Institute for Software Research

University of California, Irvine

The Infrastructure of a Computational Web

"A Michael M. Gorlick

= ¥ University of California, Irvine
N %]
/A mgorlick@acm.org

i Justin R. Erenkrantz
justin@erenkrantz.com

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

May 2010

ISR Technical Report # UCI-ISR-10-3

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455
www.isr.uci.edu

www.isr.uci.edu/tech-reports.html

The Infrastructure of a Computational Web

Michael M. Gorlick
Institute for Software Research
University of California, Irvine

mgorlick@acm.org

ABSTRACT

We suspect that the diversity of web behaviors and applica-
tions are largely emergent, arising not from any single tech-
nical principle or mechanism, but instead resulting from the
interaction of multiple primitive mechanisms. Hypothesiz-
ing that modifications of web primitives will yield entirely
new web structures, behaviors, and applications we present
the computational web, where computation subsumes con-
tent and computation exchange subsumes content exchange—
a web described by the architectural style Computational
REST (CREST). Based on trial implementations, we de-
scribe the infrastructure of a computational web comprised
of CREST peers; offer the results of a novel test application,
a dynamic, collaborative feed reader; and present an un-
expected architectural structure, fractalware, an emergent
structure of self-similar, recursive CREST peers.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software architectures

General Terms
Design

Keywords

Computational REST, CREST, REpresentational State Trans-
fer, REST, computational web, computation exchange, dis-
tributed applications, decentralized applications

1. INTRODUCTION

No one, including its early developers, foresaw the aston-
ishing diversity of web behaviors and applications now ac-
cepted as commonplace. We suspect that these behaviors
and applications have been largely emergent, arising not
from any single innate technical principle or mechanism, but
as the outcome of the interaction of multiple primitive mech-
anisms. The modern web rests on a technical triad of URLs,
metadata, and protocol. URLs name information resources;
metadata is the means by which we distinguish among the
multiple content representations of an information resource;
and a single protocol, HTTP, defines the exchanges among
web origin servers and clients. This triad, the core of REp-
resentational State Transfer (REST), largely accounts for
both the web’s success and its limitations [10, 11]. We hy-
pothesize that systematic modifications of these primitives

Technical Report UCI-ISR-10-3, May 2010

~Justin R. Erenkrantz
justin@erenkrantz.com

Richard N. Taylor
Institute for Software Research
University of California, Irvine

taylor@ics.uci.edu

will yield entirely new web structures, behaviors and appli-
cations.

Starting with this hypothesis, we present a profoundly dif-
ferent future web—one dominated by computation and in
which content is a side effect of computation. To this end
we postulate a small set of enabling technical principles,
listed in Table 1. In a computational web URLs name
computation resources, not information; meta-programming
and reflection replace metadata; and an asynchronous meta-
protocol customized by policy, rather than a synchronous
fixed protocol, defines the exchanges among computational
web peers. This alternative triad—computation resources,
meta-programming, and meta-protocol—is the core of Com-
putational REST (CREST) [10, 11], an architectural style
for which computation subsumes content and the exchange
of computations subsumes the exchange of content—the com-
putational web. If our hypothesis of emergent behavior is
correct, then a computation-centric web will yield a broad
spectrum of behaviors and applications not seen in a content-
centric web.

Our prior work [11] detailed the motivation for, and the
evolution of, CREST as an architectural style but provided
no technical foundations for a CREST infrastructure, no
implementations, nor any experimental results. We address
each of these here, describing the underpinnings of a CREST
infrastructure, the characteristics of trial implementations of
CREST peers, and the experimental results of constructing
a test application.

In doing so we expose the first example of emergence in
the computational web, fractalware, an architecture of self-
similar, recursive CREST peers; an unexpected construc-
tion, as nothing in CREST [11] defines fractalware or even
suggests that it exists. Further, the fluidity of service within
a fractalware infrastructure (as every CREST computation
is a service provider in miniature) belies the traditional no-
tion of middleware altogether, since the notion of a layer
in a peering collective is computation-centric and its fractal
structure suggests that “middleware service” is wherever one
happens to find it: layers are a matter of convenience, per-
spective, and scope, not static construction and restriction.

We begin our discussion of the infrastructure of the compu-
tational web and the emergence of fractalware by outlining
the architecture of the CREST infrastructure from the per-
spective of CREST peers in Section 2. Section 3 turns to

Table 1: Comparative Elements of REST and CREST

Technical Element | Content-Centric Web (REST) Computation-Centric Web (CREST)

URL Names content resource Names computation resource

Metadata Permits 1-n mapping of resource to represen- | Meta-programming and computational reflection
tations

Representation Byte sequence + metadata Computation as closure or continuation (virtual

machine-specific encoding)

Protocol HTTP/1.1 Asynchronous meta-protocol

Members Clients and servers Peers

Interactions Servers and clients exchange content Peers exchange computations and messages

Service composition Large grain predefined by server Arbitrary grain defined by visiting computation

Security Policy enforcement on access using client ad- | Federated policy enforcement for access to data
dress or password and selection of providers

the foundations of CREST, describing in some detail the
technical elements of peers and computation exchange. To
illustrate the potential of a computational web we present
in Section 4 some early experimental results, a collabora-
tive feed reader. Section 5 offers preliminary observations
on CREST practices based on our experience to date. Sec-
tion 6 is forward looking and sketches the mechanisms for
addressing security and trust within a CREST infrastruc-
ture. Section 7, organized in the style of an FAQ, presents
related work. Finally, Section 8 reviews our results so far
and outlines our near-term research goals.

2. ARCHITECTURE

CREST architectures are comprised of peers that play the
roles of both client and server. We describe those roles here
from an architectural perspective and reserve further tech-
nical details for Section 3. In particular, we omit the mul-
tilayered security mechanisms regulating the peers’ actions,
reserving that discussion for Section 6. This pedagogical ar-
tifice eases discussion of the technical foundations, avoids
needless complications in the presentation of the demon-
stration application, and simplifies the assessment of our
hypothesis.

