
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Jose Romero-Mariona
University of California, Irvine
jromerom@uci.edu

Hadar Ziv
University of California, Irvine
ziv@ics.uci.edu

Debra J. Richardson
University of California, Irvine
djr@ics.uci.edu

Security Requirements Engineering:
A Survey

August 2008

ISR Technical Report # UCI-ISR-08-2

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

 1

Security Requirements Engineering:
A Survey

Jose Romero-Mariona, Hadar Ziv, and Debra J. Richardson

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{jromerom, ziv, djr} @ics.uci.edu

ISR Technical Report # UCI-ISR-08-2

Abstract
 Security has become a primary and prevalent concern for software systems. The
past decade has witnessed a tremendous increase in not only the sheer number of attacks
but also the ease with which attacks can be performed on systems. We believe that in
order to protect a system against harm (intended or not), attention must be given to its
requirements. Similar to other system properties and quality attributes, security must be
considered from inception, in other words starting with requirements. Security is a
nonfunctional requirement (NFR) that is increasingly critical in its importance, unique in
its requirements, yet must still be integrated with all other functional and non-functional
requirements and mapped into successful architectures, designs, and implementation.
Similar to other nonfunctional requirements, the unique nature and demands of security
make it difficult and often ineffective to specify security concerns using "general
purpose" requirements methods. As a result, several original and derived approaches to
security requirements engineering have recently been proposed.
 In the following survey we explore a variety of approaches for engineering
security-specific requirements. For the purposes of this survey, we decompose security
requirements engineering into five more manageable phases, namely, security
requirements elicitation, security requirements analysis, security requirements
specification, security requirements management, and later stages support for security
requirements. We have developed an evaluation framework that focuses on each phase;
the evaluation framework is composed of a variety of questions and response criteria
designed in order to probe how well existing approaches support each specific security
requirements engineering phase.
 We survey a total of 12 approaches; there are 6 approaches that have been derived
from other approaches in order to address security, and there are 6 approaches that have
been developed specifically for security requirements. We apply our evaluation
framework to each of the 12 approaches and rank their responses based on a “star count”
system. The stars possible for each response range from 0 to 3. 0 stars indicate no support
and 3 stars indicate the maximum level of support for that question. Based on the results
of the survey, we provide a variety of observations and propose recommendations for
improving security requirements engineering. With our survey, we also uncover a variety
of areas in security requirements engineering in which there is an evident lack of support;
these areas of need will become part of our future work.

 2

Table of Content

1 INTRODUCTION ... 4

2 MOTIVATION .. 6

3 SECURITY REQUIREMENTS ENGINEERING ... 7

4 RELATED WORK .. 9

4.1 Requirements Engineering..9

4.2 Security Requirements ..10

5 SURVEY METHOD.. 11

5.1 Evaluation Criteria ..11

5.2 Evaluation Framework Phases ...14
5.2.1 Security Requirements Elicitation..14
5.2.2 Security Requirements Analysis ..17
5.2.3 Security Requirements Specifications..19
5.2.4 Security Requirements Management ...21
5.2.5 Later Stages Support for Security Requirements ...23

5.3 Evaluation Framework Limitations ...25

6 SURVEYED APPROACHES... 25

6.1 Misuse Cases ...28
6.1.1 Framework Application..28

6.2 Abuser Stories ..33
6.2.1 Framework Application..33

6.3 Secure Tropos ...38
6.3.1 Framework Application..38

6.4 Security Problem Frames ..43
6.4.1 Framework Application..43

6.5 Anti-Models ..48
6.5.1 Framework Application..48

6.6 i* Agent-based Requirements for Security ..53
6.6.1 Framework Application..53

6.7 Common Criteria ...58
6.7.1 Framework Application..58

6.8 SQUARE ...63
6.8.1 Framework Application..63

 3

6.9 OCTAVE...68
6.9.1 Framework Application..68

6.10 Attack Trees..73
6.10.1 Framework Application..73

6.11 USeR Method..78
6.11.1 Framework Application..78

6.12 CLASP...83
6.12.1 Framework Application..83

7 SURVEYED APPROACHES RESULTS COMPARISON..................................... 88

7.1 Best Approaches per Phase ...94

7.2 Best Overall Approaches ...99

8 RESULTS AND OBSERVATIONS... 100

8.1 General Observations ..100

8.2 Approaches’ Unexpected Strengths ...105

8.3 Approaches’ Weaknesses ..107
8.3.1 Determining Areas of Weakness..108

8.4 General Recommendations ...111

9 CONCLUSIONS .. 117

9.1 Conclusions Summary ...117

9.2 Research Objectives and Future Directions ..118

10 REFERENCES... 120

 4

1 Introduction

 Requirements engineering is the first major stage of software development. It is
during this stage, that the customer and developers come to an agreement as to what
constitutes the software to be developed. As one might expect, this is a critical stage of
development because anything that is (or is not) resolved at this time will be carried
down the rest of the software lifecycle. Good requirements engineering is therefore
essential for successful system development [Mea06]. Non-functional requirements, and
security ones specifically, would benefit tremendously from a proper requirements
engineering approach. The following research, surveys several requirements engineering
approaches that are geared specifically towards security requirements. The focus of the
survey is thus centered on the interaction between requirements engineering and security
requirements.
 During our survey, we examine a total of 12 approaches to security requirements
engineering. In order to make the survey more manageable and our application of the
framework more organized, we decomposed security requirements engineering into 5
distinct phases,

1. Security Requirements Elicitation
2. Security Requirements Analysis
3. Security Requirements Specification
4. Security Requirements Management
5. Later Stages Support for Security Requirements

 A variety of questions have been designed for each specific phase, in order to
investigate how well each approach performs at each one of the security requirements
engineering phases. There are a total of 34 questions for the whole survey; each one with
specific criteria for the responses expected.
 We believe that a system can be better protected when its security aspects are
tackled early on, i.e., during the requirements stage of development, and then carried into
further stages. The objectives of the survey are the following;

1. Identify the deficiencies and advantages of current security requirements
approaches.

2. Use the results from (1) to determine current needs of security requirements
engineering.

3. Determine whether certain approaches are beneficial enough for security
requirements and thereby worth extending past requirements into architecture,
design, and implementation.

4. If no approach is found beneficial enough, the survey could form the basis of the
development of a new security requirements engineering approach whose main
goal is to maximize the benefits and limit the deficiencies found in existing
approaches.

 Along with the objectives for our survey, we also have a set of initial expectations
that we anticipate our survey to either refute or validate,

1. Most of the approaches surveyed will do very well in the initial 4 phases of
security requirements engineering (elicitation, analysis, specification,

 5

management) but there will be a lack of support for later stages of development
(i.e. architecture, design, implementation, and testing)

2. Approaches created specifically for security requirements should do better than
those that have been adapted from existing ones to address security

3. It is not expected that one specific approach will be extraordinarily better than all
the other 11 surveyed

 In order for security to be “built-in” a system, a good security requirements
engineering approach should be selected for that task. This survey will help in the
selection of that approach. The survey provides the reader not only with explanations to
the responses given to each question for each approach, but also a comparison from
different aspects of all 12 approaches surveyed.
 For this survey, we consider requirements engineering to be “the disciplined
application of scientific principles and techniques for developing, communicating, and
managing requirements” [STEP91]; and believe that while security can be emphasized at
various stages in the software lifecycle, the requirements stage is vital.
 Security is uniquely complex and challenging among NFRs; as Ian Alexander
indicates, “security is unlike all other areas in a specification, as someone is consciously
and deliberately trying to break the system” [Ale02]. Security is a NFR that is
increasingly critical in its importance, unique in its requirements, yet still must be
integrated with all other functional and non-functional requirements and mapped into
successful architectures, designs, and implementation [Rom07].
 The following are some definitions of what security is (or could be),

- According to Gary McGraw [McG03], “Software security is about understanding
software induced security risks and how to manage them.”
- Clark Hayden et al. [Sto01], consider security to be a system property. According to
them, “security is much more than a set of functions and mechanisms; IT security is a
system characteristic as well as a set of mechanisms that span the system both logically
and physically.”

 While the definitions above prove to be useful in certain areas, we found that
security, as presented by Redwine et al. from the Software Process Subgroup within the
Task Force on Security across the Software Development Lifecycle of the National Cyber
Security Summit, is more complete and adequate for the work at hand. Software security
has as its primary goals three aspects, the preservation of the confidentiality, integrity,
and availability of the information assets and resources that the software creates, stores,
processes, or transmits including the executing programs themselves. In this sense,
confidentiality preservation refers to the prevention of unauthorized disclosure; integrity
preservation is about preventing unauthorized alteration; and availability preservation is
about preventing unauthorized destruction or denial of access or service [Red04].

Addressing security in software development is extremely important; particularly
because of the effects software security has on society. Today, software security
problems are frequent, widespread, and serious. According to Redwine et al. “the number
and variety of attacks by persons and malicious software from outside organizations,
particularly via the Internet, are increasing rapidly, and the amount and consequences of
insider attacks remains serious” [Red04].

 6

Software security is something that must be taken seriously, but according to
McDermott [McG03] software security is intrinsically a difficult task. This difficulty
arises due to three main reasons,

− Networks are everywhere: Due to the growing connectivity of computers through the

Internet, both the number of attack vectors, and the ease with which an attack can be
made have also increased. This growth in networked systems just means that there are
more software systems to attack and as a consequence greater risks from poor
software security practice than in the past.

− Systems are Easily Extensible: An extensible host accepts updates or extensions,
referred to sometimes as mobile code, so that the system’s functionality can be
evolved. Unfortunately, the very nature of extensible systems becomes a two-edged
sword, as it makes it hard to prevent software vulnerabilities from slipping in as an
unwanted extension.

− System complexity is rising: This increase in complexity, like in many other software
fields, makes it difficult to plan for security, as it is an environment that is constantly
changing.

