termining the quality of traceability links [20, 68, 
70].  

2.3.1 DIFFERENT EXPECTATIONS OF TRACEABILITY TOOL 

Implementing software traceability is difficult 
since traceability has different meanings to differ-
ent people [65]. Consequently, stakeholders have 
different expectations of a trace tool [103]. For 
instance, a maintenance engineer expects support 
for impact analysis while a project manager ex-
pects support for tracking project status. One way 
to address different stakeholder expectations is by 
identifying the key users of a trace tool and devel-
oping custom in-house extensions to existing trace 
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tools [104] or developing custom trace tools for an 
organization [25]. 

2.3.2 LOW MOTIVATION FOR PERFORMING TRACEABILITY 
TASKS 

In general, software engineers have little or no 
motivation to perform traceability tasks [28, 76]. 
To them, traceability tasks are “laborious” [10] 
and “burdensome” [9]. In one study, half of the 
subjects who were commissioned to verify trace 
links dropped out because they “disliked” tracing 
[68]. There are several reasons for the low motiva-
tion of software engineers. One reason is that 
traceability tasks are additional imposed work 
with no direct benefits [20, 76], known as the 
Traceability Benefit Problem [20]. Other reasons 
include the lack of understanding of the usage of 
trace information and the lack of first-hand 
knowledge of the artifacts [20]. 

One way to address the low motivation for per-
forming traceability tasks is by coupling traceabil-
ity tasks with the development process [60, 99] or 
with traceability usage [20].  This approach may 
require high overhead in setting up the process 
capture to automatically determine trace links [60, 
99]. Another method is to use trace information to 
support stakeholders in their development tasks 
[22, 25] thereby providing direct benefits to them. 

2.3.3 LACK OF ARTIFACT VISIBILITY 

Traceability across artifacts owned by different 
groups is difficult due to the lack of visibility of 
artifacts to those outside the groups. For example, 
the lack of visibility to the requirements’ sources, 
which could be distributed among multiple 
groups, has been the most frequently cited prob-
lem by practitioners [65]. In addition, distributing 
the ownership of requirements among different 
groups makes it difficult to trace the dependency 
relationships among the requirements [104]. Lack 
of communication between groups is one of the 
factors that contribute to the lack of accessibility 
of artifacts [65].  

Approaches that address the lack of visibility to 
artifacts include negotiating changes to upstream 
artifacts and publishing artifacts to a portal. En-
couraging teams to negotiate the changes to up-
stream artifacts like requirements enhances com-
munication between groups and increases the ac-
cessibility of artifacts [20]. Publishing artifacts to 

a portal raises the visibility and accessibility of 
artifacts to other groups [25]. 

2.4 PERSPECTIVES INTERPLAY 

The economic, technical, and social perspec-
tives are highly intertwined. A factor in one per-
spective affects factors in others (see Figure 1). 
We provide some examples of the interplay be-
tween the different perspectives and explain why 
focusing on one perspective falls short of address-
ing the traceability problem.  

There is a bidirectional relationship between the 
economic and technical perspectives. The eco-
nomic perspective is a major factor in determining 
whether a traceability approach will be adopted by 
an organization [25]. The cost of establishing and 
maintaining trace links affects the number of arti-
fact and the relationship types that will be traced 
by an organization. Since fine-grained tracing is 
more costly [29, 20], the economic perspective 
also determines the level of granularity that an or-
ganization is willing to trace. The technical per-
spective also affects the economic perspective. 
The level of tool support in establishing or defin-
ing traceability links heavily determines the cost 
of tracing [82]. The lack of interoperability be-
tween tools also contributes to the high cost of 
traceability since this necessitates redundant data 
entry and manual reconciliation [108, 13, 25, 103].  
Moreover, there is a tension between capturing all 
possibly relevant links to ensure that no loss of 
knowledge occurs [48, 104] and taking a minimal-
ist approach in trace capture [36] to lower the cost. 
There are currently no cost-benefit models that 
can guide organizations in selecting the types of 
artifacts, the level of granularity, and the types of 
relationships to trace [69]. 

A bidirectional interaction between the social 
and technical perspectives also exists. For in-
stance, due to the low motivation of software en-
gineers in performing traceability tasks, the cap-
tured traces were deemed to be unusable in one 
reported case study [20]. In addition, users have 
differing expectations [65], making it difficult to 
use an off-the-shelf trace tool without customiza-
tion. The technical perspective affects the social 
perspective as well. If a trace tool supports the de-
velopment activities of stakeholders, it is more 
likely to be adopted [25, 90]. 
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Similarly, interactions occur between the eco-
nomic and the social perspectives. Due to the high 
costs required in performing traceability tasks, 
most software engineers have an aversion toward 
traceability [76, 68]. The high startup and mainte-
nance cost of the manual approaches is also one of 
the common complaints of developers [28]. Fur-
thermore, lack of accessibility of artifacts between 
groups can make tracing across groups more cost-
ly since more time is spent locating artifacts. 

There is also interplay between the three per-
spectives. One example of this interplay is the au-
tomation of trace link generation (see Figure 1). 
To mitigate the costs, information retrieval meth-
ods can be used to provide automated support for 
traceability [84, 17, 39, 71], at the risk of poten-
tially establishing inaccurate links. To compensate 
for this technical shortcoming, human involve-
ment becomes necessary.  The generated candi-
date links must be post-processed by a human ana-
lyst [68, 39].  However, the economic difficulty of 
cost shows up again if the IR technique produces 
very large numbers of candidate links to be manu-
ally analyzed [81]. 

Another example of the interplay between the 
three perspectives is in the heterogeneous nature 
of the artifacts. Because it is difficult to automate 
data conversion between heterogeneous artifacts 
[112], these artifacts tend to be linked manually. 
Manual linking is a human intensive effort that is 
often viewed by developers as a burden. Thus, the 
technical difficulty of linking heterogeneous arti-
facts results to added economic overhead. This in 
turn then leads to developers’ aversion to tracing, 
a social issue [28]. 

3 Technical Foundation for Adaptable Trace-
ability: ACTS 

To begin to address the multi-faceted traceabil-
ity problem, we present Architecture-Centric 
Traceability for Stakeholders (ACTS), a technical 
framework that considers both the economic and 
social perspectives.  The key elements of ACTS 
are centering links to the architecture, enabling 
stakeholders to control the link capture and usage, 
and capturing links prospectively.  We detail how 
traceability link capture is enhanced by exploiting 
the information stored in the architecture as well 
as exploiting the stakeholder knowledge in how 
artifacts are related.  ACTS is also undergirded by 

the supporting mechanisms of open hypermedia 
and rules. 

3.1 ARCHITECTURE-CENTRIC TRACEABILITY 

The first element of our approach, architecture-
centric traceability, links all the artifacts to the ar-
chitecture.  Previous approaches have suggested 
centering links to the requirements [70] or to the 
code [52].  While there are advantages and disad-
vantages to both models, we posit that architec-
ture-centric traceability provide advantages that 

are lacking in these previous model, and is worth 
one’s consideration.  To aid the reader, we first 
provide a brief background on software architec-
ture research and recent advances in the field that 
support some of software traceability goals.  We 
then move to discuss the rationale for using the 
model, how current approaches fall short of sup-
porting architecture-centric traceability, and final-
ly discuss contexts where the model may be less 
relevant. 

3.1.1 BACKGROUND IN SOFTWARE ARCHITECTURE RESEARCH 

While techniques have been proposed to cap-
ture links to the architecture, grounding all the 
links in the architecture is a novel concept, and 
one that proceeds from architecture-centric devel-
opment [115].  Architecture-centric software en-
gineering [31, 59, 67] conceptualizes software de-
velopment activities with the system’s architecture 
as a central focal point. We define software archi-
tecture broadly, as the set of principal design deci-
sions about a software system [115]. This defini-
tion implies that every software system has an ar-
chitecture—some set of design decisions that were 
made in its development. Principal design deci-
sions can be expressed as the system’s structure, 
functional behavior, interaction, and non-
functional properties; this paper focuses on deci-

 
 
Fig 1: An example of an interplay between hindering factors from 

the three perspectives 
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sions as expressed in the system’s structure, e.g., 
the architectural style, the functional units, the 
mode of communication between the functional 
units, and the configuration of these units. These 
principal design decisions, as represented by the 
system’s structure, provide product-based con-
cepts by which traceability can be reliably an-
chored and supported. 

Software architecture and architecture-based 
evolution research has provided techniques in 
modeling and analyzing software as well as in de-
veloping and evolving the code.  Architecture de-
scription languages (ADLs) [85] have been used 
to model and analyze the software structure, be-
havior, distribution, and concurrency. Most of the-
se approaches focused on discrete units of compu-
tation (components), discrete units of communica-
tion (connectors) and the arrangements of these 
units (configurations).  Recent work in software 
architecture [30, 56, 92] resulted in extensible and 
modular ADLs and toolsets (e.g. Acme [58], 
ADML [111], and xADL 2.0 [44]). We use xADL 
which has mature tool support with respect to ex-
tensibility.   We posit that centering links on the 
software architecture strikes a balance between 
rigor, formality, and level of abstraction.  ADLs 
tend to have more rigorous syntax than most re-
quirements capture languages (including natural 
languages) and are easily tied to other concrete 
artifacts such as components, connectors, their 
implementations, test cases, and so on. Thus, ver-
sionable architectural models are a plausible, sta-
ble form upon which to anchor traceability links. 
Extensible ADLs, moreover, can be expanded to 
capture stakeholder concerns such as modeling 
security, distributed systems, and product lines 
[43].   

3.1.2 RATIONALE FOR ARCHITECTURE-CENTRIC TRACEABILITY 

This section discusses the insights for centering 
links to the architecture. 

Insight #1: There is an inherent relationship be-
tween the architecture and other artifacts in soft-
ware development.  The architecture, as represent-
ed by the system’s structure, provides a central 
‘hub’ through which artifacts can be coordinated 
(see Figure 2).   Architectural models of the sys-
tem’s structure serve as a direct basis for activities 
such as implementation and testing, as well as fu-
ture evolution of the system. Similarly, the archi-

tecture can serve as the primary connection of the 
software product to its requirements (if they exist), 
identifying and documenting the design decisions 
that are responsible for realizing those require-
ments. Thus, design decisions represented by the 
architecture, impacts, or is impacted by, all other 
development activities.  We now discuss these re-
lationships in detail. 

 
First, there is a direct relationship between re-

quirements and architecture.  Nuseibeh‘s Twin 
Peaks Model indicates that architecture plays an 
important role in the development and refinement 
of requirements [91]. In fact, Nuseibeh suggests 
that the concurrent development and evolution of 
both requirements and architecture, as observed in 
most software industry projects, is an effective 
means of developing software systems quickly.  
Taylor et. al. goes further in stating that the archi-
tecture provides the language whereby user needs 
can be concretely expressed in the requirements 
[115].  Moreover, software architectures have also 
been used to address non-functional requirements 
early in the software development lifecycle [115, 
124].  