CREST peers receive and transmit messages, closures, and
continuations. A peer hosts a peer-specific URL-space just
as a web origin server hosts an origin-specific URL-space.
Just as a web request from a web browser is directed to a
server-specific URL, each and every CREST message, clo-
sure, or continuation sent to a peer is directed to some peer-
specific URL wu. Just as the meaning or interpretation of
a web browser request is URL-specific and defined by the
origin server, the meaning or interpretation of a CREST
message or computation is URL-specific and defined by the
receiving peer. In other words, the interpretation of, and re-
sponse to, a message m, closure A, or continuation X directed
to a URL u of P is P- and u-specific.

In its role as server, a peer P responds to messages sent to P
by other peers and offers computation resources for closures
and continuations sent by other peers. There are two forms
of computation resources, both named by URLs. The first
form, an execution locus, is a resource to which peers may
direct a closure or continuation for execution. Each such
locus may be customized for a specific domain (say order
fulfillment) and/or language (such as JavaScript, Python, or

Scheme). A peer may present many such loci, each named
by a distinct URL.

The second form of computation resource is a subpeer, an
active thread executing a closure or continuation within the
confines of an execution locus. The semantics and behav-
ior of a subpeer @ are no different from that of the parent
peer P, within whose execution locus @ resides. @, like its
parent P is named by an URL and, like its parent P may—
modulo P-specific security and resource policy—exchange
messages, closures, and continuations with peers, offer its
own @Q-specific execution loci, and consequently, support
subpeers of its own.

In its role as client, a peer P transmits messages, closures,
and continuations to other peers. A single message may
yield zero, one, or many responses, each response a mes-
sage, closure, or continuation. When P sends a closure A
or a continuation X to a peer @ there are two possible re-
sponses: either P will receive a message containing a value,
the outcome of executing A (X) as a function within the
context of a @-specific execution locus, or P will receive a
message containing a URL « naming a newborn subpeer,
an active thread executing A (X) within an execution locus
under the authority of Q). The first response is a degener-
ate case of the second response. The symmetric exchange
and evaluation of closures and continuations among peers is

computation exchange.

The privileges granted to a visiting closure (continuation)
are never greater than the privileges of the peer to which
the closure (continuation) is directed. In particular, the
privileges of a subpeer are granted by its parent peer, are
never more expansive than the privileges of the parent, and
may be far more restrictive. In addition, each peer—and
the complete recursive hierarchy of subpeers beneath it—
is backwards-compatible with the existing web as each root
peer (a peer for which there is no parent; P, V, and W
in Figure 1) supports an HTTP-compliant web server that
maps legacy web requests to (sub)peer asynchronous mes-
sages and the (sub)peer asynchronous replies to legacy web
responses. Thus, for a legacy web client (browser), inter-
acting with any (sub)peer is indistinguishable from inter-
acting with a legacy web server. The obverse also holds, as
(sub)peers may themselves interact with legacy HTTP web
servers in a manner indistinguishable from any legacy web

o] v E: Python/,(,)\g

B E A3 T v S iB: SQL

E : Scheme A} Q u/q/z B .. i

| ulq B
L e R " Closure transfer
. il
/ E A E : Python

u éB:flAfQH,A R u/r/y B

u/r B

E : JavaScript = A§
w

w B : order_fulfillment

E : Scheme -

w/b B : rush_orders

Figure 1: Interacting peers and subpeers.

client.

Computation exchange is deeply self-similar, exhibiting the
same structure and semantics at many scales simultaneously.
For example, under computation exchange a closure or con-
tinuation executing under the authority of a peer responds
to messages using the same mechanisms as the peer itself,
and service compositions of multiple peers are no different
in structure or semantics than either the individual peers or
the individual computation exchanges of which the whole is
composed. We term this emergent property of the CREST
architectural style fractalware.! As we shall see in Section 4
the same fractal element participates as a service component
in many layers and many factorings simultaneously and sim-
plifies simplifies forms of collaboration not commonly seen
in a content-centric web.

3. TECHNICAL FOUNDATIONS

The technical elements of CREST draw from web archi-
tecture [6, 14, 39], formal models such as actors [4], pi-
calculus [42], ambient calculus [7], and bigraphs [33], pro-
gramming languages including Erlang [2], Scheme [9, 19] and
JavaScript [31], protocols including BEEP [40], and HTTP
[13] and internetwork architecture [8]. We present here de-
tails and rationale for peers, the CREST equivalent of web
origin servers and clients; the naming and representation
of computations; URL-specific binding environments, the
mechanism by which peers specialize computation resources;
the role of meta-programming as a substitute for metadata;
and aspects of inter-peer messaging. Many of these elements
play an important role in our test application described in
Section 4, particularly, the allocation and exchange of service
among multiple peers, URL-specific computational special-
ization, and agile inter-peer messaging.

3.1 Peers

A URL u of a peer P may name a resource (B, E) where B is
a u-specific global binding environment and E a u-specific
execution engine (see Figure 1). A resource of this form

!Thanks to John C. Knight, whose remark on the “fractal”
structure of CREST peers inspired our nomenclature.

E
u B

the URL of the locus, and B and E are its global binding
environment and execution engine, respectively. A closure
X or continuation X directed to URL u of peer P is executed
under the authority of P in the context of global binding
environment B by execution engine E (the representation
of closures and continuations is sketched in Section 3.2).

is an execution locus, diagrammed as where u is

A closure A (continuation X) arriving at URL u of peer P
comprising resource (execution locus) (B, E) may be eval-

-

uated or spawned. When evaluated, A (X) is executed as a
zero-argument function (a thunk) in a virgin thread T' by
engine E in the context of global binding environment B
and the return value of the execution of A (X) is transmitted
to the peer (URL) named in the metadata accompanying A
(X). That return value may be a primitive (string, num-
ber, boolean, character), a computation (closure or contin-
uation), a structure (list, vector, hash table, record), or an
object. Naturally a computation, structure, or object may
recursively contain any primitive, computation, structure,
or object. In this case no other interaction is permitted [43].

-

When spawned, computation A (A) is evaluated (as a thunk)
in a virgin thread T by engine E in the context of global
binding environment B. In this case, unlike evaluation, T is,
by construction, a subpeer of P, named by a unique URL ur
and, like its parent, hosts a T-specific URL-space whose root
E A°
u/a B

executing in the context of execution locus (B, E) under the
authority of parent peer P, the capabilities of T" are no more
than those of P and may be significantly less. In general T’
may, to the extent permitted by the policy of parent peer P,
receive and transmit messages, closures, and continuations
and evaluate or spawn its own closures (continuations) or
those sent to it by other peers.

is ur. A subpeer is diagrammed as . As T is

Evaluation is merely a degenerate case of spawning and iden-
tical mechanisms protect the security and integrity of P in

both cases. CREST peers, designed and constructed thusly
are recursive, replicating, and self-similar at all levels. Noth-
ing in the CREST architectural style dictates that peers be
constructed so—it was revealed over the course of several
generations of peer implementations. Fractalware is emer-
gent, an unexpected consequence of the mechanisms of com-
putation resources and computation exchange.