2 Motivation

 As an example given by Kenneth Olthoff, let’s say that we need to specify a secure
network as a system able to securely transport data from one place to another; as
developers, we tend to specify the transportation of data as a primary function,
“relegating security functions to a sort of requirements ghetto” [Olt01]. Furthermore,
Piessens et al. argue “software developers, tending to think of functionality in the first
place, usually emphasize convenience over security” [Pie01]. This “relegation” and
“convenience over security” should not happen when security is at the heart of a system,
and in order to change this we must concentrate on the requirements stage.
 The main motivation behind this research is not just to point out the fact that
security risks keep on escalating daily, but rather to stress that, just as any other system
property, security should be dealt with at the beginning of the software lifecycle. We
have decided to focus on the requirements phase because security is a system property.
Others agree with us, [Sto01]; they tell us that “security is much more than a set of
functions and mechanisms; security is a system characteristic as well as a set of
mechanisms that span the system both logically and physically.” Security needs to be
considered a property of the system to be implemented, and as such, it must be dealt with
since the inception of the project.
 As expressed by Ronald Lewis [Lew02], “the need for security is often realized too
late in the development life cycle.” He explains that often the need to focus on security is
not realized until the implementation stage, and security measures not added until the
maintenance stage [Lin97]. This delay in security focus skyrockets the costs of adding it
to the project, as does any other feature that could have been incorporated into the project
during the requirements stage, but is not. Furthermore, as Lewis states, “a well-secured
system has security designed during initiation, not during implementation or
maintenance, because service packs and patches applied after implementation can
introduce other vulnerabilities, leading to a spiral of patching, fixing, and re-patching.”
Since we are focusing in the development of a well secure system, it is imperative that
we stress security during the requirements phase.

 7

 As we have shown, there is a consensus that it is better to secure a system during
the requirements phase, but this is often hard to do without the proper support. This is
when our survey comes into play, as it will not only inform you of the current approaches
available for security requirements engineering, but will also provide observations and
recommendations about them.

3 Security Requirements Engineering

 Requirements engineering is a notion that has been around for a number of years,
and is well established now. Requirements engineering is defined as “the disciplined
application of scientific principles and techniques for developing, communicating, and
managing requirements” [STEP91]. When it comes to security, the requirements
engineering notion behind it is fairly recent; as codesecurely.org suggests, “one of the
most ignored parts of a security enhanced software development life cycle is the security
requirements engineering process” [CSO06]. It is only recently, that the idea of
considering security early in the development of a system has become popular, as
traditional requirements engineering is not enough [Fir07] and we believe that
requirements engineering can provide great support for ensuring that security is built into
a system as opposed to “bootstrapped” to it later on [Lew02]. Security requirements
engineering has become interested with developing a variety of approaches for
developing software requirements that have security at heart [Fir03].
 Security needs arise when stakeholders determine that some resource belonging to a
software system, tangible (e.g. money) or intangible (e.g. confidential information), is
valuable to the organization. Such resources are called assets [ChF05, ISO99], and
stakeholders wish to protect these assets from any damage or attacks. Security
requirements engineering is thus focused on the protection of these valuable assets from
the requirements perspective.
 We believe that security at the requirements stage should be an essential notion
for understanding not only how to secure a system, but what needs to be done in order to
ensure that the customer is satisfied with the end-result. In order to help us understand
better what has been done in the area of security requirements engineering, we decided
that it would be important to decompose into smaller phases. Each of these phases
considers an important aspect of the requirements engineering stage. Most of the
literature investigated pointed out to a variety of activities involved in requirements
engineering; these activities ranged from elicitation to verification and maintenance of
software requirements and we believe that these same activities can be used to look at
security requirements engineering specifically.

 8

Figure 1. Requirements Engineering Phases Surveyed

For this survey, we are concentrating on 5 main phases of requirements engineering

as shown in Figure 1; this decision was made based on the fact that the majority of the
work surveyed seemed to agree on the existence/need for at least four of these five
different phases. The only phase not mentioned in great detail, is support for not only
integrating the security requirements with later stages of the development cycle, but also
making them useful. The five phases that we are surveying are:

1. Security Requirements Elicitation. This is the initial activity for most of the

requirements engineering approaches that we surveyed. This phase is mainly
concerned with gathering as much information as possible from a variety of
stakeholders including (but not limited to) customers, developers, past
documentation, and stakeholders. The purpose of this phase is to have a very good
idea as to what (not how) the system at hand is supposed to look and function
like.

2. Security Requirements Analysis. During this phase, the developers (often with the
customers as well) analyze the security requirements that were elicited in order to
determine a variety of aspects about them, including their completeness, clarity,
and to resolve different aspects like conflicts and ambiguity. This is a very
important phase because it helps ensure that the security requirements elicited
provide a valid “blue print” of what the customer considers to be a satisfying
system.

3. Security Requirements Specification. Once the security requirements have been
analyzed, it is important to record them in order to make them “official.” This is
where specification comes into play. During this phase the development team

 9

organizes the security requirements in a way that ensures their recording will be
clear, consistent, and traceable, just to mention a few of the characteristics sought
after in a security requirements specification document. This phase is extremely
important because oftentimes the document produced during specification is what
the rest of the development stages will be based upon.

4. Security Requirements Management. Similar to the maintenance of a software
system, its security requirements must also be properly maintained. Some of the
most important maintenance tasks that we consider during this phase include the
updating of the security requirements as well as the degree of evolution support
that the approach provides.

5. Later Stages Support of Security Requirements. While this last phase is not very
popular in the literature surveyed (popular in the term that some papers mention
it, but rarely any provide support for it) we consider that it is possibly the most
important of all the five phases discussed. The importance of this phase lies in the
fact that there is a lot of effort poured into eliciting, analyzing, specifying, and
maintaining the security requirements but there is not enough support for either
integrating the security requirements at later stages of development nor making
them useful at these stages. At the heart of this phase is the ability of any given
approach to provide support and/or guidance for not only easily but also
effectively integrating the security requirements with architectures, design,
implementation, and testing of the system. As mentioned above, the effort put into
developing “good” security requirements should go beyond requirements
themselves, their quality is truly tested when they are used at later stages of
development.

4 Related Work

 This survey allowed us to observe that while there are some sources that present
information on requirements engineering as well as security requirements, information
that discusses and compares various approaches to security requirements engineering is
very limited, almost non-existent. We will discuss some of these sources, and have
divided related work into those that focus on requirements engineering and those that
focus on security requirements

 4.1 Requirements Engineering

 Requirements engineering is “the disciplined application of scientific principles and
techniques for developing, communicating, and managing requirements” [STEP91].
Similarly, Loucopoulos and Champion define requirements engineering as “the
systematic process of developing requirements through an iterative process of analyzing a
problem, documenting the resulting observations, and checking the accuracy of the
understanding gained” [Lou89].
 When it comes to requirements engineering, there is a variety of taxonomies that
have been formulated in order to specify the phases involved in it. Davis [Dav1] points
out that requirements engineering can be decomposed into elicitation, solution
determination, specification, and maintenance. This is very similar to the phases that we
are considering with exception of a specific analysis phase and later stages support.

 10

 Dorfman decomposes requirements engineering into 5 phases more comparable to
ours, specifically elicitation, analysis, specification, validation/verification, and
management [Dor90]. While much closer to our notion of phases, they also fail to
mention any support for requirements when it comes to later stages of development.
 Easterbrook and Nuseibeh [Eas00] look at requirements engineering as having the
following phases eliciting requirements, modeling and analyzing requirements,
communicating requirements, agreeing requirements, and evolving requirements. While
the descriptions of their categorizations correlate to ours, there is still lack for our last
surveyed phase, later stages support.
 There are also some papers that attempt to “pinpoint” areas where requirements
engineering is lacking support. One of the most recognized papers in this category is
“Four Dark Corners of Requirements Engineering” by Zave and Jackson [Zav97]. In this
paper, they identify four specific areas in requirements engineering that lack support and
propose solutions for them. While the information presented is helpful, the problem is
that the paper is over 10 years old. In our survey, we also identify areas in security
requirements engineering lacking support, but based on today’s available approaches.

 4.2 Security Requirements

 In our survey we discovered that while there has been work done in the area of
security requirements [MoH04, MeF07, Mead04] the breadth and depth of this work is
far less detailed than our survey. There are two main categories of related work in
security requirements; the first one is proposals of frameworks for developing security
requirements. Most of these papers are very focused on a specific approach or method
that they are either proposing or evaluating. Moffett and Nuseibeh [Mof03] propose a
framework for integrating concepts from requirements engineering and security
engineering. They take concepts from each one of the disciplines in order to shape the
framework in which security requirements should operate. While it provides good
information on the context of security requirements, it does not go beyond proposing the
framework, let alone applying it to specific security requirements approaches to evaluate
them. Giorgino, Massacci, and Zannone also discuss the importance of providing a
context for security requirements and propose a framework, which they then use to
motivate their approach to security requirements engineering called Secure-Tropos
[GiM05]. Haley et al [HaL07] also propose a framework for eliciting and analyzing
security requirements; while the framework is actually applied to a specific case study,
there is no comparison made between their approach and others.

The second area of related work when it comes to security requirements are
papers that attempt to survey either state of the art approaches to security requirements
engineering and/or comparable approaches to those being proposed in the papers. The
first paper is a joint effort by the Information Assurance Technology Analysis Center
(IATAC) and the Data and Analysis Center for Software (DACS) [IAT07]; they provide
a very good survey on the state-of-the-art for approaches that support security
requirements engineering. While they provide good information about each approach,
they lack any comparison between any of the approaches mentioned. We did come across
some papers that provide comparisons between surveyed approaches, but they also lack
specific aspects that our survey provides. Mellado et al [MeF06] surveys 8 different
methods for security requirements engineering. While similar to what we are doing, they
only look at 5 specific questions and only 8 approaches. Our survey looks at a total of 34

 11

questions divided among 5 different phases and 12 approaches in total. Also, the
approaches surveyed are analyzed solely on a specific paper per approach, as opposed to
our survey which looks at all of the possible papers (as many as could be found)
describing each approach, in order to give more context and characteristics to each
approach. Tondel et al [Tun08] provide a very good look at 9 different approaches for
security requirements engineering, but they do not provide a qualitative analysis of their
results. While their survey informs you of the capabilities of the various approaches
surveyed, it does not go beyond identifying if there is support for each aspect or not (no
notion of how well each aspect is satisfied). In our survey, we rank our analysis on a
None, Low, Moderate, or High scale; this helps not only identify support for a specific
question, but it tells you how well this support is provided.