Software architecture has also been used to as-
sist developing and evolving implementations [16, 
34, 95, 94] with tool support.  The architecture 
serves to guide the implementation activity, ensur-
ing that all design decisions are transferred to the 
code [115]. Research in software architecture has 
made strides in strengthening the relationship be-
tween the architecture and code [8, 45] through 
the use of architectural styles, frameworks, explic-
it implementation mappings, and code generation 
[115]. All these approaches provide an easy basis 
for establishing links, either generative or explicit, 
between architecture and implementation.   

Not only does the architecture influence both 
the requirements and code, but it also has ties to 
test artifacts. Architecture-based testing enables a 

 

 
Fig 2: Relationship of Software Architecture with other artifacts 
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system to be partially tested before it is actually 
implemented in the code [75, 124], allowing for 
the detection of errors early in the software lifecy-
cle. Then as development progresses, architecture-
based testing is extended to test the source code 
[119]. Given this influence that the architecture 
exerts on other artifacts, centering traceability 
links on the architecture certainly seems to be a 
reasonable choice. 

Insight #2: The architecture itself contains in-
formation that aids in understanding the system 
and its related artifacts.  The software architecture 
provides a comprehensive view of the system, en-
abling engineers to better understand the system in 
its entirety as well as in its individual computa-
tional units.  Indeed, in large complex software 
systems, such as the Web, the software architec-
ture is the only adequate guide to understanding 
the whole system [115].  Understanding this inter-
connection is particularly important in systems 
composed of heterogeneous subsystems such as 
legacy systems, open source software, and in-
house proprietary software.  In these types of sys-
tems where components may be black boxes, 
code-centric traceability no longer becomes a via-
ble option.  Finally, a better understanding of the 
entire system helps in identifying how an artifact 
may be related to the system. 

Understanding the entire system also aids in 
understanding the traceability links across differ-
ent system versions and across software product 
lines [72].  Links centered on the architecture can 
be updated to reflect system evolution.  In addi-
tion, it is also more intuitive to trace links to the 
architecture when capturing links across product 
lines.  Product line architectures (PLAs) have been 
the predominant means of evolving a product line 
and its individual products [72].  PLAs use well-
understood constructs such as core, optional, and 
variant elements that aid in understanding the 
links to artifacts and which place the understand-
ing of the artifact within the context of a product 
line.   

In addition, the architecture contains the inter-
connections of the system, or its configuration, 
which can be used to infer links between other ar-
tifacts.  For instance, a hierarchical structure in an 
architecture, as represented by a component con-
taining subcomponents, may also indicate a hier-
archical relationship between artifacts linked to 

the parent component and artifacts linked to the 
subcomponent.  Similarly artifact links to directly 
connected components may imply relationships 
between those artifacts as well. 

Insight #3: Architecture-centric traceability en-
ables more efficient linking of select concepts as 
compared to requirements-centric or code-centric 
approaches.    

The architecture has a well-defined structure: 
units of computation (or units of functionality), 
units of communication, and the composition of 
these units as a system.  The architecture itself, if 
properly designed, has clearly defined non-
overlapping concepts that are represented by these 
individual architectural units.  Relating artifacts to 
these concepts simply means creating links be-
tween an artifact and an element or group of ele-
ments in the architecture.  For example, individual 
requirements can be directly linked to the compo-
nent or components in an architecture. 

Meanwhile, these concepts are not immediately 
apparent in the requirements document.  Concepts 
of functionality may be stated at a high level with 
vague notions of how they may be realized.  In-
deed, concepts of computation or communication 
may not actually be clearly stated since the re-
quirements document usually concern itself with 
concepts in the problem space and not the solution 
space, as the architecture does. 

Code-centric traceability also presents chal-
lenges.  While the concepts of computation and 
communication are present in code, it is often dif-
ficult to identify these higher level conceptual 
boundaries at the code level.  Thus, it is easy to 
capture more links than are necessary [52]. 

3.1.3 STATE OF THE ART IN LINKING TO THE ARCHITECTURE 

Techniques have been proposed to capture links 
to the architecture. For example, design rationale 
techniques link the design to the rationale to sup-
port reflection, communication among stakehold-
ers, and analysis of past decisions [74]. There are 
numerous approaches and tools [80, 83, 33] for 
capturing and managing design rationale, but these 
are difficult to implement in practice [74, 114].  
Another technique is use of model driven devel-
opment (MDD) techniques to capture links across 
different design models.  This approach tends to 
be limited to linking between two adjacent arti-
facts—the source and the target models [77].  
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Meanwhile, any artifact may be linked to the 
architecture regardless of its representation or lev-
el of formality. In addition, since the architecture 
can be modeled at different levels of abstraction, 
linking at these different levels of abstraction is 
also supported. Finally, artifacts may be linked to 
the architecture at any stage of its development, 
regardless of whether it is complete or not. As a 
result, a flexible traceability scheme can be adopt-
ed by centering links on the architecture. 

3.1.4 LIMITATIONS OF ARCHITECTURE-CENTRIC LINKS 

While architecture-centric links provide ad-
vantages that are not provided by requirements-
centric or code-centric traceability, there are in-
stances when the architecture-centric model is not 
applicable.  For instance, it might be necessary to 
capture links between a pre-defined set of arti-
facts, such as between requirements and test cases.  
There are also cases when links must be captured 
early in the software development lifecycle, while 
the problem domain is still being studied by the 
development team and the architecture has not 
been created.  In addition, systems may not have a 
documented architecture and it may be too expen-
sive or infeasible to recover an accurate system 
architecture. In these cases a placeholder, or “null” 
architectural model could be used until such time 
as a substantive model is developed. 

3.2 STAKEHOLDER-DRIVEN TRACEABILITY 

The second key element is empowering stake-
holders to both capture and use the traceability 
links they capture, which we call stakeholder-
driven traceability.  Oftentimes, the stakeholder 
who captures the links is not the same as the 
stakeholder who uses the links.  We believe, how-
ever, that it is imperative for stakeholders who 
captured the links to also be able to use the links.  
We define stakeholders as individuals who are in-
volved in traceability tasks or who have a vested 
interest in capturing relationships between soft-
ware artifacts.  This section provides a brief back-
ground to the role of humans in traceability, the 
rationale for tool-supported stakeholder-driven 
traceability, current tool support for stakeholder-
driven traceability, and contexts where the model 
is less relevant. 

3.2.1 BACKGROUND IN THE ROLE OF HUMANS IN TRACEABILITY 

As mentioned earlier, researchers recognize that 
humans play a critical role in the adoption and 
success of a traceability approach [70, 25, 103, 
20].  Stakeholder-driven traceability is not a new 
idea [20, 90, 25], but it has generally been con-
strained by limited tool support [120].    This sec-
tion examines the human perception of traceability 
and contexts where traceability has been imple-
mented with some measure of success.   

Despite the acknowledged need for traceability 
[62, 55], many practitioners have an aversion to 
traceability [10, 9].  There are several reasons.  To 
many software engineers, traceability means man-
ually creating traceability links which quickly de-
teriorate and becomes unusable [62].  Even with 
some automated support, traceability to some is a 
laborious, time-consuming task of identifying the 
correct links among the candidate links [70].  Still 
others view traceability as redundant data entry 
across different tools [25, 20].  Others, however, 
may want to capture traceability links to support 
their development tasks, but are unable due to the 
lack of adequate tool support [120].  

There are a few instances where stakeholders 
adopted a traceability strategy with some level of 
success [21, 90, 25].  In one small development 
group, traceability links helped the engineers to 
coordinate and control changes to requirements 
and to identify which artifacts could be reused 
[21].  In another setting, developers used traceabil-
ity links to increase program comprehension, to 
avoid architectural erosion, and to support change 
impact analysis [90].  Still in another setting, 
software engineers created traceability links to 
track project status, to support requirements analy-
sis and to support high-level design [25].  A com-
mon thread that runs across these different con-
texts is that the stakeholders chose the artifacts to 
link and they used the captured links to support 
their software development tasks. 

3.2.2 RATIONALE FOR TOOL-SUPPORTED STAKEHOLDER-
DRIVEN TRACEABILITY 

Based on this observation, we conclude that an 
effective traceability scheme should provide tool 
support to enable stakeholders to control the cap-
ture of traceability links and to use the captured 
links to support their software development tasks.  
We discuss the implications for providing tool 
support for stakeholder-driven traceability.  
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Insight #1: An effective traceability tool must 
cater to varied stakeholder interests in capturing 
traceability links.  Traceability has different con-
notations to different stakeholders [64].  Even 
within a given project, stakeholder interests in 
traceability vary [103, 25].   This variability oc-
curs in the types of artifacts stakeholders are inter-
ested in linking, and in how links are related. 

First, stakeholders are interested in capturing 
links to different types of artifacts.  For instance, 
an architect may be interested in linking design 
rationale and requirements to design, while a QA 
engineer may be interested in linking test cases to 
requirements.  Different stakeholders may also be 
interested in linking to artifacts at different levels 
of granularity [69].  Thus, tool support for link 
capture must be flexible enough to enable stake-
holders to link to different artifacts and to differ-
ent levels of granularity.  This capability can be 
supported with open hypermedia techniques as 
discussed in Section 3.4. 

Secondly, variability exists in how links are re-
lated.  We believe that stakeholders who are inter-
ested in capturing link are the experts on the links 
they capture.  They are familiar with the artifacts 
they trace and they have a purpose for capturing 
the links.  It follows then that the usefulness of a 
link is highly dependent on the stakeholder and 
the purpose of the link.  A highly relevant link for 
one class of users may be irrelevant for another.   

Supporting the knowledgeable capture of links 
has implications for the automated tool support.  
The tool must enable stakeholders to plug-in their 
own heuristics and their knowledge of how arti-
facts are related.  This can be implemented with 
rules (see Section 3.5). 

Insight #2: An effective traceability tool must 
enable stakeholders to use the links they capture.  
The ability to use the links depends on support for 
access to captured links, for analyzing captured 
links, and for maintaining traceability links.   

First, in order for the links to be usable, it must 
be easy to access the captured links.  Access en-
tails rendering linked artifacts in their native edi-
tors or in a user selected editor if the artifact can 
be rendered in multiple editors.  It may also entail 
rendering a specific location within the artifact 
such as a page, slide, or worksheet.  Tool support 
for navigation must enable the user to specify the 

tools and the level of granularity to render a linked 
artifact (see Sections 3.4.2 and 5.2.2.3) 

 Secondly, support for link analysis is necessary 
to help stakeholders accomplish development 
tasks.  Support for link analysis includes identify-
ing correct or incorrect links and extracting perti-
nent linked information.  Link analysis may also 
entail querying and manipulating linked infor-
mation to help stakeholders identify additional 
tasks to complete [25].  Link analysis may be sup-
ported with a visualization wherein the link 
metadata is displayed.  Extracted linked infor-
mation may also be visually depicted on top of the 
architecture graph (see Section 5.2.2.5). 