Peer P may confine a prospective 7" in any number of ways:
limiting or modifying the contents of the URL-specific global
binding environment B, restricting, modifying, or monitor-
ing the actions of the URL-specific execution engine F, cor-
doning, throttling, or capping access to resources (for exam-
ple, processor, memory, or bandwidth), or actively monitor-
ing and restricting 7”’s messaging or computation exchange
with other peers. These restrictions are enforced recursively;
it is impossible for any subpeer born under T to have any
more rights than T itself. Thus T, under the guise of creat-
ing subpeers, can never expand its rights base and its parent
P may, by recursive construction, restrict the rights of 7" and
any of its descendant subpeers (including preventing 7' from
creating any subpeers at all).

As shown in our test application (Section 4) subpeers are
a powerful mechanism for service specialization, restriction,
and replication.

3.2 Naming and Representing Computations
In the classic web, URLs name information (content) re-
sources. In the world of CREST a URL names an active
computation (a peer) or an execution locus offered by a
peer. The computations exchanged among peers are rep-
resented as closures and continuations. Here a closure is a
function f (whose representation may be source code, bi-
nary machine code, virtual byte codes, or some other inter-
mediate form) plus the lexical scope binding environment
of f (if any). A continuation is a snapshot of a (virtual)
machine state including the stack, registers, and those por-
tions of the heap (both data and instructions) recursively
traceable from the stack or registers.? A machine may be
physical hardware, a byte code interpreter, the interpreter
of an abstract program representation, or a software emu-
lation of physical hardware, to name only a few of the pos-
sibilities. As each execution locus (B, E) is both peer- and
URL-specific, peers may offer multiple distinct global bind-
ing environments B and execution engines E to their fel-
low peers. For example, F could be a just-in-time compiler
and virtual machine for JavaScript [18], a Java Virtual Ma-
chine [29], or a Scheme compiler/interpreter [37]. CREST is
language-neutral and, to the extent that a language L per-
mits closures and/or continuations, CREST peers may host
L-specific execution loci. More generally, an execution locus
may accept language L source code for compilation and ex-
ecution on a peer-managed virtual machine E operating in
a sandbox [22].

As URLs are both the names of active computations (peers
and subpeers) and computation resources (execution loci),
the same mechanisms, messages and computation exchanges,

2A serialized continuation (for computation exchange) can
be voluminous however, there may be cases for which a par-
tial (composable) continuation will suffice, with correspond-
ing savings in volume.

may be applied everywhere within a fractalware infrastruc-
ture.

3.3 URL-Specific Binding Environments

In functional programming languages the global binding en-
vironment defines those symbols not bound in lexical scope,
for example, the symbol + in Scheme is bound to a base
function that sums its parameters as numbers, (+ 3.14 7 22)
returns 32.14. Scheme is exceptionally elegant in this regard,
as all base language forms and primitives are defined as func-
tional bindings in the global binding environment; however,
the rough equivalent can be found in other languages, for
example the modules of Python or the packages of Java.
All of these languages and many others lend themselves to
environment sculpting [31, 38] shaping the global binding
environment by adding, modifying, or excluding bindings.

A binding environment B of (B, E) at URL u of peer P
may add functions, say for image or audio transcoding, that
are not defined in any other execution locus of P. Bindings
in B may be modified to suit peer needs; for example, by
restricting parameter types or implementing sophisticated
per-function monitoring. Finally, ezcluding bindings from B
enforces the principle of least privilege. For example, a peer
prevents visiting computations from reading the local file
system by expunging such functions from its URL-specific
global binding environments B. Since the requisite func-
tions are undefined, no visiting computation (and hence no
subpeer) is granted the capability to read local files. Envi-
ronment sculpting is illustrated in Figure 1, where execution
loci at URLs v and w offer binding environments specialized
to support SQL queries and order fulfillment respectively.

URL-specific binding environments generalize web services,
free clients to compose novel services as they see fit, encour-
age service differentiation among providers, and ease ser-
vice evolution. Fractalware allows every computation in a
CREST infrastructure to be a service provider.

3.4 Meta-programming, Not Meta-data
Metadata in the content-centric web is the mechanism by
which origin servers present one-to-many mappings of re-
sources to representations and define the lifespan of those
representations to web clients and intermediaries (caches
and caching proxies). While metadata is explicitly avail-
able as a component of CREST asynchronous messaging
in our implementation, it is secondary to the role of meta-
programming and reflection within CREST. The global bind-
ing environment B of an execution locus (B, E) at a URL
u may contain numerous reflective functions for enumerat-
ing the contents of the environment B, discovering function
roles, types, and parameters, monitoring peer behavior, per-
formance analysis, debugging, resource monitoring, and re-
mote control, to name but a few.

Meta-programming is the means by which fractalware is re-
flective, whereby developers construct fractalware-based tools
for the composition, orchestration, deployment, monitoring,
analysis, and adaptation of fractalware-based applications.
In other words, fractalware builds fractalware.

3.5 Protocols and Messaging

The serial in-order semantics of HT'TP request/response re-
duces concurrency among and within web elements, increases
delay and latency, and restricts the range of temporal be-
haviors among origin servers and web clients. Moreover, the
imprecision of HTTP connection close [13] makes pipelining
difficult—and transaction semantics impossible—to imple-
ment reliably. Transport parallelism between HTTP server
and client requires multiple TCP connections, confounding
congestion control, with each connection exacting the cost
of TCP session startup and teardown.

To address these limitations our implementation of CREST
messaging among peers is fully asynchronous and a message
may contain any primitive, closure, continuation, structure
or object and include arbitrary metadata (including closures
or continuations) regarding the message as a whole or any
message component. A peer, in reply to a message, may
send zero, one, or many responses. While messages are de-
livered in order, a peer may reply to messages out of order,
that is, the order of responses is independent of the order
of message reception. Both classic request /response interac-
tions and “pushed” notifications are degenerate cases of the
full semantics.