5 Survey Method

 While we consider that this survey is aimed at security requirements engineering
on a big scope, we decided to decompose our evaluation framework based on the five
phases of security requirements engineering explained in section 3. This decomposition
of the framework into five specific areas allows us to survey security requirements
engineering in a more manageable manner. Each one of the framework areas has specific
questions concerning each phase; these questions have been developed in order to probe
how well each of the methods surveyed performs at each phase. The development of the
questions in this survey has been mainly done through aspects found in our literature
review that point at important characteristics that security requirements and their
approaches should have. Even though we discuss limitations of our framework in section
5.3, we believe that the questions used in our framework suffice for the survey at hand.

 5.1 Evaluation Criteria

 The evaluation criteria in a survey is very important, because this is what
determines what is a “good” or “bad” answer to each question of the framework. There
are three main types of criteria used in our survey; the first kind refers to answering the
question based on “how well the approach fulfills it?”, the second kind of criteria
identifies if an approach has a certain aspect, and the third is a combination of both.
 The first kind of criteria can be thought of as a rating system; meaning there are
some answers better than others. Throughout our survey, this rating system criteria is
predominant; out of the 34 questions surveyed 30 of them expect an answer that “rates”
the support of each approach for that question on a scale ranging from None to High. We
have represented each type of response based on a star system; figure 2 shows the
representation of each response based on symbols. An approach that answers a question
with a “High”/ is better/more desirable (as more support is provided) than an
approach that answers the same question with only a “Moderate”/ for example. We
decided to use star-system in order to make it easier for the reader to identify the
approaches that did better from a high-level view.
 While the second kind of criteria (those that merely identify a specific aspect of
the approach) do not provide a rating that can show you which answer is better or more
desirable, they are still important. We consider that for our survey it would be important

 12

to identify specific aspects about each approach surveyed, and let the reader decide how
“good” the aspect identified in each approach is; we do this for 4 of the questions.
 Some of the questions expect answers that are a little bit of both of the above
kinds. These questions do not only expect to identify if a specific approach fulfills certain
aspects, but how well does it do it. For example, one of our questions refers to identifying
if the security requirements specification produced by the approach can be used for either
validation, verification, or both of the implemented system; in this question the interest is
not only on identifying that the security specifications can be used for system validation,
but that it would support it moderately /. We have included this kind of questions in
the group of 30 described above as they also provide a rating.

Figure 2. Likert Scale Items

 At a high level, the different amount of stars are mutually dependent; for example,
a “High”/  answer fulfills not only the criteria for a High answer, but also for a
Moderate-High, Moderate, and Low answer. The criteria is determined as follows,

“None”/  There is no information regarding any aspects/concepts
 about the question at hand in any of the sources
 describing the approach

“Low” / Aspects/concepts related to the question at hand are
 suggested (but not in detail) OR there is enough
 information to suggest that any support would be
 possible by the approach

“Moderate” / Aspects/concepts related to the question at hand are
 explicitly mentioned in any of the sources describing the
 approach, but it is not a critical component of the
 approach. Support is described, but no specific measures
 to operationalize that support are given

“Moderate-High” / Aspects/concepts related to the question at hand are
 explicitly mentioned in a majority of the sources
 describing the approach; they are important aspects to the
 approach. Support is described and some measures
 to operationalize that support are described

 13

“High”/  Aspects/concepts related to the question at hand are
 critical to the approach. Support for the specific question
 is described across the majority of sources describing the
 approach. There is evident and extensive support for the
 question at hand, and measures for achieving this support
 are described.

 14

 5.2 Evaluation Framework Phases

 The questions and evaluation criteria have been designed to probe how well each
method supports each specific phase. The design of the questions and their placing in a
specific phase is mainly based on the important aspects of requirements engineering as
identified in our literature survey for each specific phase. Throughout our research we
found certain aspects that authors conveyed are important for specific phases of
requirements engineering; these findings have been used to develop the questions so that
we are surveying meaningful aspects of each approach. For example, the security
requirements elicitation phase of our framework has questions that are mostly geared
towards issues like level of stakeholder identification, customer involvement level, type
of elicitation technique(s) used, etc. While the security requirements specification phase
of the framework is mostly interested in probing how consistent, clear, and secure the
specifications are.
 Below is a breakdown of each specific phase of security requirements engineering
that this survey evaluates along with the set of questions and evaluation criteria for that
phase.

 5.2.1 Security Requirements Elicitation

 Requirements elicitation has been defined recently as “the process of
identifying needs and bridging the disparities among the involved communities for the
purpose of defining and distilling requirements to meet the constraints of these
communities” [SEI91]. In this sense, we can see that elicitation goes beyond asking
questions to the parties involved; it serves as a front end to the development of the
system. Various stakeholders including customers, developers, and end-users are
involved with requirements elicitation in a variety of ways, and thus requirements
elicitation involves social, communicative issues, and technical issues [Zuk89], [Zah90].

Christel and Kang [Chr92] state that while requirements elicitation can be broken
down into the activities of fact-finding, information gathering, and integration.
Furthermore, Rzepka decomposes the elicitation process as follows [Rze89]:

1. Identify the relevant parties that are sources of requirements.

2. Gather the “wish list” for each relevant party.

3. Document and refine the “wish list” for each relevant party.

4. Integrate the wish lists across the various relevant parties, henceforth called
viewpoints, thereby resolving the conflicts between the viewpoints.

5. Determine the nonfunctional requirements, such as performance and reliability

issues, and state these in the requirements document.

 For our survey, we wanted to understand not only if a certain approach supports
security requirements elicitation, but also how well it does. Figure 3 shows the part of the
framework specifically targeting the elicitation support that the approaches surveyed

 15

provide. We were mainly concerned with identifying important aspects about the
elicitation process such as identifying the stakeholders, customer involvement, and the
possibility to elicit other types of requirements besides security with the approach at
hand. We have also identified how well each approach fulfills each question, not just if
they support it or not.

 16

Figure 3. Security Requirements Elicitation Framework

 17

 5.2.2 Security Requirements Analysis

 The New York City Office of Technology tells us that the purpose of
requirements analysis is to obtain a thorough and detailed understanding of the business
need and to break it down into discrete requirements, which are then clearly defined,
reviewed and agreed upon with the Customer Decision-Makers. Requirements Analysis
provides the foundation for the desired product or services. These requirements will
become the specifications if the procurement process is invoked [NY01]
 Once the security requirements have been elicited, they need to be analyzed in
order to ensure that their condition is a good starting point for specification; in the case
that changes need to be made, we expect the approach to be able to tell us what these
changes are and how they should be addressed. In our survey we probed this phase with a
variety of questions including aspects such as completeness and clarity resolution; we are
looking at each approach and determining if they help identify completeness and clarity
issues as well as to help resolve them. We also consider important the ability of the
analysis to help consider/identify alternative security requirements or additional ones that
might have been missed during the elicitation phase. Figure 4 shows the complete set of
questions aimed at security requirements analysis, along with their criteria.

 18

Figure 4. Security Requirements Analysis Framework

 19

 5.2.3 Security Requirements Specifications

 While there exists a variety of definitions about what a requirements
specifications is, we agree with the definition of Rombach [Rom90] who states that a
specification is “a plan or standard that provides a description/characterization of a
software product or process type.”
 Often, a requirement specification is considered to be “good” based on a variety of
characteristics. These characteristics often include correctness, unambiguity,
completeness, consistency, verifiability, modifiability, and traceability. In our framework
we have explored how good the specifications produced by the different approaches
fulfill these characteristics.
 In addition, IEEE [IEEE98] tells us that a good set of requirements specifications
should fulfill the following,

1- Establish the basis for an agreement between the customers and the developers on
what the software system is expected to do

2- Reduce the development effort

3- Provides a schedule for estimating costs and timelines

4- Provides a baseline for validation and verification

5- Serves as a basis for system enhancement

 Figure 5 shows the framework of evaluation for the security requirements
specification phase of the survey; as mentioned above, these questions and criteria have
been formulated with the characteristics of a good specification in mind, as well as with
the aspects described by the IEEE that a good specification should also fulfill.

 20

Figure 5. Security Requirements Specification Framework

 21

 5.2.4 Security Requirements Management

 Requirements management is a very important phase in the engineering of
security requirements; a recent survey of over 3800 European organizations in 17
countries found that most of the perceived software problems are in the area of
requirements specification (>50%) and requirements management (50%) [ESI96].
 Paulk et. al. asserts that “requirements management involves establishing and
maintaining an agreement with the customer on the requirements for the software
project” [Pau93]. For this survey we are interested in the “maintaining” part of the
definition.
 Once the security requirements have been elicited, analyzed, and specified, it is
important for an approach to provide support that will enable one to manage them later
on. Figure 6 shows the questions and evaluation criteria designed for the security
requirements management phase of the survey. There are two main sets of questions;
those that probe aspects about the support that the surveyed approaches provide for
security requirements once they have been created, and questions that examine the
approach for miscellaneous information useful during management. Some of the
questions in the first set include the level of difficulty involved in updating the security
requirements, does the approach provide any support for the evolution of the security
requirements, and the level of automation provided by the approach. The second set
includes questions like the learning difficulty of the approach as well as the amount of
information available regarding it.