Third, in order for the links to be usable, links 
must be updateable and maintainable.  Support for 
link maintenance enables stakeholders to identify 
which links have deteriorated without navigating 
the link and manually examining the artifact.  
More advanced tool support will update the link 
location if the artifact was moved to a different 
location.  This can be supported with notification 
adapters (see Section 3.4.2 and 5.2.2.4).   

3.2.3 STATE OF THE ART IN SUPPORTING STAKEHOLDER-DRIVEN 
TRACEABILITY 

Despite the advantages of providing tool sup-
port for controlling trace link capture and using 
captured links, current tools and techniques fall 
short of providing these capabilities. Off-the-shelf 
tools are generally inflexible in providing user 
customization [104]. Limited success has been 
demonstrated when a tool provides some level of 
extension mechanism [9]. Current traceability 
techniques do not provide mechanisms for user 
customizations [109, 70, 42]. Consequently, some 
organizations resort to building a custom in-house 
traceability tool in order to cater to specific stake-
holder requirements for link capture and usage 
[25, 90]. While techniques exist for providing pro-
ject-specific customization [48] and for providing 
direct benefit to users [90, 101], these approaches 
fall short of providing customized tool support for 
stakeholder-driven traceability. 

Visualization of traceability links aids in ana-
lyzing captured links. ENVISION presents trace 
links as a hyperbolic tree to enable users to focus 
on one link endpoint, represented as a node, at a 
time while viewing all the linked artifacts in the 
background [125]. The tool also supports viewing 
transitive links, filtering and searching, recording 
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user navigation across the hyperbolic tree, and 
adding links within the visualization. TraVis ena-
bles the visualization of information from collabo-
rative software development platforms (CSDPs) to 
display heterogeneous information unified by the 
CSDP (e.g. documents, code, Wiki pages, tracker 
items) [46]. TraVis extracts the information from 
CSDP using remote APIs or Web interfaces. Both 
Envision and TraVis present linked information as 
graphs of links that can be filtered or searched 

Visualization techniques have also been used to 
determine the quality of candidate links. Duan us-
es cluster-based techniques to group trace results 
that are presented to the user [50]. Meanwhile, 
VisMatrix graphically represents the level of con-
fidence of candidate links in a traceability matrix 
[49]. Other visualization techniques include tag 
clouds to graphically display the frequency of 
terms and a tree structure to represent the hierar-
chical structure in a requirements document [38].  

While these visualization techniques are useful 
in analyzing captured links, these techniques do 
not take the extra step of extracting linked infor-
mation and aggregating this information around 
the architecture.  Presenting the links as a mashup 
on top of the architecture graph can provide a 
global view of the system and the linked infor-
mation.   

3.2.4. RELEVANCE OF STAKEHOLDER-DRIVEN TRACEABILITY 

In some settings, organizational interests in 
traceability are not aligned with and take prece-
dence over stakeholder interests.  In these con-
texts, project-specific customizations may be suf-
ficient [48]. 

3.3 CAPTURING LINKS PROSPECTIVELY 

The third key element is the prospective capture 
of traceability links which captures links in situ 
while artifacts are generated or edited.  This is 
complementary to retrospective techniques which 
recover links after the fact [17, 70]. Empirical evi-
dence from computer-human interaction and pro-
gram comprehension research communities reveal 
that links captured in this manner are often useful 
[107, 122].  In this section, we provide a brief 
background on prospective link capture, the ra-
tionale for using prospective link capture, the cur-
rent state of the art in the automated link capture, 
and the relevance of the technique. 

3.3.1 BACKGROUND TO PROSPECTIVE LINK CAPTURE 

The online capture of links can ensure that im-
portant information is not neglected or overlooked 
due to lack of resources or time [120].  The idea of 
prospectively capturing links is not new, but it was 
not until recently that prospectively capturing 
links has become a feasible technique [77, 97, 98].   

One way to prospectively capture links is 
through the recording of user interaction with arti-
facts.  Other research areas have studied the rec-
orded user interaction to raise awareness and to 
support program comprehension (PC).  For in-
stance, computer human interaction and computer-
supported cooperative work employ user interac-
tion to raise awareness [73, 106, 122]. Recently, 
the PC community has studied the capture of user 
interaction to aid in program comprehension: us-
ing a team’s interaction with the code to create 
links between source code files [47], using a de-
veloper’s navigation patterns between an IDE and 
a browser to create links between code and docu-
mentation [63], and using navigation patterns in 
the code to create links between tasks and source 
code [79, 126]. The recording of user interaction 
in these different research areas suggests that this 
is a viable approach to capturing links between 
artifacts. While PC techniques have focused on 
user interaction with the artifacts represented as 
text, namely source code, links can also be created 
across heterogeneously represented artifacts, as 
we demonstrate with our exemplar implementa-
tion in Section 5. 

3.3.2 INTELLIGENT CAPTURE OR JUST NOISE? 

This section elaborates on the rationale for the 
prospective capture of links. 

Insight #1: Prospectively capturing links, via 
recording user actions, provides a vehicle for 
knowledgeable capture of links.  The prospective 
approach has advantages over existing techniques. 
It can capture contextual information and temporal 
relationships between artifacts which can provide 
information on how the artifacts are related (see 
“Add relationship” rules in Section 3.5).  For ex-
ample, accessing a requirements document while a 
component is selected in a design diagram may 
indicate that the requirements document is related 
to the component.  

In addition, we posit that the user interaction 
record is a reflection, albeit perhaps at a low level, 
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of the developer’s understanding of how artifacts 
are related.  A developer’s navigation path reveals 
a developer's mental model of the system [107].  
We posit that stakeholders who generate or edit 
artifacts also have a mental model of the relation-
ship(s) that exist between these artifacts.  Prospec-
tive link capture exploits the developer’s first-
hand knowledge of the artifacts in the determina-
tion of related information.  This contrasts with a 
third party analyst tasked with a traceability activi-
ty of going through a list of candidate links to arti-
facts and potentially  misclassifying correct links 
as incorrect and vice versa [71, 68].  Thus, the tool 
must be able to monitor user actions across the 
tools that are integrated into the traceability sys-
tem. 

Insight #2: Prospective link capture can be 
supported by mechanisms that minimize noise.  
Noise — the bane of automated capture — can be 
minimized through directed link capture where 
only a small subset of user actions will be cap-
tured.  First, link capture can be directed by the 
user’s explicit action to start recording.  Secondly, 
during a recording session, only user’s actions on 
the set of tools with recording adapters will be 
captured.  Third, the recording adapter can also be 
implemented such that it only detects specific user 
actions or events, such as “open file” or “visit a 
hyperlink” (see Section 3.4.2).  Finally, rules can 
be used to determine valid links before they are 
added to the linkbase (see Section 3.5.2). 

Insight #3: Prospective link capture is integrat-
ed with software development tasks.  Literature 
has shown that it is important to integrate tracea-
bility tasks with software development tasks in 
order to ensure that links are captured even during 
tight project deadlines [120].  Since links are cre-
ated in the background across different tools, pro-
spective link capture can be integrated with soft-
ware development tasks.  Prospective link capture 
also does not require drastic changes to existing 
work practices.   

Insight #4: Prospectively link capture is com-
plementary to other techniques.  Prospective link 
capture can also be integrated with other tech-
niques, such as retrospective and manual capture, 
to produce higher quality links. Since link accura-
cy in prospective link capture depends on user 
knowledge of the system, using retrospective 
techniques can inform the user of possible rela-

tionships with other artifacts. (See Section 5.2.2.2 
for a discussion of our implementation.) 

3.3.3 STATE OF THE ART IN LINK CAPTURE 

Retrospective capture. A prevailing technique 
in automatically generating links is retrospectively 
capturing links.  Latent Semantic Indexing is a 
technique used to cluster related documents [84]. 
Data mining techniques are also used to automati-
cally create trace links between files that are 
checked-in or checked-out together in a configura-
tion management system [78]. In addition, Lean-
Art uses machine learning techniques  to learn 
from users’ manually created links on a small set 
of artifacts.  This linked set of artifacts serves as a 
training set for LeanArt to increase the accuracy 
of captured links [66].  These techniques, howev-
er, fall short of capturing the actual context where-
in the artifacts were manipulated. Our approach, 
besides being contextual, can be easily integrated 
with these retrospective techniques to arrive at po-
tentially much higher quality links (see Integrated 
Search Tools in Section 5.2.2.2). 

Transformations. Another set of techniques is 
generating trace links based on transformations or 
translations between artifacts.  ATRIUM trans-
forms models from requirements to architecture 
and generates links during the transformation [89].  
Richardson and Green use a similar technique to 
ATRIUM in that links are generated from the pro-
gram specification to the synthesized code [105].  
Jouault enables user specification of trace links to 
be created separately from the logic of artifact 
transformation [77].  While these techniques also 
enable the capture of trace links as a side-effect to 
development tasks (links are captured during arti-
fact transformation), transformation is only possi-
ble across structured or semi-structured artifacts 
through the use of metamodels.  In contrast, our 
technique is not limited to tracing structured arti-
facts.  Translators may also be used to translate 
heterogeneous artifacts into a homogeneous form 
where the links can be automatically generated 
[13].  Translators like InfiniTé enable the user to 
continue working with their current toolsets.  
However, not all artifacts can be translated to a 
common form, such as graphics and media files.  

3.3.4. RELEVANCE OF PROSPECTIVE LINK CAPTURE 

Prospective link capture may be less applicable 
in contexts where failure to capture some correct 
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links (false negatives) has negative consequences.  
The richness of captured links is highly dependent 
on user interaction with artifacts.  This drawback 
can be mitigated by incorporating other techniques 
such as search tools (see Section 5.2.2.2) 

3.4 SUPPORTING MECHANISM: OPEN HYPERMEDIA 

This section provides a brief background to 
open hypermedia.  We also discuss our extensions 
to existing open hypermedia concepts and briefly 
discuss the state of the art in capturing links across 
heterogeneous tools. 

3.4.1 CONCEPTS FROM OPEN HYPERMEDIA 

Although the World Wide Web is the most 
dominant example of a hypermedia system today, 
it is critical to separate a general understanding of 
hypermedia from the capabilities of the Web. The 
Web was constructed with some design choices 
that maximize scalability and extensibility (to a 
global scale), but limit the usefulness of hyperme-
dia concepts. Meanwhile, open hypermedia sys-
tems (OHS) [57, 14, 15, 123, 96] provide a richer 
set of capabilities at the cost of some scalability 
and robustness. In OHS’s, links are not embedded 
in documents and files as in the Web; rather, they 
are stored externally to the artifacts. Thus, OHS’s 
can embrace a wider variety of file types and edi-
tors. Links may have more than two endpoints, in 
contrast to the Web’s unidirectional links. Link 
endpoints can also be specified in flexible terms, 
in contrast to fixed Web links. For example, an 
endpoint to a piece of code may be a method name 
or queries over the targets that are executed when 
the link is traversed or examined. Additionally, 
links can be link targets themselves, creating me-
ta-link structures to represent more powerful con-
ceptual relationships. Flexible link endpoints are 
potentially more robust in the face of changing 
documents. 