Message interpretation is peer- and URL-specific and the
same message m sent to URLs u and v may evoke two
distinct responses, even if URLs v and v appear in the
same peer P. The transmission of closures and continu-
ations among peers is layered over a policy-driven asyn-
chronous messaging meta-protocol [40] augmented with law-
governed interaction [34]. Each connection is multiplexed
into channels and each subpeer of a peer is assigned a dis-
tinct channel isolating the subpeer from any other subpeer
sharing the connection while allowing message parallelism
with full flow control. We intend that bandwidth throttling
and law-governed interaction be performed per-channel, in
other words, stateful peer-specific policy governs all subpeer
messaging and computation exchanges.

Fractalware communication is fully asynchronous, allowing
peers to adopt the temporal behavior best suited to their needs.
In addition, fractalware adapts to legacy protocols, such as
HTTP, as our experimental feed reader (Section 4 below)
demonstrates.

4. FRACTALWARE AT WORK

Over the past three years we have constructed a series of
exploratory CREST frameworks for experimenting with the
structure and semantics of peers and constructing test ap-
plications. Their focus included URLs as names for com-
putation, closure and continuation exchange among peers,
environment sculpting, inter-peer messaging, and backwards
compatibility with existing HTTP/1.1-compliant web servers
and browsers.

The latest framework supports two classes of peers: exem-
plary peers and weak peers. Exemplary peers are stand-
alone, support a rich set of computational services, and em-
ploy Scheme as the execution engine in their URL-specific
computation resources. For interoperability with the legacy
Web, an exemplary peer can act both as an HTTP/1.1
server (to expose the computations running on that peer
to browsers) and as an HT'TP /1.1 client (to allow computa-

tions executing on a peer to access any HTTP/1.1 server).
On a modern Intel-class laptop with minimal performance
tuning, our exemplary peers serve dynamic computations in
excess of 200 requests per second. By contrast, weak peers
execute within the confines of a Web browser and rely upon
JavaScript as the execution engine. Mobile devices such as
Apple iPhones and Google Android phones are supported as
weak peers via their built-in browsers.

4.1 Feed Reader

Our example application, built upon our current CREST
framework, is a highly dynamic, reconfigurable, collabora-
tive reader for RSS or Atom feeds. For purposes of com-
parison, Google Reader® or Bloglines® are useful reference
points.

However, our application demonstrates the power and utility
of computation exchange as a mechanism for dynamic ap-
plication (re)composition and real-time ad-hoc collaboration
among multiple parties. It also highlights deep backwards
interoperability with legacy web infrastructure.

In our example, two separate classes of cooperative compu-
tations are executing: widget computations (stateful pro-
ducers) on the exemplary peers, and artist computations
(stateless renderers) on the weak peers. There are eight dif-
ferent widgets: a manager (which allows a user, via a weak
peer (browser), to create and link widgets), a URL selector,
an RSS reader, tag clouds, sparklines, a calendar, a Google
News reader, and a QR code. With a manager widget, these
various widgets can be linked together; for example, linking
the URL selector to the RSS reader to force the reader to
fetch its feed from the URL given in the selector. Each
widget computation is “tracked” by a corresponding (but in-
dependent) artist computation (executing in a weak peer)
that visually represents the widget’s state. A screen snap-
shot of the feed reader, from the perspective of a browser
(weak peer) is shown in Figure 2.

With computation exchange all weak peers stay synchro-
nized, where changes in the widget set, links between wid-
gets, or widget positions made by one weak peer are reflected
to all participating peers, both exemplary and weak. Here
we have the computation equivalent of “shallow copy” where
all peers participate in a single shared computation. Alter-
natively it is possible, using continuation exchange, to fork
the computation at any point (the computation equivalent
of “deep copy”) in which one or more peers synchronize to
a deep copy (the continuation) and share and manipulate
a now independent computation whose state will, from that
point forward, diverge along a separate path.

Using our CREST framework, the eight different widgets
total less than 450 lines of Scheme code; the largest widget is
the feed reader widget computation, approximately 115 lines
of code. The artists, written on top of the Dojo JavaScript
framework, comprise approximately 1,000 lines of JavaScript
and HTML.

4.2 Observations and Lessons Learned

3http://reader.google.com
“http://www.bloglines.com

800 CREST Widgets
[« [» |+ [@nup://169.234.13.236:8081 /static/ dojo/demojdemo. ntmi ¢ Q- Google
i RSS Reader
‘Widget Manager e ——
Calendar SPeer1 |+ ada| |hupflocalhost8080/sttic/eedsiespr/ |+ || OK Fran Tarkenton expresses disdain 0
— — over Brett Favre and retirement
indecision
ID Type Host Calendar
W_0 Manager Peer 1 August, 2009 ~
S M T W T F S
W_1 URL Selector Peer 1
26 27 28 29 30 31 1
W_2 Mirror Peer 1 2 3 4 5 6 7 8
W_3 RSS Reader Peer 1 9 M0 AL 32 A3 835 gl News Search
16 17 18 (18|20 21 22
W_4 Tag Cloud Peer 1 23 24 25 26 27 28 29| with Aug 19, 2009 B
il = - 2 3 4 5 vi
W_5 Sparkline ispesss 5 + Barmes, Gonzaler ift Rox with solo (o2 287628 [0 deal with St
2 Aug 20, 2009 shots linals v
W_6 Calendar Publishec: Th, 20 Aug 2009 02: 34:40 GM
« Jeter Keeps Hitting, With No Plans ¢
W_7 Google Ne Moving
Published: Thu, 20 Aug 2009 04:01:26 GM
W_8 QR Code + Economist Wrote Bestsellers With
Nobel-Winning Husband
Published: Thu, 20 Aug 2009 06:14:15 GM’
« Stocks finish with gains
Published: Wed, 19 Aug 2009 21:44:06 GM
« Report: CIA Hired Blackwater to Help
5 = With Hit Squads
Mirror Sparidine Publisnec: Th, 20 Aug 2009 02:29:48 GM
will | «_Rreathe New | ife into Your Old PC —
s
charge {3 i
With werd charge will
world 3
with T 9

Canceled opening the page

Figure 2: The feed reader from the perspective of a browser (weak peer).