 22

Figure 6. Security Requirements Management Framework

 23

 5.2.5 Later Stages Support for Security Requirements

 As stated in the previous sections, we believe that it is important to not
only be able to elicit, analyze, specify, and manage correctly security requirements, but it
is also important to provide support for integrating them at later stages of the
development cycle and ensuring their usefulness.
 While we were not able to find much information during our survey about
approaches that specifically support security requirements during later stages of
development, we designed a set of questions and criteria for our framework to determine
based on the information of each approach, how well they would provide this kind of
support. The most important question that we ask in this part of the framework is if there
is any support, either described specifically in the paper or that can be interpreted, for
integrating the security requirements with later stages of development (i.e. architecture,
design, implementation, testing, maintenance). Along this line we also probe about
constraint consideration that the approach provides for any other stage; for example,
some approaches might specifically support the specification of architectural constraints
based on the security requirements. We are also interested in any testing benefits that the
security requirements or the approach itself provides; this question should be looked at
from the perspective of how useful during testing are the security requirements produced.
We also ask how useful for testing is the focus of the approach; this refers more to the
benefits of the process for testing, rather than the requirements themselves. Lastly, we
inquire about support for other types of requirements, besides security ones, in later
stages of development.
 Figure 7 shows the framework for determining the level of later stages support
provided by the surveyed methods.

 24

Figure 7. Later Stages Support for Security Requirements Framework

 25

 5.3 Evaluation Framework Limitations

 There are some limitations to our framework that need to be discussed. The most
significant limitation of our framework is its inherent subjectivity; 30 of the 34 questions
of the framework have been subjectively answered. Even though the rating (number of
stars) that each answer has been given has been done with as much information as
possible, it is nonetheless subjective. This is an expected limitation of our framework, but
believe that the explanations associated with each rated answer will help explain the
reason behind the decision.
 The second limitation our framework suffers from has to do with the value of each
star. While we realize that stars might be more valuable (harder to obtain) at specific
questions, they are all worth the same. For example, there could only be one approach
that obtains a star for a specific question, while the rest obtain 0 stars for the same
question; in this case, this star is “worth” a lot more since an approach must have
tremendous support to obtain a star for it. In order to help reduce the subjectivety of the
survey wherever possible and to help “standarize” the star counts, we decided to make
each star worth the same regardless of questions or phases.
 Our last limitation has to do with the availability of information for each approach
surveyed. While we explain in the following section our criteria for selecting the
surveyed approaches, there was more information available for some than others. This
means that while the rating of the answers have been done as informed as possible, some
answers might be more accurate than others based on the amount of information
regarding each approach surveyed.

6 Surveyed Approaches

 For the purposes of this survey, we focus only on those approaches that proactively
address the issue of security. We came across a variety of approaches that could be
adapted to engineer security requirements, but we did not consider them because they
make no mention of security as they currently stand. Over 30 SRE were originally
considered,

 1.Knowledge Agent-oriented System (KAOS)
 2.Risk Analysis
 3.Security Patterns
 4.Security Design Analysis (SeDaN)
 5.Abuse Cases
 6.Software Cost Reduction
 7.Threat Trees
 8.Fault Trees
 9.Problem Frames
 10.Security Use Cases
 11.Simple Reuse of Software Requirements (SIREN)
 12.Threat Modeling for Security Requirements
 13.Agile Security Requirements Engineering

 26

 14.Security Models
 15.Security Development Lifecycle Tool (SDL)
 16.Controlled Requirements Expression (CORE)
 17.Joint Application Development (JAD)
 18.Issue-based information systems (IBIS)
 19.Critical discourse analysis (CDA)
 20.Accelerated Requirements Method (ARM)
 21.Quality Function Deployment (QFD)
 22.Misuse Cases
 23.Abuser Stories
 24.Secure TROPOS
 25.Security Problem Frames
 26.Anti-models
 27.i* Security Requirements
 28.Common Criteria
 29.System Quality Requirements Engineering (SQUARE)
 30. Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
 31.Attack Trees
 32.Usage-centric Security Requirements Engineering (USeR)
 33.Comprehensive Lightweight Application Security Process (CLASP)

The number of SRE approaches surveyed in detail was later reduced to 12; this was
necessary in order to keep the literature survey within a manageable size. These 12
approaches were selected based on two main factors,

- Maturity. The first factor is their “seniority” in the field, meaning that we
strived for surveying those approaches that are most popular.

- Information availability. The second factor has to do with the amount of
information available about each approach; we decided to stay away from those
approaches that were nothing more than a “position” paper or “future
directions” paper, we wanted to explore those that were more mature when it
came to their development.

 Once the 12 approaches were selected, we divided them into two main groups; the
first group is composed of those approaches that in one way or another have been adapted
from exisitng approaches (that do not support security) to address security. The second
group are approaches that have been developed specifically with security at heart; these
approaches have not been adapted from exisiting ones, but have rather built security into
the approach from the “ground-up.” Figure 8 shows the approaches surveyed and the
category they fall into (derived or original); for the ones that have been derived from
existing ones we show the parent approach. We have six approaches for each category.

 27

Figure 8. Surveyed Approaches

 28

 6.1 Misuse Cases

 Misuse cases [Hop04, Ale03] have been derived from use cases to look at the
system from the point of view of a malicious user. Use cases have become popular for
eliciting, communicating and documenting various types of requirements [Rum94,
Kul00, Wei98]. Use cases are great in the fact that they provide a different approach to
requirements gathering, a more visual one. As it turns out, many groups of stakeholders
are more comfortable with descriptions of operational activity paths than with declarative
specifications of software requirements. Misuse cases allow you to harness this
advantages, but in a different way.
 According to Jacobson et al [Jac92], a misuse case is a use case from the point of
view of an actor hostile to the system under design. Its goal is not a system function but a
threat posed by that hostile actor. Some misuse cases occur in highly specific situations,
whereas others continually threaten systems. For instance, a car is most likely to be stolen
when parked and unattended, whereas a web server might suffer a denial-of-service
attack at any time.

 6.1.1 Framework Application

 Table 1 shows the results of applying our framework to misuse cases.

Misuse Cases

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Misuse cases highly help elicit
security requirements

RE2. Type of elicitation technique
used/recommended by the approach

B The elicitation technique mainly used
is brainstorming sessions where both
the customers and developers interact

RE3. Degree of stakeholder
identification provided (Including
customer, developers, end-users)

 There is a moderate degree of
identification of stakeholders. Misuse
cases help delineate the relationship
that developers and customers will
have. They also help in identifying
possible attackers

RE4. Level of involvement of the
customer (How involved in the
elicitation process should the
customer be)

 Misuse cases rely a lot on the
customers, and therefore they are
moderately-highly involved in the
elicitation process. Additionally, the
success of misuse cases also depends
on the quality of communication
between the developers and customers

RE5. Elicitation of other types of NF Other non-functional requirements

 29

requirements besides security

 like safety can be elicited with misuse
cases (moderate-high support)

RE6. Dynamics of the elicitation
process (i.e. Iteration of
requirements elicitation or not)

I Security requirements are elicited
iteratively; meaning that developers
go back to the customers constantly to
help refine the security requirements
elicited so far

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Moderate.

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I


+
E



Misuse cases provide both, internal
and external analysis of the security
requirements elicited. The internal
analysis (verification) is inherited from
use cases and is moderate-high the
external is low

RA2. Unambiguity resolution level
of the analysis (Unambiguity issues
can be detected and resolved through
the analysis)

 Low. While the customers are highly
involved in helping iteratively shape
the security requirements, the inherent
informality of misuse cases still leaves
plenty of room for ambiguity to slip
through the analysis phase.

RA3. Completeness resolution level
of the analysis (Analysis can help
determine if the security
requirements are complete)

 There is moderate support for
ensuring completeness.

RA4. Clarity resolution level of the
analysis (Analysis helps clarify the
security requirements as much as
possible)

 Their informality once again plays an
important role in how clear the misuse
cases are. They provide a low clarity
resolution level; while the customer
can help in clarifying them, there is too
much risked with the natural language
used

RA5. Support level of analysis to
consider alternative/additional
security requirements missed during
elicitation

 Moderate reasoning about alternative
security requirements is provided by
misuse cases. The approach helps you
consider numerous issues that could
cause the system to fail; chances are
that a number of these issues have not
been considered during the elicitation
process.

 30

RA6. Analysis helps prevent security
requirements conflict

 Misuse cases definitely help you
resolve conflicts among security
requirements. Misuse cases have
additional relationships referred to as
“aggravates” and “conflicts with” for
this very purpose.

REQUIREMENTS SPECIFICATION
RS1. The specification produced can
be used as a baseline for system
validation and/or verification once
implemented

Va


+

Ve



The specification produced could
support both the validation and
verification of the resulting system
both moderately

RS2. The specification provides a
basis for cost and/or time estimation
of the overall development project

C



Specifications produced with misuse
cases can help with tradeoff analysis
involving cost (moderate support)

RS3. Traceability level of the
specification produced (How
traceable is the security requirements
specification)

 Low. Misuse cases on their own do not
really provide much support, nor
emphasize traceability as part of the
specifications

RS4. Consistency degree of the
specification produced

 The specifications produced are
moderately consistent. Further
support is offered through tools
designed for use cases (which could be
applied to misuse cases as well) that
check for consistency of the security
requirements

RS5. Support for specifying non-
functional requirements other than
security ones

 Moderate-high. We believe that
misuse cases are easily adaptable to
cover other ranges of non-functional
requirements like safety and privacy
for example.

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate overall clarity and
understandability due to their informal
nature

 RS7. Level of formality of the
specification

I The specifications produced are
informal

 RS8. Rigor of the specification
process (how formal is the process
itself)

I The approach is very informal

 31

RS9. Overall security level of the
resulting system (How secure can the
resulting system be based on the
specifications?)