Consequently, open hypermedia systems offer 
advantages for managing and manipulating trace-
ability links.  More specifically, these advantages 
are the modeling of links as first class entities, the 
usage of an independent linkbase, and the integra-
tion of third party tools using adapters.  We dis-
cuss these in the next paragraphs. 

First class links with n-ary endpoints are used to 
represent semantically rich links. These links can 
store the type of relationship between artifacts, as 
is done in Topics Maps [4], and capturing proper-

ties about artifacts, as is done in Resource De-
scription Frameworks (RDFs) [3]. First class n-ary 
links can also store the path to the tool that will 
render an artifact . The ability to link on links 
(which creates a hierarchy) enables capturing trac-
es at different levels of granularity and abstrac-
tion.  

Next, open hypermedia links are stored outside 
the artifacts they connect, in an independent link-
base. The external management of links enables 
tracing heterogeneous artifacts even though they 
are maintained in diverse formats with different 
tools. Not only does this enable stakeholders to 
trace artifacts without switching their tools, but it 
also enables tracing read-only third party artifacts. 
External links also enable stakeholders to define 
and maintain their custom trace links.  The inde-
pendent linkbase provides users the possibility of 
using a variety of techniques to explore link struc-
tures—links can be traversed in any direction, ar-
bitrary operations can be executed on links or their 
endpoints, etc.  

There is, however, an additional cost to main-
taining links externally. Changes to artifacts re-
quire that links be updated by the traceability sys-
tem.  Consequently, both the traceability system 
and the tool adapters need to perform the extra 
work of monitoring changes to the artifacts in or-
der to keep the links from becoming obsolete.  
While this additional work does not exist with 
embedded links such as those in web pages, em-
bedded links also have a drawback of pointers that 
link to resources that may no longer exist (i.e. 
broken links). 
Finally, integrating third-party tools into an open 
hypermedia system requires the use of an adapter. 
A basic integration simply requires the construc-
tion of an adapter that allows the system to identi-
fy and locate endpoints (anchors) within a target 
document. An adapter may use the built-in capa-
bilities of third party tools such as keyword search 
or hyperlinks to locate a specific location within 
an artifact. More advanced integrations that allow 
anchor tracking and in-tool link examination and 
traversal is also possible, depending on the exten-
sibility and openness of the tool. 

3.4.2  EXTENDING OPEN HYPERMEDIA WITH OPEN APIS 

Although the idea of linking artifacts across dif-
ferent tools is not new [41], it was only possible to 
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do so within a limited set of tools. Now, given the 
availability of open source software and many 
proprietary tools with open application public in-
terfaces (APIs), it is feasible to automatically cap-
ture links across a broad set of off-the-shelf tools 
at different levels of granularity.  This section de-
scribes three types of hypermedia adapters that 
support the capture, rendering, and maintenance of 
traceability links.    Independent of each other, 
these hypermedia adapters are external to the trace 
tool, enabling customization of the trace links cap-
tured.  The implementations of these adapters are 
described in Section 5.2. 

  Recording adapters encapsulate tool-specific 
recorders (discussed in detail in Section 5.2.2) that 
enable the prospective capture of links.  Recorders 
minimize noise by attempting to only capture rel-
evant user actions.  In addition, recorders enable 
the automatic capture of tool-specific events that 
provide the context of how the artifact is manipu-
lated within its native editor.  Recorders may lis-
ten to events fired by a third party tool or extract 
the tool’s captured history (e.g. a web browser’s 
history). The events captured carry meaning that 
pertains to the artifact and native tool editor.  The-
se events can then be used by the rules to assign 
link information, such as the trace relationship 
(see Section 3.5).     

 

 
Rendering adapters are used to display the se-

lected endpoint at the specific location marked by 
the recording adapter (see Figure 3).  For instance, 
rendering a cell location in a spreadsheet location 
entails invoking the native editor, opening the 
spreadsheet, and using the native editor’s API to 
render the specific worksheet and cell location.  If 

a rendering adapter does not exist for an artifact, 
the operating system’s default editor will be used 
to render the artifact at the default location. 

Notification adapters are used to monitor 
changes to linked artifacts in order to automatical-
ly update link metadata.  For example, a notifica-
tion adapter may monitor whether the bug reports 
linked to a component have been closed.  If so, 
then the link status can be changed to “obsolete”.  
Notification adapters may listen to change events 
when a linked artifact is opened or may be sched-
uled to regularly check for changes by other users.    

3.4.3 STATE OF THE ART IN CAPTURING AND RENDERING LINKS 
ACROSS HETEROGENEOUS TOOLS 

Open hypermedia based tools such as Software 
Concordance, InfiniTé, and Chimera enables links 
to be captured across tool boundaries.  Software 
Concordance, however, requires the main repre-
sentation of source code be an abstract syntax tree, 
instead of the programmer’s native text editor, in 
order to effectively insert hyperlinks within source 
code [87]. InfiniTé is limited to tracing to artifacts 
that can be translated into a common text format 
[13].  Chimera enables users to manually capture 
links across tool boundaries [15].  Other tools al-
low the automatic capture of links across a pre-
determined set of tools: Codetrail (between 
Eclipse and Mozilla Firefox), Jazz (between 
Eclipse and collaboration tools), Mylar/Mylyn 
(between Mylar and Eclipse), and Hipikat (be-
tween Eclipse, Bugzilla, CVS repository, and a 
web browser) [63, 42, 2, 79]. Our extensible ap-
proach enables the integration of any third party 
tool as long as it provides open APIs for querying 
or detecting user actions.  

3.5 SUPPORTING MECHANISM: DECOUPLED RULES 

Rules allow users to determine the type of trace 
relationship to assign. This section discusses the 
usage of rules in traceability.  We also discuss 
how rules can be customized and the state of the 
art in the automatic capture of custom links. (See 
Section 5.3 for the implementation of these rules) 

3.5.1  USAGE OF RULES IN TRACEABILITY 

Rules have been used to specify link type relation-
ship between a pre-defined set of artifacts [109, 
32].    Rules, in the form of policies, may also be 
used to manage the link updates [88].  Oftentimes, 
these rules are built into the traceability system.  

 

 
Fig 3: Linking across heterogeneous tools with hypermedia render-

ing adapters 
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3.5.2 CUSTOMIZING RULES  

We use rules to analyze a potentially large set 
of events captured, to automate the capture of link 
information, and to support link analysis. The ex-
ternally pluggable rules enable users to customize 
the links captured as illustrated below. The types 
of rules include “record” rules, “add relationship” 
rules, and “assign link quality” rules. 

 “Record” rules. Record rules analyze user in-
teraction events to filter out noise and to generate 
trace links. To filter out noise, rules may be used 
to ignore user interactions based on an artifact 
type (e.g. ignore Word documents, emails, mani-
fest files), artifact naming convention (e.g. ignore 
all files *ProjectX.*), or event source or event 
type (e.g. ignore all Save events).  Rules may also 
be used to customize the granularity of link cap-
ture.  For instance, if a user is interested in only 
capturing links to a spreadsheet at the cell level, 
then rules may be used to filter out links at the file 

or worksheet level. 
 To generate trace links, rules may use a criteri-

on (e.g. time of access, patterns of events, primary 

trace artifact).  Since related artifacts may be ac-
cessed concurrently or sequentially, the time that 
the artifact was accessed can be a basis for creat-
ing links. Analyzing patterns of events is another 
criterion for generating links between artifacts. 
For instance, patterns of interaction with a set of 
artifacts may indicate that the artifacts are related 
to each other.  Finally, artifacts may be related to a 
primary artifact. For instance, if the architecture is 
determined to be the primary artifact, then arti-
facts subsequently accessed will be linked to se-
lected elements in the architecture (e.g. compo-
nents or connectors). 

“Add relationship” rules. To add trace link re-
lationships, rules can use contextual information 
such as the surrounding events captured by the 
recording adapters, the trace link metadata, and 
the surrounding software development practices. 
For instance, trace links captured from a web 
browser may be automatically assigned as “do-

main-specific” links. Context includes assump-
tions made when artifacts were generated (e.g. 
regulatory requirements, time restrictions) and the 

 
 

Fig 4: Illustration of an “Add Relationship” Rule 
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order that artifacts are generated. We posit that 
company conventions, procedures, or personal 
work habits induce observable patterns of stake-
holder interaction with artifacts.  In our previous 
work, we observed such patterns of interaction as 
a result of stakeholders following an established 
workflow [25].  These known patterns of user in-
teraction can then be encoded as rules.  When a 
rule matches a series of captured events, the speci-
fied link relationship is automatically assigned.  In 
Figure 4, we show an example of an “add relation-
ship” rule, which specifies the conditions neces-
sary for assigning a link relationship.  The trace 
tool processes the event log, determines whether 
the conditions are met, and assigns the appropriate 
relationship.  Thus, rules can take advantage of 
contextual information to automatically assign 
trace relationships.  

“Assign link quality” rules. Links may be as-
signed link quality based on interaction statistics 
and whether the links are captured using multiple 
methods.  For instance, if a user repeatedly ac-
cesses the same set of artifacts, then the links be-
tween these artifacts would be assigned a higher 
quality since there is a higher likelihood that they 
are related.  Furthermore, consider the case where 
links are captured by multiple methods.  A link 
captured using both prospective techniques (using 
a recording adapter) and a search tool (e.g. using 
the Lucene search engine [18]) will be assigned 
higher link quality than links captured using one 
method. 

3.5.3 CURRENT STATE OF THE ART IN CAPTURING CUSTOM 
LINKS 

Automated Capture of Link Types: Automat-
ically capturing link relationships between differ-
ent artifacts has been tackled by the areas of natu-
ral language processing (NLP) and information 
retrieval (IR).  Rules can be used to automatically 
generate trace links with relationship types based 
on syntactic analysis [109]. Links are created be-
tween requirements specifications and use cases 
(both expressed in structured natural language) 
and a UML object analysis model. The rules look 
for patterns of terms which are assigned grammat-
ical roles. These rules assign two types of depend-
ency trace relations and two types of satisfiability 
trace relations. Camacho-Guerrero also uses NLP 
techniques with latent semantic indexing to auto-
matically create semantic hyperlinks [32]. Finally, 

Basili et al. use co-occurrences of concepts in 
documents to generate typed hyperlinks [27]. 
Geared toward the recovery of link semantics, the-
se approaches analyze the textual content, but not 
the context in which the documents are created or 
edited. In contrast, ACTS uses rules to examine 
patterns in user interaction as well as other cap-
tured contextual information. This contextual 
analysis enables the automatic linking of non text-
based artifacts.  Our rule technique also comple-
ments these text-based NLP and IR techniques. 

User-Specified Heuristics: Hipikat uses vari-
ous heuristics in creating links between artifacts 
from different sources [42]. TraCS also combines 
best-of-breed approaches to increase the benefit of 
captured links [40]. Unlike the ACTS technique, 
these heuristics are pre-determined. 