URLs name computations. Each instantiation of a widget
computation w on an exemplary peer has a unique per-
instance URL. Through this URL, artist computations, ex-
ecuting in the confines of a week peer, and other widget
computations on the same or different peer may direct mes-
sages to w. For example, messages either fetch the current
state of the w computation or update the state of the w
computation. Within a weak peer, artist computations have
unique identifiers within the local DOM tree of the browser.
However, these weak peers are restricted to communicating
only with exemplary peers and cannot expose services to, or
directly interact with, other weak peers.

Peers are fractalware. The individual widget computations
w are subpeers with the same range of behaviors as the
parent peer, but each subpeer offers distinct and specific
services; in other words, each subpeer w interprets the mes-
sages it receives in the context of its URL- and computation-
specific state. The self-similarity at all scales simplifies repli-
cation, collaboration, coordination, state sharing and state
splitting. Independence at all scales eases the introduction
of services such as new widgets and artists, or maintaining,
for the sake of backwards compatibility, multiple versions
of the same widget (service)—forms of adaptation that are
critical for pliant service architectures.

Fractalware evolves. Services vary over time, reflecting need
and subpeer relationships. The feed reader above stands up
(or destroys) subpeers on demand in real-time in response
to client requests. Computations, data flows (from subpeer
to subpeer and from subpeer to artist), and state relation-
ships are established, synchronized, and torn down to offer
a consistent computational view to all peers, exemplary or
weak.

Fractalware conserves state parsimoniously. Widget compu-
tations (subpeers) maintain local (per-instance) state. The
subpeer acting as the base feed reader retrieves and parses
the selected feed periodically, storing the parse tree (an XML
document) as local state (essentially caching the feed). The
feed reader (subpeer) easily scales since it returns, on re-
quest, only the cached representation rather than repeatedly
retrieving and parsing the feed in response to each request
and may be replicated courtesy of computation exchange. In
contrast, the artists are stateless and periodically poll their
respective widget computations for their state and render
that state accordingly (HTTP prevents an exemplary peer
from pushing state deltas directly to a browser, a weak peer).
Fractalware is pliant with respect to state representation,
preservation, and transfer.

Fractalware eases service and computation composition. New
renderings of widget computations are trivial to introduce as
artist and widget computations are loosely coupled by URLs
and widgets (subpeers) do not discriminate among service
(state) requests. As widget computations are themselves
linked on-the-fly one to the other by URLs, dynamic service
composition is trivial. For example, the Google News widget
can be linked on demand to the calendar and tag cloud wid-
get computations to search for a given keyword (from the
tag cloud) at a given date in the past (from the calendar).

Fractalware promotes computational transparency. Fractal-
ware supports a spectrum of computation exchange, from
“shallow” copy to “deep” copy and all increments in between.
For this example, in a shallow copy, all weak peers share
among themselves a single set of widget computations (per-
haps distributed among multiple exemplary peers) but have
independent artist computations. In this case, all weak peers

see exactly the same state updates for the same widget com-
putations. Using deep copy, a new weak peer would create
a fresh, forked collection of widget computations (via com-
putation exchange) whose computational states are a con-
tinuation, captured at the instant of the join, of the parent
collection. This weak peer would now observe, from that
point forward, an independent, evolving state. In essence
the deep copy instantiates a new version of the feed reader
application at the time the continuation is created. Further,
there are intermediate points between shallow and deep copy
where only a subset of the widget computations are forked,
yielding semi-independent evolving states among multiple
distinct instantiations of the application. This suggests new
forms of collaboration where the degree of sharing is modu-
lated by growing and pruning the fractalware on demand.

Fractalware promotes migration. As all exchanges among
computations are identified by URLSs, these computations
may be either remote or local. In this way, widget compu-
tations can be migrated with abandon so long as they are
accessible via an URL. By adding multiple exemplary peers,
dynamic widget migration and load sharing (computational
exchange) allows the sample application to scale seamlessly.

Fractalware eases latency. In the example application the
division between the artist computation (which draws the
local display) and the corresponding widget computation
(which maintains the state) minimizes state transfer among
exemplary and weak peers. When a widget computation
(subpeer) is instantiated, the relevant artist computation is
transmitted to and instantiated on the weak peer (compu-
tation exchange). As the artist computation is an output of
the widget computation (per our motto “exchange computa-
tion, not content”), the widget computation exerts complete
control over the state representations presented to the artist
computation using representations optimized for the task at
hand.

5. CREST BENEFITS

We explore here some of the consequences of the CREST
architecture and technical foundations, drawing from our
experiences as implementors of web services and web clients
and the lessons of our analyses of prior systems [11].

5.1 Names

An URL w is, in essence, a capability, as a peer knowing u
may transmit a message, closure, or continuation to it. For
this reason, a URL u naming a subpeer contains a UUID [27]
in its path to prevent peers from “guessing” u. URLs naming
execution loci may be similarly protected and the binding
environments of execution loci may contain functions that
map “well known” paths to cryptographically encoded URLs.
Thus URLs may be used as a form of encapsulation, which
improves service modularity, and permits “private” services
to offered alongside of public services.

Other useful information, protected by cryptographic signa-
ture(s), may be included in the path of a URL; for example,
expiration dates to limit the period of access, declarations of
connection rights, or other terms of use. In addition, mes-
sages, closures, and continuations may be embedded directly
within a URL (we omit the details of the serialization and
encoding) and transferred to another peer or archived for

later use. This mechanism allows legacy web clients (such as
browsers) to interact, with minor restrictions, with CREST
peers and their execution loci using nothing but HT'TP [10].

URLs play many roles in fractalware: as destination ad-
dresses for messages, closures, and continuations; as capa-
bilities; as shrouds for encapsulation, as representations for
computations; and as a mechanism for deep, backwards com-
patability with legacy HTTP web infrastructure.

5.2 Services

A single service may be exposed through multiple execution
loci, each offering distinct perspectives on the same com-
putation where the binding environments differ or support
complementary supervisory functions for debugging or man-
agement. For example, a provider could offer tiers of execu-
tion loci to a single service based on a subscription fee, with
higher fees commanding better performance or richer, more
capable binding environments. Also, an alternative URL
can name an execution locus for supervisory tasks tied to a
particular service. For long-running custom computations,
as is the intention for subpeers, an outside party may require
information on the progress and state of the computation or
wish to suspend or cancel the computation. In this case,
a unique “supervisor” execution locus, named by a URL v
can be generated by the parent peer in addition to the URL
u naming the subpeer. Clients can then direct custom clo-
sures to v to access v-specific debugging, introspection, and
control functions.