 Moderate. While the specifications
produced are secure, they are not as
secure as they could be due to informal
nature of misuse cases

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements (i.e.
making additions, deletions, and/or
modifications)

 The simplicity and informality of
misuse cases makes it very easy to
update when needed

RM2. Level of security requirements
evolution supported (As the system
evolves, does the approach support
for the requirements to evolve as
well?)

 Not Supported.

RM3. Level of automation provided
(Is there any support for automating
any step and/or process in the
approach)

 Low. Most misuse cases must be
developed manually, this because
misuse cases identify vulnerabilities
which is difficult to do automatically
(unless the systems are so similar that
the same vulnerabilities could apply to
both)

RM4. Degree of learning difficulty
of the approach (How difficult is it
for a novice user to learn this
approach?)

 Misuse cases are easy to learn; a
benefit derived directly from use cases

RM5. Scalability of the approach
(Does the approach support
relatively easy application to systems
of various sizes?)

 Low. The approach works well with
relatively small systems; when the
systems become larger it is difficult to
systematically develop security
requirements using misuse cases

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is abundant information
available.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How usable
are the security requirements past
their inception?)

 While there is no explicit information
about any support for integrating
misuse cases with later stages of
development, there is some support for
integrating use cases; this knowledge
could potentially be applied to misuse
cases

 32

LSS2. Constraint consideration for
later stages (Does the approach allow
for planning other aspects of the
system past the requirements?)

 None.

LSS3. Security requirements provide
testing benefits/support for later
stages (Can the security
requirements produced be used as a
basis for testing the system?)

 Moderate. Misuse cases can help you
identify possible failure modes as well
as exceptions that the system can
incur, these can be modeled as test
cases in order to test boundary
conditions

LSS4. Degree of support of the
overall focus of the approach when it
comes to testing

 The main focus of misuse cases is to
determine ways that the system should
not be used from the perspective of the
possible attacker; this focus
moderately-highly supports testing
efforts

LSS5. Level to which the security
requirements help reduce the overall
development effort

 Misuse cases can moderately help
reduce the development effort. Misuse
cases help in considering solutions that
mitigate the misuse cases themselves;
this information can be applied during
development to narrow down security
strategies.

LSS6. Support for other types of
non-functional requirements (besides
security) in later stages

 Low. Misuse cases could provide
some sort of support for safety
requirements

Table 1. Misuse Cases Framework Application

 33

 6.2 Abuser Stories

 Abuser stories [Pet07, Pet05] have been adapted from user stories to address
security. An Abuser story is a textual description of the malicious interaction between a
threat agent and the system itself that, if successful, results in the increase of risk to the
assets valued by the customer. An example of a simplified abuser story is: “A participant
could modify the proposal of a competitor to make it look bad.”
 Abuser stories are discussed with the customer to ensure their relevance and
importance. Finding good abuser stories is a mostly brainstorming activity. However,
using resources such as attack patterns can be helpful here [Hog04]. Abuser stories can
also be used as a starting point to security testing of the system. Abuser stories have been
proposed to help engineer security requirements for XP projects. [Bos061]

 6.2.1 Framework Application

 Table 2 shows the results of applying our framework to abuser stories.

Abuser Stories

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Moderate-High. Abuser stories help
elicit security requirements

RE2. Type of elicitation
technique used/recommended by
the approach

I The main technique used is interviews

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 There is a high degree of identification
of stakeholders. It helps identify not only
the key customers and developers
involved, but also helps envision the
relationship between them.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 Customers are moderately-highly
involved; they check the abuser stories
constantly for accuracy and aid in
updating them to accommodate changes

RE5. Elicitation of other types
of requirements besides security

 Not Supported

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

I The elicitation process is iterative.
Developers bring to the customers the
requirements elicited to help them ensure
they are correct

 34

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Low. This is not explicitly supported by
the approach, but due to the high
customer involvement, elicitation for
scope related abuser stories could be
derived

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



The approach mainly provides an
internal analysis, but it there is low
support for it

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 There is low support for resolving
ambiguities in the requirements

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 There is low support for ensuring that the
requirements that have been elicited are
complete

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 There is moderate support for ensuring
that the abuser stories are clear; this
because the customer checks them
constantly and in turn helps refine them

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Not Supported

RA6. Analysis helps prevent
security requirements conflict

 Not Supported. There is no mention
about the approach providing any kind of
support for resolving conflicts among
requirements.

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va



User stories have shown potential for
helping validate a system; we think that
abuser stories could also serve that
purpose. Based on user stories’
background, there could be low support
for using the security specifications as a
validation point

RS2. The specification provides
a basis for cost and/or time

C



Abuser stories can help in estimating
both time and cost. Abuser stories

 35

estimation of the overall
development project

+

 T



provide brief estimations on how long
each story should take to implement;
moderate-high support. Additionally,
they also help optimize the net cost as
well as bringing into account additional
costs of possible attacks; thus providing
moderate support.

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Abuser stories can prove to produce
highly traceable security requirements;
this is one of their highlights and aid to
the agile requirements process

RS4. Consistency degree of the
specification produced

 Besides the possible consistency benefits
obtained from a high customer
involvement, abuser stories produce low
consistency in security requirements;
mainly due to their informal nature

RS5. Support for specifying
non-functional requirements
other than security ones

 Not Supported

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate. While abuser stories are easy
to understand due to their simplicity,
they can be very unclear due to their
informality

 RS7. Level of formality of
the specification

I Informal approach.

 RS8. Rigor of the
specification process (how
formal is the process itself)

I Informal approach.

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Low

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Their simplicity makes updating abuser
stories easy; as there is not much effect
on other abuser stories when one is
updated

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported

 36

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 None

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 This approach is moderate-easy to learn
as it does not involve any complex
syntax/semantics, nor an outrageous
number of steps

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 Low. Because they are so simple, it
seems difficult to be able to develop
security requirements for a large project
based on them

RM6. Information availability
regarding the approach (How
popular is this approach?)

 Low.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 None.

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

I



Implementation constraints could be
derived based on the information
regarding the time needed to implement
each story; moderate level of support for
implementation

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 There is moderate support for testing
that is made explicit by abuser stories

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 The main focus of the approach, abuser
stories, provide moderate support for
testing due to the fact that each story
could easily be implemented as a test
case (or series of related test cases) in
order to test specific aspects identified in
the security requirements

 37

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Provides a moderate level of support for
reducing the effort in developing the
system.

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 None.

Table 2. Abuser Stories Framework Application

 38

 6.3 Secure Tropos

 Secure Tropos is an extension of the Tropos methodology [Mou06]. Tropos [Bre04]
is an agent oriented software engineering methodology, in which notions such as actors,
goals, soft-goals, tasks, resources, and intentional dependencies are used in all the phases
of the system development from the first phases of the early analysis, down to the actual
implementation. The Tropos methodology is mainly based on four phases [1]: early
requirements analysis, late requirements analysis, architectural design, and the detailed
design phase.
 Although, the Tropos methodology was not designed with security in mind, there is
a set of security related concepts available [Mou03, MoG03, MGS03] that enable it to
model security issues. This security-oriented extension, known as Secure Tropos, is built
upon a variety of concepts, including security constraints, secure dependencies, and
secure goals. A security constraint is a restriction related to security issues, which can
influence the analysis and design of the information system under development. Secure
dependencies introduce security constraint(s) that must be fulfilled for the dependency to
be satisfied. A secure goal represents the strategic interests of an actor with respect to
security. Secure goals are mainly introduced in order to achieve possible security
constraints that are imposed to an actor or exist in the system [Gio06].

 6.3.1 Framework Application

 Table 3 shows the results of applying our framework to Secure Tropos.

Secure TROPOS

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Secure TROPOS provides low support
for eliciting security requirements

RE2. Type of elicitation
technique used/recommended by
the approach

Ot Other. Security requirements are elicited
using the concept of constraints.

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 Moderate. The approach helps identify
besides customers and developers,
relevant actors in the system-to be, along
with their respective dependencies

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 Low.

 39

RE5. Elicitation of other types
of requirements besides security

NF



This approach can help elicit other non-
functional requirement like privacy
and usability (low support)

RE6. Dynamics of the elicitation
process (i.e. Iteration of
requirements elicitation or not)

I Iterative. The requirements are elicited
through an incremental refinement
process

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Low.

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

E



Moderate external analysis of the
security requirements elicited is
provided. Security constraints are
imposed on the stakeholders to help
validate the security requirements

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 Low.

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 Moderate. Additionally, the variety of
models that are provided can help to
systematically determine how complete
the security requirements are

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate. Secure TROPOS analyzes in
depth the goals of each actor in the
security requirements and the security
constraints on them to help make them
as clear as possible

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 None.

RA6. Analysis helps prevent
security requirements conflict

 Marginally. Dependencies between the
actors in the security requirements are
modeled; this knowledge can prove
useful in resolving conflicts

 40

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va



Secure TROPOS specifications can
highly help with two kinds of
validations; model and design validation

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C


+
T



Cost and time estimations are both
possible with Secure TROPOS. The
approach strives for cost-effective
protection as well as security reference
modeling aims specifically at helping
save time (low support for both)

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Traceability of the specification is low

RS4. Consistency degree of the
specification produced

 A moderate-high level of consistency is
provided. There is support for not only
ensuring consistency of the specification
produced but also of the models
developed with it through the use of the
outer-model rules provided

RS5. Support for specifying
non-functional requirements
other than security ones

 Moderate. TROPOS allows for the
specification of other non-functional
requirements as “soft-goals;” this could
also be applied to Secure TROPOS in
order to support other non-functional
requirements

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate.

 RS7. Level of formality of
the specification

S The specifications are semi-formal

 RS8. Rigor of the
specification process (how
formal is the process itself)

F The approach is formal

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Moderate.