4 Case Study: Software Acquisition  

This section demonstrates the technical feasibil-
ity and utility of architecture-centric links through 
its application to the software acquisition domain 
[23].  This section briefly introduces the reader to 
software acquisition research and software licens-
es. It then shows that license links to the architec-
ture, albeit a simplistic link in the form of an an-
notation is necessary to support automated license 
conflict analysis. 

4.1 BACKGROUND IN SOFTWARE ACQUISITION RESEARCH 

Software acquisition research is concerned with 
increasing the quality and reliability of software-
intensive systems obtained from subcontractors or 
various off-the-shelf components [11]. There is a 
growing trend of composing software systems us-
ing third party components with different licenses 
to lower development costs.   These components 
may be open source software or proprietary tools 
with open APIs [117].  This strategy, however, 
may result in substantially higher liabilities from 
incompatible licenses. Consequently, the ability to 
identify the origin of source code, ascertain its li-
cense, and analyze license interactions within a 
system is necessary to mitigate liability costs.  The 
resulting system may not have a license that re-
sembles an existing license type [12].  Unity is an 
example of a heterogeneously-licensed system  
[117]. 
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4.2 BACKGROUND IN SOFTWARE LICENSES 

There are numerous license types, variants, and 
versions [93].  Consequently, analyzing the com-
patibility or lack thereof between the various li-
censes in a system is extremely difficult. License 
types include General Public License (GPL), 
Mozilla Public License (MPL), Apache Public Li-
cense (APL), academic licenses such as Berkeley 
Software Distribution (BSD) and MIT, Creative 
Commons, Artistic, and Public Domain.  Each li-
cense type can have multiple variants and these 
variants can evolve over time, resulting in new 
versions over time.  

In addition, manually analyzing licenses is dif-
ficult because of the way they are expressed.  Li-
censes are often incomplete and legally ambigu-
ous or exact but difficult for individuals without a 
legal background to comprehend.  

Furthermore, the license of the overall system 
may be affected by component configuration or 
software maintenance [12].  Components that are 
dynamically linked at runtime may not be includ-
ed in the software release; thus, their licenses  

 
need not be included in the overall system license.   
Software maintenance, such as using alternative 
components with different licenses, changes the 
overall system license.  In addition, using different 
connectors, such as replacing a procedure call 
with an HTTP request, can alter the overall system 
license. 

It is in this context that architecture-centric 
traceability is shown to be particularly suited. The 
linking of license information, formally expressed 
as a license metamodel, to the system information, 
as represented by the structural architecture or 
xADL, enables system designers to understand the 
design and license tradeoffs to allow for the sys-
tem’s redistribution and licensing (see Figure 5).   

4.3 AUTOMATED SOFTWARE LICENSE ANALYSIS 

The architecture is the central artifact that ena-
bles the analysis of whether license constraints, 
such as legal obligations, are satisfied. Automated 
analysis of system properties such as adherence to 
communication constraints is currently supported 
in ArchStudio [45]. This type of analysis is solely 
based on information encapsulated by the archi-

 
 

Fig 5: Architecture-centric links facilitate automating software license analysis 
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tecture.  Adding information to the architecture 
through links to external information enables a 
wider range of analysis on the system. In this case, 
linking license information to the architecture el-
ements, specifically components, facilitates the 
automated license analysis. For instance, it is pos-
sible to calculate the scope of a reciprocal obliga-
tion imposed by a component with a GPL license. 
This calculation is simply done by traversing the 
architectural graph and including all the connected 
components that are not separated by a license 
firewall [11]. It is also possible to calculate sys-
tem-wide obligation conflicts by traversing the 
architectural graph. For each visited component, 
one should traverse the link to the license infor-
mation in order to extract the license obligation. 
The obtained union of all the license obligations 
can then be analyzed for conflicts. Similarly, it is 
possible to find the overall system rights by taking 
an intersection of all the rights in the system. 
Many other types of analysis are made possible by 
linking the architecture and software license in-
formation. For a more detailed discussion of these 

heuristics, the reader is referred to [12]. 
To demonstrate the possibility of automating 

software license analysis, the ACTS Traceability 
System has been extended with a Software Archi-
tecture License Traceability Analysis module (see 
Figure 6). This allows for the specification of li-
censes as a list of attributes (license tuples) using a 
form-based user interface in ArchStudio4. 

The tool has been used to analyze a heterogene-
ously composed system that is characteristic of a 
typical e-business system. The system depicted in 
Figure 6 has three different licenses: GPL, BSD, 
and Corel Transaction License (CTL). Running 
the license analysis produces the report shown at 
the top of the figure. The tool is able to support 
linking licenses at different levels of granularity: 
at the component level and at the subsystem level. 
It can also support analyzing license interaction 
across these different levels of granularity. In this 
figure, for example, the GPL license propagates to 
all the subcomponents of the Mozilla component: 
GUIDisplayManager, GUIScriptInterpreter, and 
mozilla. 

 

 
 

Fig 6: Software Architecture License Traceability Analysis module 
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4.4 DISCUSSION 

This section discussed a specialized application 
of architecture-centric traceability in the context 
of software acquisition research. This section has 
illustrated that architecture-centered traceability 
links not only provide a system view of traced in-
formation, but they can also be used to support 
automated analysis of system properties, which in 
this case is the license compatibility of heteroge-
neous components in a system. In this context, 
architecture-centered links coupled with a formal 
description of the software system (i.e. xADL) and 
a formal description of software licenses provide a 
solution to an otherwise intractable problem. Au-
tomated analysis is necessary in the face of evolv-
ing software licenses and changing organizational 
policies regarding acceptable software licenses.  

Other approaches have focused on analyzing 
software licenses or on reverse engineering [61, 
118, 116], but have lacked the capabilities of 
providing tool support for automatically analyzing 
license interactions within a system, especially 
during design time.  

Beyond the software acquisition domain, archi-
tecture-centric traceability links can also support 

the analysis of other system properties. Example 
analyses are determining the level of coupling be-
tween components in an architecture (links be-
tween architecture and source code), the level of 
“bugginess” of a system (links between architec-
ture and bug tracking repository), the level of de-
pendency on third-party software (links between 
architecture and source code), and test coverage of 
a system (links between the architecture and quali-
ty assurance or QA test reports). The augmented 
trace information can also support semi-automated 
analysis of correctness with respect to require-
ments. For example, a functional requirement may 
state “Environmental sensors must perform time 
synchronization at regular time intervals”. A base-
line analysis can be performed by traversing the 
architectural graph. For each environmental sensor 
component, the component mapping to source 
code can be used to locate a “timeSynchroniza-
tion” method. The lack of such a method can be a 
baseline indicator that the requirement has not 
been satisfied. If the method exists, then architects 
can then proceed to determine the correctness of 
the method. Thus, architecture-centric traceability, 
while only scoping the capture of links to the con-

 

 
 

Fig 7: ACTS View displays the traceability links when a component is selected.  ACTS is built on top of ArchStudio4. 
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cepts presented in the architecture, is technically 
feasible and has utility. 

5 An Exemplar Implementation 

While the last section demonstrated the tech-
nical feasibility of architecture-centric links, this 
section shows the technical feasibility of support-
ing the capture of user-customized links and the 
prospective capture of links across heterogeneous 
artifacts.  The first subsection provides an over-
view of prospective capture and the overarching 
design goals followed.  Details of the design and 
implementation of the tool’s supporting mecha-
nisms (open hypermedia and rules) follow in the 
next two subsections.  

The tool development focused on capturing  
links to and from the structural representation of 
the architecture. The ACTS Traceability System is 
built on top of ArchStudio [45], an architecture-
centric development environment that is integrated 
with Eclipse. Users can access the traceability 
support through the ACTS View in ArchStudio 
(see Figure 7). 

5.1 OVERVIEW AND DESIGN GOALS 

5.1.1 OVERVIEW OF PROSPECTIVE LINK CAPTURE 

Prospective link capture is supported by open 
hypermedia recording adapters and rules. Figure 8 
shows an overview of the process of prospectively 
capturing links -- the numbers denote steps, trian-
gled steps denote user actions, and circled steps 
denote automated tool support. A user may select 
which rules to apply prior to any recording session 
(Step A). The user initiates a recording session in 
the trace tool (Step 1). The trace tool invokes ap-
propriate tool-specific recorders (Step 2) whenev-
er the user opens specific artifacts. As the user 
performs development tasks and accesses, gener-
ates, or edits artifacts (Step 3), each recorder cap-
tures the user interaction events. Each event cap-
tured is associated with the resource path and op-
tionally a location within the resource. When the 
user ends the recording session of the trace tool 
(Step 4), the adapters output the captured events to 
a common event log (Step 5). The trace tool or-
ders the events sequentially. Rules may be auto-
matically applied to transform the event log into 
traceability links (Step 6). Finally, the new tracea-
bility links are added to the linkbase (Step 7). Us-
ers are not required to validate the links as a sepa-

rate task. As they go back and use the links, users 
are allowed to remove any invalid links they en-
counter. 

The level of granularity of link capture is de-
pendent on both the artifact and the tool’s APIs. 
For instance, Eclipse allows recording at both the 
file level, such as a file selection in the Navigator 
View, and at the element level, such as an element 
selection in an editor view. Meanwhile, MS Excel 
allows recording at the file level, at the worksheet 
level, and at the cell level. Since recorders are ex-
ternal to the trace tool, the granularity of recording 
may be user-customized. 

5.1.2 LIGHTWEIGHT, CUSTOMIZABLE, AND INTEGRATED LINK 
CAPTURE 

We built the open hypermedia adapters and 
rules with the goal of supporting lightweight, cus-
tomizable, and integrated link capture. 

Lightweight.  The tool is designed to limit the 
overhead in the tool setup and the link capture. In 
contrast to previous prospective approaches where 
a development process needs to be specified [98] 
or where all possible links between artifacts are 
pre-specified [97], the setup is limited to the tools 
and heuristics the user is interested in integrating 
into the trace environment.  A tool adapter must 
also be constructed for each third party tool to be 
integrated into the ACTS Traceability system.  We 
minimize overhead in the tool usage through the 
background capture of links while users perform 
their development tasks.  

Customizable. The tool is also designed to be 
customizable. It supports the user-directed capture 
of links through selective hypermedia recording of 
user interaction, and the selective generation of 
links from the recorded user interaction. Link in-
formation is also automatically assigned via rules 
(detailed in Section 5.3). Furthermore, users may 
choose the level of interaction with the tool. They 
may have the record button turned on all the time 
or explicitly switch to the record mode whenever 
they choose to capture links in the background.  

Integrated.  Unique to the ACTS tool is the ex-
ternalization of the recording mechanisms and the 
heuristics used to generate trace links. The exter-
nal hypermedia adapters make it possible for third 
party tools to be integrated into the trace tool.  
Moreover, external heuristics in the form of rules 
also enable users to integrate their custom heuris-
tics. Once users specify the location of their cus-
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tom rules and adapters, they are integrated into the 
system.  