Fractalware allows services to vary among multiple dimen-
sions such as functionality, performance, resources, control,
feedback, or cost while still maintaining a high degree of com-
monality and uniform accessibility and interaction.

5.3 Time-Varying Behavior

The nature and specifics of an execution locus (B, E) may
vary over time as functions may be added to, or removed
from, binding environment B, or their semantics change. For
example, a service provider, optimizing the cost of a service
depending upon the present computational load, can offer a
more precise version of a function that uses more CPU time
during off-peak hours. Additionally, the execution engine E
may change as well for the sake of bug fixes, performance
enhancements, or security-specific improvements.

Time is a natural dimension of fractalware and temporal
variations are accommodated by meta-programming and re-
flection.

5.4 State

Many distinct computations (subpeers) may be underway
simultaneously within the confines of the same resource (ex-
ecution locus). A single client may issue multiple evaluations
or spawns to the same URL w and many distinct clients may
do the same simultaneously. An execution locus may choose
to be stateful, thus allowing indirect interactions between
different computations, or stateless, where parallel compu-
tations (subpeers) have no influence or effect on any other in-
stance within the same (or any other) execution locus. With
stateless execution loci, independent parallel computation is
straightforward. Scalability for stateful services (such as a

data base) demands consistency mechanisms for safety and
to regain some measure of parallelism.

Fractalware offers a high degree of parallelism but also sup-
ports degrees of state coupling for synchronization and co-
ordination ranging from state (memory) sharing within a
single execution locus to state exchange by way of messag-
ing.

5.5 Computation

REST relies upon an end-user’s navigation of the hyperme-
dia (through the links between documents) to maintain and
drive the state of the overall application [39]. In contrast,
CREST relies upon potentially autonomous computations to
exchange and maintain state. Given fractalware, we expect
that it will be common for one resource to refer to another
either directly or indirectly; hence, there may be a rich set
of stateful relationships among a set of distinct URLs. This
state can be captured within the continuations exchanged
between peers; in particular, a service provider could sup-
ply its consumers with a continuation that permits later re-
sumption of the service. In this way, the provider does not
have to remember anything about the consumer as all of the
necessary information is embedded within the continuation
and the consumer merely retains the continuation to let the
provider resume the state of the service at a later point in
time.

Computation exchange is a promising starting point for ser-
vices devoted to restart, backup, replication, and transfer of
function in decentralized systems.

5.6 Migration and Latency

Fractalware-based applications can minimize network and
computational latency by migrating computations. Appli-
cations may stitch many computations from multiple service
providers into a comprehensive whole, as no one peer may
be capable of supplying all of the functional capability that
a client requires. As overall performance may be subject
to, and dominated by, variations in network latency, fractal-
ware encourages computation migration, that is, moving the
computation closer to the data source, to reduce latency. Its
efficacy is this regard deserves further investigation.

CREST communications are fully asynchronous, though an
exemplary peer respects the request/response ordering con-
straints when communicating with an HTTP-compliant weak
peer. CREST peers, both exemplary and weak, must offer
mechanisms for reducing or hiding the impact of latency;
for example, by encouraging concurrent computation and
event-driven reactions (such as the nondeterministic arrival
of responses). Since those responses may be continuations,
origin peers must be receptive to previously generated con-
tinuations long after they were first created (on timespans
of seconds to months) and restart them seamlessly. CREST
peers employ timers to bound waiting for a response or the
completion of a computation and execution loci may employ
timestamps and cryptographic signatures embedded within
a continuation to reliably determine its age and may refuse
to resume a continuation past its “expiration date.”

Computation exchange lowers the barrier to migrating com-
putations closer to their data sources. Mechanisms that re-

duce “friction” are often disruptive, forcing unexpected re-
alignments. We speculate that migration, available as a fun-
damental mechanism, may lead to novel services and appli-
cations.

6. SECURITY AND TRUST

Security and trust [44] are critical to collaborative applica-
tions as all are at risk if the CREST infrastructure is in-
secure. We discuss here the provision of security at this
foundational level. The discussion is largely speculative, as
many of the mechanisms described are either unimplemented
or the subject of ongoing experimentation.

6.1 Mobile Code

Computation exchange relies on the technology of mobile
code. CREST is currently implemented as a Scheme inter-
preter [32] executing within a Java Virtual Machine (JVM).
Computations are exchanged among CREST peers as clo-
sures or continuations—expressed in the high-level virtual
machine code of the Scheme interpreter. This layered imple-
mentation provides considerable defense against malicious or
erroneous mobile code, as the JVM executes within a host
sandbox (such as a FreeBSD jail, Solaris Container, or a
host-level hypervisor [35]), the Scheme interpreter executes
within a JVM sandbox [30], and the Scheme interpreter itself
is protected by CREST laws for verification of the (virtual)
machine code delivered by arriving computations. No ex-
ecution locus or subpeer has access to global state or any
other execution locus.

Once a peer dispatches a computation to perform, CREST
interactions use self-certifying URLs [25] to ensure mutual
strong authentication of each execution locus. This authen-
tication allows a CREST peer to offer tailored service to spe-
cific peers and deny that service to unapproved peers. Byte-
code verifiers [28] can ensure that a computation is safe to
execute. Peers offering computations can use environment
sculpting [38] (a form of the principle of least privilege) to
add, remove, and wrap functions in each URL-specific global
binding environment to ensure minimal privileges and re-
source sandboxing [36, 41] to restrict and monitor resource
consumption for each visiting peer.

6.2 Computation Placement

Under traditional authorization the service provider deter-
mines whether a request is authorized before accepting the
request. Computational placement is the obverse—which
peers are authorized or accredited to provide the services
demanded by the calling party. There will be policy and au-
thorization computations done on both sides—by the server
evaluating the authorizations of the client—as well as client
selection of the destination “vendor” execution locus for the
computation exchange.