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements

 Moderate. The approach provides tool
support for checking the consistency of

 41

(i.e. making additions, deletions,
and/or modifications)

requirements; this tool can be applied
after updates are done to identify effects
on other security requirements

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Moderate-high. The approach provides
tool support for automatically checking
the consistency of security requirements.
Additionally, it supports the idea of
“autonomy reasoning” through actor and
goal diagrams

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 Learning is moderately difficult. The
syntax and semantics used seem tricky to
learn

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 Scalability is high. The approach is
easily extensible to accommodate for
larger systems

RM6. Information availability
regarding the approach (How
popular is this approach?)

 Moderate.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Moderate. There is support for helping
transform the specification into a design

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

A


+

D



Secure TROPOS helps determine what
needs to be addressed at design time and
architecture using an actor diagram
(both moderately)

 42

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 Moderate. Can potentially help in
testing our design against the initial
security requirements

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Low.

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Low.

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 Moderate-high. Privacy, availability,
and integrity requirements could also be
supported at design

 Table 3. Abuser Stories Framework Application

 43

 6.4 Security Problem Frames

 Security problem frames [Hat07, Hat05, HaH07, Sec1] are an adaptation from the
existing problem frames approach. The basic idea of problem frames is to make use of
special patterns defined for structuring, characterizing, and analyzing problems that occur
frequently in requirements engineering by Michael Jackson [Jac01]. The advantage of
using problem frames in requirements engineering is that problems are mapped to well-
known problem classes that are practically relevant. Once a problem is successfully fitted
to a problem frame, its most important characteristics are known, because these are
shared by all problems fitting that frame.
 Security problem frames [Hat06] are special kinds of problem frames, which
consider security requirements. They strictly refer to the problems concerning security,
without anticipating solutions. For example, we may require that data is kept confidential
during transmission without being obliged to mention encryption, which is a means to
achieve confidentiality. As in problem frames, which are targeted at functional
requirements, the same process can be used to structure, characterize, and analyze
security-specific problems.

 6.4.1 Framework Application

 Table 4 shows the results of applying our framework to security problem
frames.

Security Problem Frames

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation



Security problem frames counts on
requirements being already elicited with
another approach (like CREE for
example). Their main support for security
requirements starts at the analysis level

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

E



The approach mainly provides a moderate
external analysis

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 There is moderate-high support for
resolving ambiguities. “Concretized
security frames” help in ensuring that the
security requirements are more specific;
this specificity can help in coping with
ambiguity

RA3. Completeness resolution
level of the analysis (Analysis

 There is high support for ensuring that the
requirements that have been elicited are

 44

can help determine if the
security requirements are
complete)

complete. Security requirements are
analyzed using an iterative process, in
which “sub-problems” are created until all
the preconditions of other security problem
frames can either be proven to be true or
assumed to be true. This iterative process
helps guarantee that the set of security
requirements are complete

RA4. Clarity resolution level
of the analysis (Analysis helps
clarify the security
requirements as much as
possible)

 Moderate. The continuous decomposition
of problem frames helps in making them
clearer

RA5. Support level of analysis
to consider
alternative/additional security
requirements missed during
elicitation

 Moderate-high support achieved mainly
by the fact that security problem frames
provides developers with a “related
section” of each frame used so far in order
to see other security requirements that
should be associated with the current
frame

RA6. Analysis helps prevent
security requirements conflict

 Marginally. Requirements conflict could
be avoided by relying on proven problem
frame dependencies and structures

REQUIREMENTS SPECIFICATION
RS1. The specification
produced can be used as a
baseline for system validation
and/or verification once
implemented

 Not Supported.

RS2. The specification
provides a basis for cost and/or
time estimation of the overall
development project

T



The specification could potentially provide
a moderate-high basis for time estimation
based on the time it took to implement pre-
existing frames that the current security
problem frames could be based on

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Low. There is no evidence that points to
the fact that the specifications produced by
security problem frames could be
traceable; nor they mention any type of
support for achieving this; but we believe
that the knowledge about their
dependencies could be exploited to support
traceability

RS4. Consistency degree of
the specification produced

 Due to explicit knowledge of dependencies
among security problem frames, this helps
make them moderately consistent

 45

RS5. Support for specifying
non-functional requirements
other than security ones

 Low. Even though problem frames could
potentially be used to specify other non-
functional requirements like
confidentiality, there is not much support
described

RS6. Overall clarity and
understandability of the
requirements specification

 Low.

 RS7. Level of formality of
the specification

F The specifications produced are formal as
they have their specific syntax and
structure

 RS8. Rigor of the
specification process (how
formal is the process itself)

S While the approach seems to be semi-
formal, certain aspects of it could
potentially be formalized using Object Z

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the
specifications?)

 Moderate

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions,
deletions, and/or
modifications)

 Updating security problem frames could
be moderately difficult, because while
there are existing patterns that the updated
frame could fit into, you still have to
consider which one it is as well as how it
would affect its dependencies

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Low. The knowledge of how concretized
security problem frames evolve from
normal security problem frames could be
applied to their evolution in general; but
this is just a speculation

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 None

RM4. Degree of learning
difficulty of the approach
(How difficult is it for a
novice user to learn this
approach?)

 Moderate, as you need background
knowledge on problem frames in general
as well as existing methods for elicitation
of security requirements

 46

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of
various sizes?)

 Moderate-high. The more extensive the
library of patterns that you have, the easier
it would be to apply the approach to a
much larger system

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is a moderate amount of
information available regarding security
problem frames.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with
later stages of development
(How usable are the security
requirements past their
inception?)

 None. There is no explicit
support/guidance for making the security
requirements usable later on

LSS2. Constraint
consideration for later stages
(Does the approach allow for
planning other aspects of the
system past the requirements?)

A



There is high support for associating
security problem frames with defined
architectural patterns; information that
can be used in order to establish
architectural (and possibly design)
constraints based on the security
requirements

LSS3. Security requirements
provide testing
benefits/support for later
stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 None. There is no explicit consideration of
the testing phase by security problem
frames

LSS4. Degree of support of
the overall focus of the
approach when it comes to
testing

 While there is no explicit sense of security
benefits from problem frames, its focus
could aid at a low level

LSS5. Level to which the
security requirements help
reduce the overall
development effort

 Moderate-high. A benefit of having a
complete set of security requirements is
that through the support of concretized
problem frames, you also have a complete
set of solution approaches to each security
problem frame. This knowledge can be
used in order to develop specific security
mitigation mechanisms that embody each
one of the solution approaches.

 47

LSS6. Support for other types
of non-functional requirements
(besides security) in later
stages

 None.

Table 4. Security Problem Frames Framework Application

 48

 6.5 Anti-Models

 Anti-models [Hal04, Sin03] have been derived from existing work in obstacle
analysis [Lut07]. In anti-models, the basic notion is to develop two kinds of models
simultaneously. The first is a model of the system-to-be that covers both the software and
its environment and inter-relates their goals, agents, objects, operations, requirements and
assumptions. The second model is the actual anti-model, which is derived from the first
model as it is being developed. This anti-model exhibits how specifications of model
elements could be maliciously threatened, why and by whom.
 In this type of development, security requirements are elaborated systematically by
iterating the following steps:
1- instantiation of specification patterns associated with property classes such as
confidentiality, privacy, integrity, availability, authentication or non-repudiation,
2- Develop anti-model specifications threatening such specifications,
3- Generate alternative countermeasures to such threats and define new requirements by
selection of alternatives that best meet other quality requirements from the model.
[Lam04]

 6.5.1 Framework Application

 Table 5 shows the results of applying our framework to the anti-models
approach.

Anti-Models

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Anti-models can help in eliciting security
requirements moderately, as it elicits them
from the perspective of eliciting security-
related goals from instantiations of
specification patterns

RE2. Type of elicitation
technique used/recommended
by the approach

Ot Other. The main technique used is the
negation of goals that have been obtained
from the customer

RE3. Degree of stakeholder
identification provided
(Including customer,
developers, end-users)

 There is a moderate-high degree of
identification of stakeholders. Besides
customers and developers that need to be
involved, it also helps identify possible
attackers

RE4. Level of involvement of
the customer (How involved in
the elicitation process should
the customer be)

 Moderate. In order to obtain answers to
key aspects of the security requirements
like “who can benefit from this anti-goal?”
customers are involved.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should
the customer be)

 Moderate. In order to obtain answers to
key aspects of the security requirements
like “who can benefit from this anti-goal?”
customers are involved.

 49

RE5. Elicitation of other types
of requirements besides
security

NF



Other non-functional requirements like
safety ones could also be elicited with
anti-models; these requirements could be
elicited moderately-highly with anti-
models

RE6. Dynamics of the
elicitation process (i.e.
Iteration of requirements
elicitation or not)

I Security requirements are elicited through
an iteration of three major steps

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Moderate-high. The security
requirements elicited with anti-models can
help developers determine different
characteristics of the different problem
domains at hand, along with their
interactions. This information can be used
to determine what is outside of the scope
of the system

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



There is low support to internally analyze
the security requirements elicited

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 Moderate-high. The iteration of the anti-
goals that have already being defined helps
detect possible ambiguity issues, and helps
resolve them.

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 There is low support for ensuring
completeness. The approach argues
strongly for the importance of complete
requirements, but there is no explicit
step/tool for checking completeness.

RA4. Clarity resolution level
of the analysis (Analysis helps
clarify the security
requirements as much as
possible)

 The continuous iteration of the anti-goals
provides moderate-high support for
ensuring that the security requirements
elicited are clear

RA5. Support level of analysis
to consider
alternative/additional security
requirements missed during
elicitation

 Moderate-high. The approach helps to
consider alternative countermeasures to the
anti-models; this knowledge can be used to
determine if additional and/or alternative
security requirements are necessary.

RA6. Analysis helps prevent
security requirements conflict

 Marginal support for dealing with
conflicts in the requirements.

 RA6. Analysis helps prevent

security requirements conflict

 Marginal support for dealing with
conflicts in the requirements.

 50

REQUIREMENTS SPECIFICATION
RS1. The specification
produced can be used as a
baseline for system validation
and/or verification once
implemented

Ve



The specification could potentially be used
to help verify the implemented system;
this support would be at the most of
moderate benefit to the overall
verification process

RS2. The specification
provides a basis for cost and/or
time estimation of the overall
development project

 None.