5.2 SUPPORTING THE CAPTURE AND USAGE OF LINKS  

Open hypermedia techniques and mashups are 
used to support the capture, usage, and analysis 
links.  Hypermedia adapters capture and render 
links within their native editors.  Link usage and  
analysis is enhanced by mashups which graphical-
ly renders the extracted information from the 
linked artifacts. 

5.2.1 INCREASING OPENNESS, ACCESSIBILITY, AND USABILITY 

The tool is designed to support the capture of 
links across distributed information residing in 
heterogeneous tools. It is important to note that 
not all user interaction events are captured, but 
only those that can be intercepted by the hyper-
media adapters. This section discusses how the 
ACTS approach achieves openness and enhances 
accessibility and usability of linked information. 

To increase openness among heterogeneous 
tools, the tool has explicit extension points where 
users can integrate their tool-specific hypermedia 
adapters. Users simply add the path to their cus-
tom adapter to the trace tool’s list of hypermedia 

adapters. When the recording session starts or 
when the links are traversed, the tool automatical-
ly invokes the appropriate adapter. 

To increase accessibility, we implemented the 
following.  All the trace links are presented 
through a unified interface, which is the graphical 
rendering of the architecture.  Links to artifacts at  
different levels of granularity are supported (e.g. 
file level, page level, section level) to facilitate 
accessibility to specific locations within an arti-
fact. Linked artifacts are also rendered within their 
native editors. 

To increase the usability of captured links and 
to facilitate link analysis, mashups are designed to 
overlay linked information to the architecture. It 
not only supports the traversal of the captured 
links, but it also extracts the information from the 
captured links to provide users a comprehensive 
view of the system along with the related infor-
mation. 

5.2.2 TOOL IMPLEMENTATION 

This section discusses the implementation of first-
class n-ary traceability links, and hypermedia re-
cording, rendering, and notification adapters.  
Mashups are also used to provide link visualiza-

 
Fig 8: Overview of Prospective Capture of Links 
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tion. 
5.2.2.1 First Class N-ary links 

First class n-ary links group artifacts with a 
common relationship (e.g. satisfaction, rationale). 
These first class links not only store link infor-
mation, but they also support modeling link hier-
archies to present linkages between course-grained 
and fine-grained artifacts.  A trace link consists of 
a set of two or more endpoints. A trace endpoint 
includes an artifact location, timestamp of link 
capture, method of link capture, and it may op-
tionally include link quality status, the user who 
captured the link, the custom action performed 
when navigating a link, and a link to another trace 
link object. Custom actions point to a script or ex-
ecutable code that is launched when the link is 
navigated. 

The traceability links are stored in a xADL file, 
an XML-based architecture description language 
[44].  xADL was extended with a traceability 
schema extension. 

 
5.2.2.2 Recording Adapters and Uniform Event 
Model 

Recording adapters were implemented for 
Eclipse 3.4, Microsoft Office 2007, Adobe Acro-
bat 9, and Firefox 3. 

Eclipse 3.4: The Eclipse recorder listens to Se-
lectionEvents fired when user selects elements 
within the Eclipse Views and Editors. When these 
events are fired, the recorder obtains an ISelec-
tionModel which specifies the selected element 
and the view or editor where the event was fired.  

Microsoft Office 2007: Microsoft Office tools 
fire events when the user modifies the artifact, se-
lects a section of the artifact (e.g. a slide or a page) 
or invokes built-in commands (e.g. open, close, 
save). The recording adapters for Microsoft Office 
listen to these events to detect user actions.  We 
built a different adapter for the following tools: 
MS Word, MS Excel, and MS PowerPoint.  Each 
adapter is implemented as a standalone Visual 
Basic executable, although they could have also 
been implemented in C++ or C#.   

Adobe Acrobat 9: Adobe Acrobat does not 
provide an API for listening to user navigation.  
Instead it provides APIs, called the Interapplica-
tion Communication (IAC) [6], for enabling third 
party developers to programmatically invoke the 
capabilities within Adobe Acrobat. The recording 

adapter for Adobe Acrobat simply extracts all the 
user changes to the Acrobat file along with the 
change timestamp.  The adapter is implemented as 
a Visual Basic executable.  

Firefox 3: Similar to the previously discussed 
tools, Mozilla Firefox provides mechanisms for 
customizing the capabilities of the browser.  We 
implemented a recording adapter that captures 
course-grained links to visited sites by directly 
querying the browser’s history database, stored in 
a SQLite database [5]. The recorder extracts the 
visited sites along with their timestamp. We also 
implemented a prototype Firefox adapter which 
uses Mozilla’s XML User Interface Language 
(XUL) and JavaScript [86].  This adapter extends 
the browser’s capability to listen to finer-grained 
user actions within a webpage such as button 
clicks and mouse-over text actions.  This adapter 
is also more flexible since it is not affected by 
changes in the underlying data model of the tool.  

Uniform Event Model: Once the recording 
session is completed, a recording adapter stores 
the recorded events into an XML event log file. In 
order to unify the extracted information from the 
different recorders, a standard data model is used. 
An action tag represents a recorded user interac-
tion. Each action is associated with the detected 
event, the resource, and the timestamp. The re-
source represents the path of the artifact on which 
the event was detected. The “#” sign delimits the 
path to the artifact and the specific location within 
the artifact. The selected item in Figure 7 shows 
the file path and slide number in the PowerPoint 
file. 

Integrated Search Tools:  We integrated Lu-
cene, Trac and Google into our ACTS framework. 
Lucene is a well-known third party tool that pro-
vides text matching between sets of documents 
[18]. When a component or connector is selected, 
we use Lucene to link to all the documents in a 
given file directory with the matching component 
or connector name. We also integrated the Trac 
issue tracking system [51]. When a component or 
connector is selected and a link to the Trac reposi-
tory is navigated, a query is automatically invoked 
to display the issues reported against a selected 
component. Finally, we also integrated Google 
search for searching artifacts on the Internet.   

Google may also be used to guide the prospec-
tive capture of links.  An example scenario is (a) 
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using Google to find related links, (b) turning pro-
spective capture on, and (c) recording which can-
didate links generated by Google are actually used 
– perhaps repeatedly – by the architect.    

We have also illustrated with our more recent 
work how prospective capture can be combined 
with an advanced machine learning technique 
called topic modeling [24]. 

Implementation challenges of recording 
adapters: Implementation challenges include 
supporting extensibility, intercepting user interac-
tion, building platform and version independent 
adapters, and synchronizing time.  

The first challenge is supporting extensibility to 
accommodate various third party tools. This chal-
lenge is addressed by using a combination of a 
procedure call and shared repository. When users 
open a file, the ACTS environment calls and pass-
es control to the appropriate recording adapter.  
While the recorder is running, interaction events 
are stored in a shared repository. When the user 
closes the application, the recorder shuts down 
and hands control back to the ACTS tool.  The 
ACTS tool then takes the interaction events from 
the shared repository and transforms them into 
links. Thus, the integration of third party tools is 
greatly simplified by the indirect data transfer 
from the external recorders to the tool. 

The second challenge is in regards to imple-
menting the recording adapters to intercept the 
user interaction with the third party tools. Some of 
the integrated third party tools do not have public 
APIs for listening to user navigation within the 
tool. In implementing the Adobe Acrobat adapter, 
only specific changes to the file are intercepted, 
such as comments or strikethroughs. Consequent-
ly, links to specific locations within Acrobat file 
may only be captured if the file is modified.  
Meanwhile, in implementing adapters for the Mi-
crosoft Office suite, it is necessary to get a handler 
to the specific file that the user is editing in order 
to be able to listen to the commands invoked by 
the user.  

Still another challenge is building platform and 
version independent adapters.  Recording adapters 
depend on the third party tool’s API or data model 
and are thus sensitive to the tool’s changes.  Such 
was the case with Adobe Acrobat and Firefox.  
The adapter for Adobe Acrobat 9 will not work 
with earlier versions because it is using advanced 

features that are specific for version 9. Similarly, 
Firefox Mozilla’s data model changed between 
Firefox 2 and Firefox 3. Thus, it was necessary to 
create a new adapter for Firefox 3. A more elegant 
adapter for Firefox is to use XUL and JavaScript 
that would be independent of the internal Firefox 
data model. This adapter, however, is still subject 
to changes in the Firefox API.  The adapters for 
some tools can also constrain the tool to a specific 
platform. For example, hypermedia adapters we 
built for MS Office require that the ACTS trace 
tool run on the Windows Operating System be-
cause OS libraries are used to obtain a handler to 
the file being accessed. A different set of adapters 
is then needed to have the ACTS trace tool and 
MS Office adapters run in a different operating 
system. Thus, adapters are currently limited to the 
version or platform for which it is developed. 

Finally, time synchronization is an important is-
sue when integrating the various events from the 
different recorders.  It was observed that the dif-
ferent recorders were synchronized, since they 
were running on the same host, but they store the 
time in different formats. Consequently the Java 
Date class which represents the Universal Time 
(UT) was used as a standard time. The various re-
corders were modified to translate their default 
time into the Java time format.  If the recorders 
were running on different hosts, then it is im-
portant to account for any time differences be-
tween the hosts. 

 
5.2.2.3 Rendering Adapters 

This section discusses the corresponding ren-
dering adapters for the tools discussed in the pre-
vious section. To render an artifact, the ACTS 
Traceability System first checks the path of the 
link to be traversed and then invokes the appropri-
ate rendering adapters. Analogous to the anchor 
concept within a webpage, the adapters render the 
artifacts to a specific location within the document 
if a “#” delimiter exists in the linked artifact. 

Implementation challenges of rendering 
adapters: Implementation challenges, such as 
minimizing lag and identifying an anchor within 
the artifact, were encountered. Course-grained 
rendering support (at the file level) was initially 
provided for Word documents, Excel spreadsheets 
and PowerPoint slides within Eclipse workbench 
default editor. However, due to the observed per-
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formance lag and difficulties with manipulating 
the artifact within Eclipse, the rendering adapters 
were implemented outside of Eclipse. 

Another challenge is in the fine-grained render-
ing of artifacts. The rendering capability is limited 
by the third party API. For instance, the MS Pow-
erPoint renderer is limited to rendering at the file 
and slide level while the Excel renderer can render 
at the file at finer levels of granularity: worksheet, 
row, column, and cell levels. 

 
5.2.2.4 Notification Adapter 

To support link maintenance, we implemented a 
notification adapter for MS Excel 2007.  Imple-
menting a notification adapter requires determin-
ing how to handle the different types of updates as 
well as determining the frequency of updates. 

We define three types of updates: deletion, revi-
sion, and relocation.  Deletion is when the re-
source has been deleted within a given search 
space.  Revision is when the resource has been 
modified.  Relocation is when the resource has 
moved to another location.  These updates may 
take on different forms, depending on the level of 
granularity of the linked resource.  (See the Im-
plementation Challenges below for details on how 
these updates are handled.) 