The trust properties required for distributed, decentralized
applications vary from case to case; likely candidates include
security, reliability, dependability, and fault-tolerance. The
CREST defense-in-depth, plus law-based interactions, both
within the execution context of a locus and among computa-
tions interacting at multiple loci, offer a promising founda-
tion for secure and trustworthy interactions among elements
at all levels.

To address issues in selecting the services to which a compu-
tation might migrate, we will utilize accreditation attributes
associated with server environments [20]. Computations will
be tagged with security and reliability requirements, which
will be used as inputs to the process of selecting the com-
putation environments to which sub-computations may mi-
grate. Moreover, considerations of privacy and side-channel
obfuscation can be included in these requirements. The
process of dispatching a computation will retrieve certified
(accredited) attribute certificates from the target peer, and
validate requirements before dispatching the computation.
Similar techniques can also be applied to provide type en-
forcement for cross-platform computation [3].

6.3 Federated Security Services

Administration of computations in the CREST architecture
is federated; a computation exchange may cross agency bor-
ders and hence, distinct policy regimes. With a reliance on
core security services such as identity management and au-
thorization, security assertions from one part of the system
must be used and understood everywhere. Some policy deci-
sions in the CREST system will be based on identity (user,
peer, or execution locus). We propose to adapt existing
federated identity management technologies, such as Shib-
boleth®, and federated ID notarization [21] to tie existing
user credentials to our framework.

Additionally, the execution behavior of visitors will be ac-
tively managed by the URL-specific law [1], itself a CREST
computation that oversees and regulates each and every sig-
nificant action of the visitor including, but not limited to,
virtual machine code verification, identity authentication,
rights restriction and control, resource throttling and bound-
ing, communications (such as message contents, format, des-
tination, or point of origin), lifespan, and auditing. Since
the enforcer of the URL-specific law maintains locus-specific
state and has read access to the global state of all loci exe-
cuting under the color of a specific authority (agency), it can
enforce the law in a manner that is both context-sensitive
and responsive to evolving conditions [1, 34]. Moreover,
the base mechanisms for identity and those for establish-
ing and enforcing CREST laws provide a sound foundation
for higher-order policy and extensions.

6.4 CREST Contributions to Security

CREST computation exchanges may augment the policy en-
forcement mechanisms deployed in traditional systems. Clo-
sures supply a computation context similar to the security
context often used to make access decisions; computation
exchange appears better aligned with the desired flow of
credentials than is provided through the security context
management mechanisms in traditional systems.®

7. RELATED WORK

CREST draws upon a broad range of related work. Space
constraints prohibit a comprehensive discussion; however,
several questions arise repeatedly. To help place CREST in
context we present related work as “frequently asked ques-
tions.”

Shttp://shibboleth.internet2.edu
SThanks to Clifford Neuman for this observation.

Isn’t CREST Computational Ezchange Just Mobile Code?
While CREST shares many mechanisms with mobile code
[16, 17, 23] it is fundamentally different in several respects.
Each CREST resource is either an execution locus, a bind-
ing environment plus an execution engine, or a subpeer (an
execution engine executing a closure [5, 12] or a continua-
tion [24] transmitted to it by a CREST peer), both named
by URLs. CREST peers may communicate via messages
[2, 19] with any computation for which they hold an identi-
fying URL. CREST unifies code mobility, distributed com-
putation, and fine-grain, Internet-scale, interthread messag-
ing with a single uniform, scalable naming scheme. Since
each URL-named execution locus contains a URL-specific
global namespace and execution engine, CREST resources
may vary from one another by varying the execution locus
affiliated with the URL. Again, a single mechanism allows a
CREST peer to offer an array of services and service mixes,
each organized in a tree of peer-specific URLs. This degree
of flexibility and specificity allows CREST peers, via com-
putation exchange from one URL-specific execution locus to
another, to shape, construct, modify, and extend on-the-fly
service offerings not only from peer to peer but from URL
to URL.

Isn’t CREST the Same as Google Wave? Google Wave [26]
is a document-centric service that relies on dedicated servers
and a class of sophisticated distributed algorithms, Opera-
tional Transforms, to maintain a consistent document view
for a set of shared documents that are edited simultaneously
by multiple participants. Google Wave does not implement
computation exchange; its focus is restricted to multiple-
user, shared document applications.

Hasn’t the Cloud Already Solved This Problem? The cloud
[8], and prior to it, the grid [15], are both major advances in
harnessing remote computing resources to solve large (com-
putation or data volume) problems. Our work is not re-
stricted to such problems, although it would address them
by integrating with existing cloud/grid infrastructures. Nei-
ther the cloud nor the grid are web architectures at all—
there the web serves as little more than a convenient trans-
port medium. In contrast, the CREST infrastructure pre-
sented here refashions web architecture as fractalware and
offers more flexibility and finer-grain computation composi-
tion than either the cloud or the grid.

8. SUMMARY

The foundational elements of CREST, as applied here, give
rise to a distinctly different web—a computational web—
one whose differences suggest that web behavior is emer-
gent, arising from variations within a confined design space.
Our experiments to date, including the implementation of
CREST peers and a test application, exhibit behaviors not
found in the HTTP-based content-centric web. In addition,
CREST peers themselves exhibit a novel architectural struc-
ture, fractalware, a recursive construction that offers attrac-
tive, but still unproven, formulations for collaboration, state
sharing, and computational composition.

In the future we plan to pursue two parallel, but complemen-
tary, research paths. We will expand the set of test appli-
cations for fractalware and are considering several domains,
including e-commerce, energy management, grid computing

data services, and multiplayer games. At the same time
we will invest considerable effort in refining and extending
the next-generation CREST peers, with particular emphasis
on policy-based computation exchange and security suitable
for large-scale, distributed, decentralized services. We antic-
ipate that the applications will greatly inform the structure
and semantics of the peers and that the peers, with their
fractalware constructions, will suggest novel architectures
in our target domains.

9. ACKNOWLEDGMENTS

Our thanks to Alegria Baquero and Yongjie Zheng for their
assistance in implementing the feed reader application. We
are indebted to Alegria Baquero and Kyle Strasser for their
painstaking reviews of prior drafts of this paper. We also
thank André van der Hoek, James Jones, and Neno Medvi-
dovic for their comments on portions of this paper.

This work supported in part by the National Science Foun-
dation under Grants CCF-0438996 and CCF-0820222.