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 The specifications produced seem to be
marginally traceable; this because there is
no explicit call to make them as traceable
as possible, but there is nonetheless
techniques available to provide traceability
management

RS4. Consistency degree of
the specification produced

 Due to explicit knowledge of dependencies
among security problem frames, this helps
make them moderately consistent

RS5. Support for specifying
non-functional requirements
other than security ones

 High. There is support for also specifying
privacy and integrity requirements.

RS6. Overall clarity and
understandability of the
requirements specification

 Low.

 RS7. Level of formality of
the specification

S Semi-formal.

 RS8. Rigor of the
specification process (how
formal is the process itself)

F The process is formal because among
other things it uses first order temporal
logic as well as and/or goal refinement; the
approach also provides a syntax and
semantics for the specification

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the
specifications?)

 Moderate. The approach also provides
options for different levels of security
assurance in the specifications

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions,
deletions, and/or
modifications)

 Difficult. The formality involved in the
process of developing anti-models (i.e.
temporal logic) can make it complex to
update certain security requirements.

RM1. Level of difficulty for
updating security requirements
(i.e. making additions,
deletions, and/or
modifications)

 Difficult. The formality involved in the
process of developing anti-models (i.e.
temporal logic) can make it complex to
update certain security requirements.

 51

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Moderate. While there are no explicit
automation measures provided, there is a
real-time temporal logic that is offered by
the developers of the approach to help
formalize anti-goals that could then serve
as the input for other tools that can help in
generating anti-model scenarios
automatically

RM4. Degree of learning
difficulty of the approach
(How difficult is it for a
novice user to learn this
approach?)

 Difficult, as you need background
knowledge on various aspects like goals
and goal refinement techniques in order to
make the approach as effective as possible

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of
various sizes?)

 High. We believe that the approach can be
applied to systems of various sizes; there is
support added to enable an incremental
approach to developing security
requirements using anti-models

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is a limited amount of information
available.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with
later stages of development
(How usable are the security
requirements past their
inception?)

 None.

LSS2. Constraint
consideration for later stages
(Does the approach allow for
planning other aspects of the
system past the requirements?)

 None.

LSS3. Security requirements
provide testing
benefits/support for later
stages (Can the security
requirements produced be used

 Low. There is the possibility that some of
the alternative countermeasures that the
approach helps you consider could become
possible test cases; but there is no concrete
information regarding this

 52

Table 5. Anti-Models Framework Application

LSS3. Security requirements
provide testing
benefits/support for later
stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 Low. There is the possibility that some of
the alternative countermeasures that the
approach helps you consider could become
possible test cases; but there is no concrete
information regarding this

LSS4. Degree of support of
the overall focus of the
approach when it comes to
testing

 The overall focus of anti-models can
provide a low level of support for testing

LSS5. Level to which the
security requirements help
reduce the overall
development effort

 Moderate level of support for reducing the
efforts of developing the system. The
countermeasures identified can help
anticipate a variety of aspects when it
comes to developing specific security
mechanisms

LSS6. Support for other types
of non-functional requirements
(besides security) in later
stages

 None.

 53

 6.6 i* Agent-based Requirements for Security

 The i* security requirements approach is derived from the i* methodology
[Luc04]. The i* methodology is an agent-oriented requirements modeling language. The
i* agent-based requirements for security approach [Liu03] is a methodological
framework for analyzing security requirements based on the concept of strategic social
actors. The strength of the framework is that it offers a set analysis techniques aimed at
helping stakeholders involved in the development of the system with a variety of issues.
These issues include better understanding the threats and vulnerabilities involved, the
possible countermeasures, and how to combine them to achieve the desired security level.
 The analysis techniques provided include,
- Attcker Analysis. Identifies potential system abusers and their malicious intents.
- Dependency Vulnerability Analysis. Identifies the vulnerable points in the dependency
network
- Countermeasure Analysis. Decisions are made on how to protect security from the
potential attackers and vulnerabilities
- Access Control Analysis. Uses i* models to refine a possible countermeasure solution
and bring it closer to a design state

 6.6.1 Framework Application

 Table 6 shows the results of applying our framework to the i* security
requirements approach.

i* Agent-Based Security Requirements

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 i* for security requirements can help you
moderately elicit security requirements
due to the fact that it does this mainly
from decomposing and analyzing
existing documentation

RE2. Type of elicitation
technique used/recommended by
the approach

I + Ot The main technique used is interviews
as well as existing documentation
analysis

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 There is a high degree of identification
of stakeholders, ranging from customers
to actors and agents.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the

 Customers are moderately-highly
involved, not only to help elicit
requirements but also to help verify them

 54

customer be)

RE5. Elicitation of other types
of requirements besides security

NF



This approach can also help you elicit
other non-functional requirements, like
privacy (but there is low support for this)

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

I The elicitation process is iterative

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Low. The scheme provided can help in
determining what is outside of the scope
of the system

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



Model checking can be used in order to
provide a moderate level of internal
analysis

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 There is low support for identifying
ambiguities in the security requirements
elicited and resolving them

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 The analysis moderately determines that
the security requirements elicited are
complete

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 The high involvement of the customer is
crucial in enabling the analysis to
moderately-highly clarify the security
requirements

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Moderate support is provided through
the inherent nature of agent-based
models in order to help identify
alternative security requirements

RA6. Analysis helps prevent
security requirements conflict

 Definitely the richer description and
analysis techniques that this approach
supports help in detecting and resolving
possible conflicts in the requirements

 55

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va


There is not much information regarding
this aspect, but based on i* requirements
in general, the specification could
potentially be used to provide a low
degree of validation

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



Cost. The approach helps in analyzing
possible tradeoffs that can occur between
security and cost when it comes to
implementing the system (moderate
support)

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 A moderate level of traceability can be
achieved in the specification through the
use of i* dependency modeling.

RS4. Consistency degree of the
specification produced

 Highly consistent specifications can be
produced if Telos (a tool provided by i*)
is applied during the process; Telos helps
check the consistency between the
security requirements and the models

RS5. Support for specifying
non-functional requirements
other than security ones

 The approach provides a high degree of
support for also specifying privacy
requirements

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate.

 RS7. Level of formality of
the specification

S Semi-formal specifications produced.

 RS8. Rigor of the
specification process (how
formal is the process itself)

F Formal approach.

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Highly secure specifications can be
produced with this approach; mainly due
to the fact that it helps perform
additional security-related activities like
vulnerability analysis, attacker
identification, and countermeasure
identification. In addition, it also has a
rule of considering all of the actors of the
system as “guilty until proven innocent.”

 56

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Since the security requirements can
prove to be highly dependent on one
another, updating one can prove to be
difficult

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 None

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 Moderate

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 If Telos is also applied to the models, it
can provide a moderate level of
scalability for larger project

RM6. Information availability
regarding the approach (How
popular is this approach?)

 Low. Information regarding this
approach is very rare.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Low. There exists the possibility of
assistance in the transition into design
through the concept of access control
analysis that they describe

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

D


+

 I

Provides constraint moderate
considerations for design by helping
sketch out the social setting of the
system being developed. There is also
moderate-high support for

 57

  implementation because access control
analysis can be used to bridge the gap
between the security requirements and
their implementation

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 There is low support for testing, as it
helps anticipate certain attackers which
could be translated into possible test
cases

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Low.

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Provides a moderate-high level of
support for reducing the effort in
developing the system, because aside
from identifying possible attacks for the
system, it also considers aspects like
“why” they are relevant as well as
countermeasures for them

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 There is low support for other types of
non-functional requirements as only
privacy is mentioned as a possible
candidate

Table 6. i* Agent-based Requirements for Security Framework Application

 58

 6.7 Common Criteria

 The Common Criteria (CC) is a formal method of requirement specifications for
security standards [Sto01]. It was adopted in 1999 as an international standard for
security product evaluation for establishing confidence in security. CC is a repeatable
methodology for documenting Information Technology (IT) security requirements,
documenting and validating product security capabilities, and promoting international
cooperation in the area of IT security [Vet02]. CC can be used not only by software
developers, but evaluators and consumers as well in their respective tasks.

 The CC is mainly used to create two kinds of documents, a “protection profile”
(PP) and a “security target” (ST) [CCIB99]. A PP is a document used to identify the
desired security properties of a product created by a group of users. It is a list of user
security requirements, described in a very specific way defined by the CC. A ST is a
document that identifies what a product actually does, or a subset of it, that is security-
relevant. An ST doesn't need to meet the requirements of any particular PP, but an ST
could meet the requirements of one or more PPs. The PP and the ST are established
through the development of three aspects: security environment, security objectives and
security requirements [War06, Abr98, Kam05].

 6.7.1 Framework Application

 Table 7 shows the results of applying our framework to Common Criteria.