 We also determined  the frequency of updates 
for our notification adapter.  Updates can be per-
formed as a result of continuous monitoring of the 
linked artifacts or on demand update.  We opted 
for the on demand update since it is a more effi-
cient approach in terms of processing time re-
quired.  When the user is ready to use the links, 
the user can simply invoke the notification update 
to determine which links have changed since the 
last session.  

Implementation challenges of notification 
adapter: We discuss issues encountered in our 
implementation of the deletion and relocation up-
dates.  Although we did not implement the revi-
sion update, we offer some implementation in-
sights. 

The notification adapter handles updates at the 
same level of granularity as the link captured.  De-
letion updates are handled at the file level, work-
sheet level, and cell level while relocation updates 
are handled only at the content level.  The current 
implementation handles updates at these levels 
differently.  If the link is at the file or worksheet 

level, the notification adapter checks if the file or 
the worksheet exists at the specified path.  If not, 
the link status is updated as “deleted”.  If it does 
exist, the link status is left blank, indicating that it 
is a valid link.  If the link is at the cell level with 
no specified content, then the adapter checks if the 
specified worksheet exists.  If the link is at the 
content level, then the adapter checks if the con-
tent is found at the specified cell.  If it is found, 
then the link is valid and the status is left blank.  If 
it is not found, the adapter searches for the content 
throughout the file.  If a match is found, the status 
is updated to “moved” and the link itself is modi-
fied to point to the new cell location.  If no match 
is found the status is updated to “deleted”. 

Implementing relocation update is a function of 
the search space.  In the case of our Excel notifica-
tion adapter, handling the relocation case at the 
content level was fairly straightforward.  It simply 
required searching for the given content within the 
Excel file.  To implement the relocation update at 
the file level, one must decide if the search space 
is within a given directory, within a given ma-
chine, within the company intranet, or within the 
Internet.  As the search space increases, more so-
phisticated searching algorithms become neces-
sary. 

Implementing the revision update is a function 
of the user interest in the change and the granulari-
ty of the resource.  If a change has been made to 
the text font or color of the resource and the user 
is not interested in tracking this change, then from 
the user’s perspective, the resource has not 
changed.  Otherwise, the adapter must detect the 
change and update the status to “revised”.   

The granularity of the resource is another factor 
in handling the revision update.  The courser 
grained the linked artifact, the more sophisticated 
the change detector must be.  To implement a re-
vision update at the cell level, it would simply 
check if the value of the cell matched the content 
that it was intended to point.  This could simply be 
a string or a numerical match test, depending on 
the cell content.  However, in the event that the 
resource is at the file level, a different technique is 
needed to determine if the file has changed.  One 
could do a simplistic comparison of the file modi-
fied date, a more sophisticated check of the latest 
changes made based on a repository check-in, or a 
still more sophisticated scheme of running a diff 



ASUNCION AND TAYLOR:  ARCHITECTURE-CENTRIC TRACEABILITY FOR STAKEHOLDERS: TECHNICAL FOUNDATIONS 25 

 

algorithm on a snapshot of the previous linked ar-
tifact and the current artifact.   The last option 
would require more storage overhead for storing 
the artifact’s snapshot. 

 
5.2.2.5 Aggregate Link Information 

Once links are captured, the linked information 
can be aggregated and presented to a wider range 
of users visually as a mashup to support link usage 
and link analysis. A Mashup Link Processor and 
an Information Extractor which queries the Trac 
Issue and Bug Tracking System were implement-
ed. The Mashup is implemented as a server-side 
Flash CS4 script. The user simply loads the xADL 
file which contains the architecture as well as the 
linkbase. The Flash script then renders the archi-
tecture in a browser. Figure 9 shows the mashup 
of the ArchStudio 4 architecture with bug and 
source code information overlaid on top of it. Blue 
shading represents components and yellow shad-
ing represents connectors. The border shading rep-
resents whether the components have reported 
bugs (yellow), lack source code (red), or have 
source code and no reported bugs (black). The 
figure at the top shows an actual bug reported 
against one of the ArchStudio components, 
Launcher. When a user clicks on a component, a 
pop-up table of the traceability links appears. A 

user can then navigate to a linked artifact. In this 
example, a link to a reported bug displays the bug 
within the Trac bug database. This example illus-
trates how linked information can provide real-
time project status as far as component implemen-
tation and component errors are concerned.  

Implementation challenges of aggregating 
link information: A couple of performance issues 
were encountered in the implementation of the 
mashups: 1) parsing the xADL which contains the 
linkbase and 2) data extraction especially from 
remote servers. To address the first challenge, the 
mashup stores the parsed xADL file so that the 
repeated rendering of the unmodified file does not 
require reparsing the xADL file again. To address 
the second challenge, a timeout was used to limit 
the user wait time and to only render the available 
information prior to the timeout. In addition, 
HTTP requests to SVN and Trac bug tracking sys-
tem were placed on parallel threads to minimize 
the lag in extracting the linked information. 

5.3 USING RULES 

Rules encapsulate the heuristics for creating 
links, filtering links, and capturing link infor-
mation. This section covers the implementation of 
rules. 
 

 
 

Fig 9: Sample Mashup of ArchStudio 4 
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5.3.1 ADAPTABLE, MODULAR, & CONTEXTUALLY-AWARE RULES 

The tool is designed to support the custom cap-
ture of trace links through the use of adaptable, 
modular, and contextually-aware but content-blind 
rules. 

Adaptable rules: In order to support the cus-
tom capture of traceability links, users may adapt 
the rules according to their heuristics.  Rules, 
which are external to the tool, may be created for a 
class of users or for individual users. Users simply 
specify in the tool which rules to apply when cap-
turing traceability links. 

Modular rules: A rule is a self-contained heu-
ristic unit. This modularity enables users to easily 
evolve each rule over time. This modularity also 
enhances the interchangeability of rules, enabling 
users to swap rules when they change their heuris-
tics. Rules may also be combined with each other 
to form more complex rules. 

Contextually-aware but content-blind rules: 
Designed to be contextually-aware but content-
blind, rules operate on the captured contextual in-
formation, making it possible to create links and 
assign link types to heterogeneously represented 
artifacts. Rules are content-blind since the basis of 
link creation is not the content of the artifacts, but 
the users’ activity surrounding the creation or 
modification of artifacts. Rules, working in tan-
dem with open hypermedia adapters, enable cus-
tom links to be captured across heterogeneous arti-
facts. This is an important distinction from previ-
ous traceability approaches that tended to employ 
content-aware but context-blind approaches. 
Techniques from natural language processing 
(NLP) and information retrieval (IR) are excellent 
in determining possible links using the textual 
content of an artifact [109, 32, 27].  Meanwhile, 
contextual awareness enables existing develop-
ment processes, company conventions, or devel-
oper work habits to be loosely integrated into the 
link capture without heavily or completely speci-
fying a development process. 

5.3.2 TOOL IMPLEMENTATION 

Rules are used to create traceability links and to 
capture the trace link information. Current rule 
support includes “record” rules (filter events rule, 
generate trace links rule) and “add relationship” 
rules. The rules are currently implemented as XSL 
Transformations (XSLT) on XML; Xalan-Java 

acts as the rule engine [19]. (Alternatively, an off-
the-shelf inference engine could be used.) XSLT 
has been commonly used to transform XML doc-
uments. In the ACTS Traceability System, XSLT 
is used to encapsulate the action to take (i.e. trans-
formation on the event log file) when a pattern of 
events has been detected. Usually, a rule is repre-
sented by a single XSLT file, while some rules 
may span multiple XSLT files.  

Users also have the option of either interactive-
ly applying the rules or applying them in the 
background. For background rule application, us-
ers can specify the rules to apply prior to any re-
cording session (as shown in Figure 8). For inter-
active rule application, users select the rules inter-
actively after each recording session. A dialog box 
shows the status of the rule application and 
prompts the user for additional rules to apply. 

When the recording session is completed, the 
captured user interaction logs of the hypermedia 
recording adapters are ordered by time to recreate 
the sequence of user interaction across different 
tools. Rules are then applied to transform the 
event logs into trace links.  Rules that filter events 
may be first applied to the event logs to eliminate 
the noise captured.  Furthermore, rules may be 
applied after trace link generation to remove any 
duplicate links to the same artifact. The duplica-
tion of links occurs when multiple commands are 
invoked on the same artifact. 

“Record Rule”: We can generate trace links 
based on grouping by architectural elements. After 
a component selection, all the artifacts that the us-
er selected is automatically linked to the selected 
component in Archipelago, ArchStudio’s graph-
ical editor. The rule checks if the selection is an 
architectural element in the Archipelago Editor. If 
so, the assigned group number is incremented by 
one to indicate that the architectural element and 
the succeeding artifacts are assigned a new group 
number. Otherwise, the group number remains 
unchanged. 

“Add Relationship” Rule: Figure 10 shows an 
excerpt of the rule that assigns the type of trace 
link relationship based on the file format of the 
artifacts (see lines 174 to 192). A more complex 
rule is illustrated in Figure 11. This rule assigns 
the trace relationship type based on the set of sur-
rounding artifacts that the user accessed. In this 
particular example, if the set of accessed artifacts 
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includes a PowerPoint file and a graphic file (i.e. 
jpg), then the rule assigns a rationalization link 
type. If the set of accessed artifacts only include a 
PowerPoint file, but not a graphic file, then the 
rule assigns the generalization link type.  The link 
types are currently arbitrarily assigned by the rule 
author.  Future implementations may incorporate 
alink type ontology or a classification scheme.  

Implementation Challenges of Rules: Several 
implementation challenges were encountered in 
transforming captured events to links and filtering 
the captured links. Possible scalability issues and 
understandability issues in writing rules are also 
discussed.  

Transforming Events to N-ary Links:  It is 
challenging to group selection events to create a 
valid set of trace links. Since we use a more flexi-
ble means of grouping artifacts, n-ary linking as 
opposed to bidirectional links, it is necessary to 
determine the boundary of a link. Selections may 
be grouped by time, by primary artifact, or by ex-
plicitly turning on or off of the record mode. 

Grouping events by time entails grouping arti-
facts based on the time of the previous event to 
time of the current event. If the time difference is 
within a certain period, the artifacts are linked to-
gether. This proved to be an inflexible approach 
since users can easily exceed the time group 
boundaries. 

Grouping events by primary artifacts (e.g., us-
ing architecture elements like components and 
connectors as group boundaries) is a reasonable 

approach, since artifacts may be related to a pri-
mary artifact. This approach is not necessarily re-
stricted to the architecture as a primary artifact, 
but may be applied to any primary artifact as long 
as the elements within the artifact are uniquely 
identified. 

Grouping events by explicitly by turning the 
record mode on and off is an approach that col-
lects all the artifacts captured during the recording 
session as a set of endpoints belonging to one 
(large) trace link. This means of grouping events 
requires manual intervention, but it addresses the 
difficulty with grouping different units of a prima-
ry artifact together. Thus, any number of elements 
may be linked to each other as well as other arti-
facts. 