10. REFERENCES

[1] X. Ao and N. H. Minsky. Flexible regulation of
distributed coalitions. In Proceedings of the Furopean
Symposium on Research in Computer Security, pages
39-60, 2003.

[2] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[3] L. Badger, D. F. Sterne, D. L. Sherman, et al.
Practical domain and type enforcement for UNIX. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 1995.

[4] H. Baker and C. Hewitt. Laws for communicating
parallel processes. Working Papers WB-134A, MIT
Artificial Intelligence Laboratory, May 10, 1977.

[5] A. Bawden and J. Rees. Syntactic closures. In
Proceedings of the ACM conference on LISP and
functional programming, pages 86-95, 1988.

[6] T. Berners-Lee, L. Masinter, and M. McCabhill.
Uniform resource locators (URL). RFC 1738,
December 1994.

[7] L. Cardelli and A. D. Gordon. Mobile ambients.
Theoretical Computer Science, Special Issue on
Coordination, 240(1):177-213, June 2000.

[8] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Pearson Education Inc., 2007.

[9] R. K. Dybvig. The Scheme Programming Language.
MIT Press, 4th edition, 2009.

[10] J. R. Erenkrantz. Computational REST: A New Model
for Decentralized, Internet-Scale Applications. PhD
thesis, University of California, Irvine, September
20009.

[11] J. R. Erenkrantz, M. M. Gorlick, G. Suryanarayana,
and R. N. Taylor. From representations to
computations: The evolution of web architectures. In
Symposium on the Foundations of Software
Engineering, pages 255—-264, September 2007.

[12] M. Feeley and G. Lapalme. Using closures for code
generation. Computer Languages, 12(1):47-66, 1987.

[13] R. T. Fielding et al. Hypertext transfer protocol
HTTP/1.1. RFC 2616, June 1999.

[14] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Transactions on
Internet Technology, 2(2):115-150, May 2002.

[15] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
Int. J. High Perform. Comput. Appl., 15(3):200-222,
2001.

[16] M. Fuchs. Dreme: for Life in the Net. PhD thesis,
New York University, September 1995.

[17] A. Fuggetta, G. P. Picco, and G. Vigna.
Understanding Code Mobility. IEEE Transactions on
Software Engineering, 24(5):342-361, 1998.

[18] A. Gal et al. Trace-based just-in-time type
specialization for dynamic languages. In Proceedings of
Conference on Programming Languages, Design and
Implementation, June 2009.

[19] G. Germain, M. Feeley, and S. Monnier. Concurrency
oriented programming in Termite Scheme. In
Proceedings of Scheme and Functional Programming
Workshop, pages 125—-136, September 2006.

[20] M. T. Goodrich et al. Authenticated dictionaries for
fresh attribute credentials. In Proceedings of the Trust
Management Conference, pages 332—347, 2003.

[21] M. T. Goodrich, R. Tamassia, and D. D. Yao.
Notarized federated id management and
authentication. J. Comput. Secur., 16(4):399-418,
2008.

[22] Google: The Chromium Projects. The Chromium
Projects: Sandbox. http://dev.chromium.org/
developers/design-documents/sandbox, March 2010.

[23] D. A. Halls. Applying Mobile Code to Distributed
Systems. PhD thesis, University of Cambridge, June
1997.

[24] R. Hieb and R. K. Dybvig. Continuations and
concurrency. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles & Practice of
Parallel Programming, pages 128-136, 1990.

[25] M. Kaminsky and E. Banks. SFS-HTTP: Securing the
web with self-certifying URLs. Technical report, MIT
Laboratory for Computer Science, 1999.

[26] S. Lassen and S. Thorogood. Google Wave Federation
Architecture. http://www.waveprotocol.org/
whitepapers/google-wave-architecture, 2009.

[27] P. Leach, M. Mealling, and R. Salz. A universally
unique identifier (UUID) URN namespace. RFC 4122,
July 2005.

[28] X. Leroy. Java bytecode verification: Algorithms and
formalizations. Journal of Automated Reasoning,
30(3-4):235-269, April 2003.

[29] T. Lindhold and F. Yellin. Java Virtual Machine
Specification. Addison-Wesley, 1999.

[30] G. McGraw and E. W. Felten. Securing Java: Getting
Down to Business with Mobile Code. Wiley, 2nd
edition, 1999.

[31] M. S. Miller et al. Safe active content in sanitized
JavaScript. http://google-caja.googlecode.com/
files/caja-spec-2008-06-07.pdf, June 2008.

[32] S. G. Miller. SISC: A complete Scheme interpreter in
Java. http://sisc.sourceforge.net/sisc.ps.gz,
2002.

[33] R. Milner. The Space and Motion of Communicating

[34]

Agents. Cambridge University Press, 2009.

N. H. Minsky and V. Ungureanu. Law-governed
interaction: A coordination and control mechanism for
heterogeneous distributed systems. ACM Transactions
on Software Engineering Methodology, 9(3):273-305,
July 2000.

T. Mitchem, R. Lu, and R. O’Brien. Using kernel
hypervisors to secure applications. In Proceedings of
the 13th Annual Computer Security Applications
Conference, 1997.

D. S. Peterson, M. Bishop, and R. Pandey. A flexible
containment mechanism for executing untrusted code.
In Proceedings of the 11th USENIX Security
Symposium, pages 207-225, 2002.

A. Piérard and M. Feeley. Towards a portable and
mobile Scheme interpreter. In Proceedings of the
Scheme and Functional Programming Workshop,
pages 59-68, September 2007.

J. A. Rees. A Security Kernel Based on the Lambda
Calculus. PhD thesis, Massachusetts Institute of
Technology, 1996.

B. L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Media, Inc., 2007.

M. T. Rose. The blocks extensible exchange protocol
core. RFC 3080, March 2001.

A. D. Rubin and D. E. Geer, Jr. Mobile code security.
IEEE Internet Computing, 2(6):30-34, 1998.

D. Sangiorgi and D. Walker. The Pi-Calculus: A
Theory of Mobile Processes. Cambridge University
Press, 2001.

J. W. Stamos and D. K. Gifford. Remote evaluation.
ACM Transactions on Programming Languages and
Systems, 12(4):537-564, 1990.

G. Suryanarayana et al. An architectural approach for
decentralized trust management. IEEE Internet
Computing, 9(6):16-23, November/December 2005.