Grouping events using navigational cycles is 
another means of determining links between arti-
facts [107]. Accessing a previously visited artifact 
creates links between the artifact and all other arti-
facts visited prior to the return visit. 

Filtering Events: It has been observed that 
multiple filtering mechanisms are needed to effec-
tively remove noise and ensure that correct links 
are not discarded. One example is filtering by 
timestamps. This filter can remove jitters, quick 
movements across artifacts [107], or unnecessary 
events captured by a tool like Eclipse. For each 
discrete Eclipse event detected, prior selections in 
a view are captured as well as new selections. In 
order to filter out the prior selections, a timestamp 
filter is used. However, filtering by time can po-

Fig 10: Add Relationship Rule 

 
 
 
 

 
 

Fig 11: Add Relationship Rule based on co-accessed artifacts 
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tentially eliminate valid links. This issue can be 
addressed by coupling a timestamp filter with oth-
er types of filters (e.g. filters that check for the 
selected elements), or using event patterns as a 
basis for filtering selections.  

Scalability: The current rule implementation, 
which uses the XSLT engine, may incur perfor-
mance overhead in processing thousands of 
events. To mitigate this performance overhead, 
offline processing of events and rule engines can 
be used. 

Understanding Rules: Rules are currently ex-
pressed as an XSLT which is based on template 
matching as opposed to the more commonly used 
procedural programming paradigm. Rules, which 
require examining the elements before or after the 
current node, may require the use of recursion to 
properly transform the event log file. Thus, writ-
ing rules may not be accessible to some users. 
This difficulty can be addressed by having a tech-
nically proficient trace tool administrator who can 
write the rules for the other members of the devel-
opment team. Another possibility is to develop a 
user interface that allows users to graphically 
specify the rule and have the tool automatically 
generate an XSLT files. Off-the-shelf tools that 
support the editing and debugging XSLT files are 
also available [113, 102]. 

6  User Feedback 

To help evaluate the usability of our approach, 
we solicited the feedback of 33 users: 12 from in-
dustry, 18 PhD students and 3 undergraduate stu-
dents in either Computer Science or Informatics at 
the University of California, Irvine.   Feedback 
was obtained either through online surveys, paper 
surveys with unstructured interviews, or personal 
communication. While this study is limited and 
artificial in several respects, it did yield worth-
while feedback. 

Our study did not fully investigate the ability of 
users to control link capture through custom rules 
or the ability of the tool to adapt to different set-
tings by integrating user selected tools.  The tool 
was used in various settings (personal projects and 
trial usage) with a set of readymade rules.  Some 
users only used the Firefox adapter to link to 
online resources, while others used the MS Word 
and Adobe Acrobat adapters to link to local re-

sources.  One participant used the MS Excel 
adapter. 

The users were asked to perform the following 
tasks. The users were asked to use ArchStudio and 
the ACTS View to capture links while they edited 
a structural design and viewed or edited documen-
tation files.  Some of the users were asked to man-
ually apply four rules while others had the rules 
applied in the background.  All users were also 
asked to retrieve the captured links.    

We sought to understand user perception on 
usefulness of architecture-centric links, overhead 
of capturing links, ease of accessing artifacts, ten-
sion between automated and user-controlled cap-
ture, privacy concerns, and tool usability. 

6.1 USEFULNESS OF ARCHITECTURE-CENTRIC LINKS 

Linking artifacts to the architecture (or design) 
is a useful feature to some of our participants.  
Eight participants (three of whom have industry 
experience) expressly identified this feature as the 
feature they liked about the tool.  Two participants 
with industry experience, however, said that link-
ing to the architecture was not applicable to their 
work contexts.  Still another industry participant 
said that the tool has “potential use in Safety Criti-
cal Applications”. 

6.2 OVERHEAD IN CAPTURING LINKS 

The participants generally felt that the time 
spent in capturing links was acceptable.  One user 
commented that the tool “make[s] the linking job 
easier” and another user stated “The tool saved me 
lots of time. Thanks!”   

Users who applied the rules manually felt that 
turning the record button on and off was “some-
what distracting” while users who applied the 
rules automatically in the background found it less 
distracting.  One of the users who applied the rules 
manually described the switching between record 
on and off to be “tedious”.  Since the tool offers 
both manual and background application, one way 
to address this issue is to have users simply use 
the manual application during the tool setup as a 
test mode and then apply them in the background 
when they have created an acceptable set of rules. 

6.3 LINK USABILITY: EASE OF ACCESSING ARTIFACTS  

User feedback indicates that the captured links 
were usable to the participants.  Most of the par-
ticipants liked the ability to link design elements 
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to documentation, the ability to link to specific 
points within the documentation, and the ease of 
navigating to the documentation from design. One 
participant commented, “It could take me back to 
the exact location of the comments made in doc-
umentation files.” Another participant stated that it 
is “easy to link & view artifact from tool itself. 
Jumps to edits automatically”. Still another partic-
ipant liked “linking to precise points in the docu-
ment”.  One participant liked the ability to view 
the artifacts in their native tool: “Simplifies the 
process, everything is integrated into one work-
space”.   

6.4 TENSION BETWEEN AUTOMATIC AND USER-
CONTROLLED CAPTURE  

There is a tension between the automated cap-
ture and user-controlled capture of links.  Even 
though increasing user control requires more time 
from the user, some participants preferred the abil-
ity to manually map artifacts to design via “drag 
and drop”. Two participants would like to be able 
to explicitly indicate the artifacts they are linking 
through a button in the native editor.  One partici-
pant even suggested displaying a dialog box to 
manually confirm the links to add after each re-
cording session: “I’d like to have more control 
over the links. I’d like to have checkboxes to 
manually pick the one link I wanted.”  One partic-
ipant also wanted to be able to manually enter la-
bels for the captured links. 

On the other hand, some users prefer less user 
control and more automated capture.  Three users 
disliked explicitly turning the record button on and 
off, with one user commenting “Start / stop re-
cording button kinda distracting.”  

6.5 PRIVACY CONCERNS  

Since capturing user interaction takes place in 
the background, participants were asked if they 
had privacy concerns over the logging of their in-
teraction events.  One participant stated that there 
was no privacy concern “if I can clearly see and 
select what is recorded. Otherwise, yes”. Two par-
ticipants stated that as long as the logging only 
takes place within the ACTS tool, they have no 
privacy concerns. However, once the logging goes 
outside the tool, e.g. logging visited sites on a 
browser, it may become a privacy issue.  To ad-
dress privacy concerns, one participant suggested, 
“Maybe allow me to specify (Black/White list) 

which apps are/are not recorded”. Thus, as long as 
the recording is limited within the tool or is trans-
parent, the participants are amenable to logging 
their user interactions. 

6.6 USABILITY OF THE TOOL 

While the participants like the idea of being 
able to automatically capture links to documenta-
tion, they expressed several usability issues re-
garding the current tool implementation. Some 
participants would like more visual feedback on 
the status of link capture. For instance, they would 
like a better visual indicator that the recording is 
taking place.  One user would like more “on-the-
fly” directions to know what actions to take while 
recording.  These usability issues can be addressed 
by further tool development. 

Another usability issue is in the imposed actions 
that the participants must follow to indicate links 
between elements in the design and the related 
documentation. For instance, participants have to 
explicitly select an element in the design (via 
clicking or double-clicking a component) prior to 
opening a related artifact in order for the tool to 
create traceability links. In addition, participants 
must explicitly turn on the record button to start 
capturing links, must save the PDF file using an 
external button, and must open the files through 
ACTS in order to capture the links. Two partici-
pants felt so constrained by these requirements 
that one participant called the recording approach 
as “heavyweight” while another participant re-
ferred to the tool as “clunky”. The tool limitations 
regarding link capture can be addressed by devel-
oping more sophisticated rules that can understand 
a wider range of user events.  In addition, provid-
ing user preferences for recording as well as min-
imizing additional user required actions to capture 
the links can address the other usability issues. 

Still another usability issue is in understanding 
the rules.  The current representation of rules as 
XSLT is difficult to understand and create for an 
average user.  One way to address this is by 
providing a form-based user interface that users 
can use to enter their rules.  Some users would al-
so like to see a visualization of how links are be-
ing transformed by the rules, or a preview of what 
the links would look like after the rule has been 
applied.   



30  

 

6.7 DISCUSSION 

The user feedback helps us understand some of 
the desirable features as well as concerns the users 
have with the current implementation of ACTS.   

Based on user feedback, the overhead incurred 
in link capture seems to be generally acceptable to 
the participants.  The features that most users liked 
about the tool are the automatic linking from the 
structural design to documentation and the auto-
matic linking to specific locations within the doc-
umentation.  Most users expressed usability issues 
with the current tool implementation. 

As far as the capturing the links in the back-
ground, we received mixed results, as indicated by 
Section 6.4.  It seemed that some users prefer 
more implicit capture while others prefer more 
explicit capture.  For instance, some users disliked 
turning the record button on and off while some 
prefer more user interaction with the tool.  The 
latter may be attributed to the following reasons.  
First, some users had a limited understanding of 
the capabilities of the rules.  Secondly, some users 
did not want to lose the links they identified with-
in the context of the tool.  In the current imple-
mentation of ACTS, users may examine the links 
and interactively apply the rules after a recording 
session, which means that some time has elapsed 
and they are required to remember the context of 
the artifact.  Thus, enabling users to interactively 
specify which artifacts to link during the recording 
session is also important.  

  While the participants found many usability 
issues with the tool, some of them indicated con-
tinued usage of the tool.  Fifteen of the partici-
pants would like to use the tool in the future and 
an additional 5 would “maybe” use the tool if their 
task required linking documentation to design.   

7 Conclusion 

This paper examined the traceability challenges 
and showed that the complexity of the problem 
stems from multiple interacting factors: economic, 
technical, and social.  The ACTS traceability 
framework begins to tackle these challenges by 
unifying distributed and varied artifacts around the 
architecture, by supporting stakeholder customiza-
tion, and by prospectively capturing links.  This 
paper discussed the technical challenges involved 
in tracing across heterogeneous artifacts at differ-
ent levels of granularity, at integrating third party 

tools into a traceability system, at maintaining 
traceability links, and at decoupling the heuristics 
from the underlying trace mechanisms. Our trace-
ability framework is extensible and can integrate 
existing trace search techniques. We have demon-
strated the technical feasibility of our approach 
through a case study, an exemplar implementa-
tion, and user feedback. 

Further work is needed in relating different 
types of architectural models such as behavioral 
and interaction models and in understanding the 
effectiveness of the notification adapter.  In addi-
tion, more work is needed to understand the social 
and economic implications of the ACTS frame-
work.  For instance, it is important to understand 
how to balance the cost of creating custom rules 
versus achieving better precision/recall rates.  It is 
also important to understand how to balance indi-
vidual versus organizational priorities in capturing 
traceability links.  Another open research topic is 
minimizing the cost while scaling the approach to 
hundreds or perhaps thousands of links. 
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