Common Criteria

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation



Low. While Common Criteria has been
mainly designed to evaluate already
elicited security requirements and
literature suggests that there is no
support for elicitation, we believe that
certain aspects of elicitation could be
accomplished with the use of Common
Criteria

RE2. Type of elicitation
technique used/recommended by
the approach



None. While there is no explicit
elicitation technique suggested, we
believe that structured interviews could
be used

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 There is a moderate degree of
identification of stakeholders. Common
Criteria can help identify customers,
developers, and evaluators needed for the
process to be successful

RE4. Level of involvement of  There is low involvement from the

 59

the customer (How involved in
the elicitation process should the
customer be)

customer, as most of the work is carried
out by the developers and security
experts

RE5. Elicitation of other types
of requirements besides security

NF



Non-functional requirements. There is
minimal (low) support for possibly
eliciting privacy requirements

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

S Security requirements would be elicited
sequentially

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Not Supported

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I


+

E



Common Criteria provides both,
internal and external analysis of the
security requirements elicited with a
high degree of support for both

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 High. Common Criteria analyzes
security requirements structurally and
systematically to resolve any possible
problems related to ambiguity

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 Moderate-high. The formality of
Common Criteria helps in ensuring that
the requirements that have been
developed so far are as complete as
possible

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate. While the security
requirements are very specific, clarity
can often be obscured by the Common
Criteria’s complexity and formality

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Moderate

 60

RA6. Analysis helps prevent
security requirements conflict

 Common Criteria can definitely aid in
resolving conflicts between
requirements; this mainly through their
systematic approach and available tool
support

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va


+

Ve



Both validation and verification of the
system could be done moderately with
the security specifications produced by
the Common Criteria

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



While no explicit mention to either time
nor cost estimation is made in the
Common Criteria literature, we believe
that its formality and variety of artifacts
produced could potentially aid in
estimating the cost of the system; this is
a low support though

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 The specification produced is
moderately traceable; this because
Common Criteria provides support for
tracing which security requirements
address which specific security
objectives through a security
requirements “rationale”

RS4. Consistency degree of the
specification produced

 High. Besides the rigorous and
systematic approach to specifying
security requirements with the Common
Criteria that ensures they are as
consistent as possible, an APE criteria is
also available to help evaluate their
consistency

RS5. Support for specifying
non-functional requirements
other than security ones

 Not Supported. While it might be
possible, there is no explicit evidence
that points to any support to specify non-
functional requirements other than
security

RS6. Overall clarity and
understandability of the
requirements specification

 While the level of formality of the
Common Criteria makes its
specifications moderately clear, the
understandability suffers a little for those
not trained in the Common Criteria
process

 RS7. Level of formality of
the specification

F The specifications produced are formal

 61

 RS8. Rigor of the
specification process (how
formal is the process itself)

F The process is very formal

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 High. The specifications produced using
the Common Criteria can be extremely
secure, as long as the approach is
effectively applied (which can prove to
be challenging)

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 We believe that updating security
requirements developed using the
Common Criteria could prove a difficult
task; this because the process is
extremely formal and assessing the
impact that updating a security
requirement has on other ones can also
prove complex

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Common Criteria provides moderate
support for evolution; the approach is
flexible enough to help foresee changes
and accommodate for future evolution.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Low. Many aspects of the process can
potentially be automated

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 It is very difficult to learn how to
effectively apply the Common Criteria
approach to a set of requirements.
Besides its formality and complexity,
developers must strengthen their
backgrounds in a variety of aspects to
effectively apply the approach

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 The systematic nature of Common
Criteria makes it highly scalable to much
larger systems

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is abundant information available
regarding Common Criteria and its
applications

 62

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 None. There is no explicit
support/guidance for making the security
requirements usable later on.

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

D



+
 I



Constraints for both design and
implementation could be considered
with the Common Criteria. There is
moderate support for examining
possible design representations of the
TOE (Target of Evaluation).
Additionally, the approach develops a
security target (ST) which is an
implementation-dependent statement of
the security needs for a specific TOE
(low support)

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 Low. Some of the testing effort in the
TOE could be used to help develop a
testing strategy

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 The Common Criteria’s main focus is
evaluating security requirements to
determine their level of security as well
as to aid in improving it; certainly the
artifacts developed with this focus in
mind could be moderately helpful
during testing

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Common Criteria can moderately-
highly help reduce the development
effort by ensuring that the security
requirements have been developed as
good as possible; this provides
developers with a strong basis to
continue the project from

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 None.

Table 7. Common Criteria Framework Application

 63

 6.8 SQUARE

 The Security Quality Requirements Engineering (SQUARE) methodology
[Mea05], created by the Software Engineering Institute's CERT Program, consists of nine
steps that generate a final deliverable of categorized and prioritized security
requirements. Although the SQUARE methodology could likely be generalized to any
large-scale design project, it was designed for use with information technology systems.
 The SQUARE process is most effective when conducted with a team of
requirements engineers with security expertise and the stakeholders of the project
[Gor05]. It begins with the requirements engineering team and project stakeholders
agreeing on technical definitions that serve as a baseline for all future communication.
Next, business and security goals are outlined. Then artifacts and documentation are
created, which are necessary for a full understanding of the relevant system. Lastly, a
structured risk assessment is performed to determine the likelihood and impact of
possible threats to the system.
 Following this work, the requirements engineering team determines the best
method for eliciting initial security requirements from stakeholders. Once a method has
been established, the participants rely on artifacts and risk assessment results to elicit an
initial set of security requirements. Two subsequent stages are devoted to categorizing
and prioritizing these requirements for management's use in making tradeoff decisions.
Finally, an inspection stage is included to ensure the consistency and accuracy of the
security requirements that have been generated [ChD04, Mea07].

 6.8.1 Framework Application

 Table 8 shows the results of applying our framework to SQUARE.

SQUARE

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 SQUARE provides low support for
eliciting security requirements.

RE2. Type of elicitation
technique used/recommended by
the approach

Ot Other. This method helps you determine
the best type of technique for the project
at hand; these can range from interviews
to surveys.

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 The approach helps identify a moderate-
high degree of stakeholders; these can be
customers, developers, or actors of the
actual system.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 The customers are highly involved in the
elicitation process; they are entrusted
with important tasks like artifact
development for example

 64

RE5. Elicitation of other types
of requirements besides security

F


+

NF



This approach is special because it not
only looks at security as a non-
functional requirement but as a
functional one to better help adapt them;
thus providing a low degree of support
for considering other types of
requirements

RE6. Dynamics of the elicitation
process (i.e. Iteration of
requirements elicitation or not)

I Iterative.

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Low.

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I


+
E



Both external and internal analysis of
the security requirements elicited is
provided with a moderate-high degree
of support. The stakeholders and
developers jointly help verify that the
security requirements meet the security
goals; this same approach is used to
validating the security requirements

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 High. The approach urges for
requirements to be as unambiguous as
possible. It provides a dedicated step
(requirements inspection) for resolving
any ambiguity issues in them

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 Moderate.

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 High. The high-customer involvement
helps in clarifying the security
requirements as much as possible. In
addition, developers and customers agree
on a common set of terminology and
definitions to ensure that their
communication is as clear as possible

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Low. The approach could potentially
help consider alternative security
requirements by the developers
suggesting additional categories during
the categorization steps

 65

RA6. Analysis helps prevent
security requirements conflict

 Definitely. SQUARE during its security
goals identification step helps align the
stakeholders’ views and interests; which
in turn can help prevent conflicts from
happening

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Ve



SQUARE strongly supports the idea of
specifying only those security
requirements that are “specific” enough
that could be used to help verify the
implemented system (moderate-high
support)

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



Cost. One of the stakeholder
responsibilities is to ensure that the
security requirements being specified are
financially sound. This can help
tremendously in estimating the costs of
development; high support is thus
provided

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Traceability of the specification is low

RS4. Consistency degree of the
specification produced

 A moderate-high level of consistency is
provided. Security requirements
inspections also set time aside to check
for the consistency of the specifications

RS5. Support for specifying
non-functional requirements
other than security ones

 Low. Safety requirements could
potentially be specified with SQUARE;
but no explicit process is described

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate.

 RS7. Level of formality of
the specification

S The specifications are semi-formal

 RS8. Rigor of the
specification process (how
formal is the process itself)

S The approach is semi-formal. While the
activities are relatively informal, the
process itself is well defined and
formalized

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Moderate-high. SQUARE helps
produce highly secure specifications.
This is mainly achieved through the level
of involvement of the customer, and the
quality of communication between them

 66

and the developers to ensure that issues
that are identified as security problems
are all addressed

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Moderate.

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Moderate-high. The approach can help
in “steering” future improvements and
modifications to the system. Security
requirements can be developed with this
in mind in order to accommodate
evolution

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Low. There is future plans for
developing a tool that aids in the
automation of the documentation

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 Learning is moderately difficult. While
the approach itself is relatively simple,
learning difficulties might be added
depending on the techniques chosen
along the process

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 Scalability is high. The approach can
likely be applied to projects of varying
sizes

RM6. Information availability
regarding the approach (How
popular is this approach?)

 Abundant.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 None. There is no explicit support
described for making the security
requirements developed usable at later
stages of development

 67

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

A



Some architectural constraints can be
identified with this approach (low
support)

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 Low. The prioritized categories could be
used in order to help organize the test
cases produced

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Low.

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Moderate.

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 None. While safety requirements could
be specified with this approach, there is
no evidence that suggests any type of
support past requirements engineering

Table 8. Common Criteria Framework Application

 68

 6.9 OCTAVE

 The Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
is an information security risk evaluation approach that is comprehensive, systematic, and
context driven [Alb05, Alb02]. Through the following of the OCTAVE Method, an
organization can make information-protection decisions based on risks to the
confidentiality, integrity, and availability of critical information technology (IT) assets.
The operational units and the IT department of an organization work together to address
the information security needs of the organization.
 Using a three-phase approach, OCTAVE examines organizational and technology
issues to assemble a comprehensive picture of the information security needs of an
organization. The phases include,
- Phase 1: Build Asset-Based Threat
- Phase 2: Identify Infrastructure Vulnerabilities
- Phase 3: Develop Security Strategy and Plans
 One of the advantages of the OCTAVE Method is that it is self-directed [Alb02]. A
small team of the organization’s personnel comprised of the operational units and the IT
department of an organization becomes the analysis team; they manage the process and
analyze all information [Alb99, Ric07].

 6.9.1 Framework Application

 Table 9 shows the results of applying our framework to OCTAVE.

Octave

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Octave provides high support for
security requirements elicitation

RE2. Type of elicitation
technique used/recommended by
the approach

W Workshops are the primary technique
used for elicitation. The organization’s
staff is brought to a series of knowledge-
elicitation workshops

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 High. Besides identifying relevant
developers and customers, the approach
helps identify levels of customers like
senior management level, staff level, and
operational areas level.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 There is high involvement from the
customer, because they are key in
eliciting not only the security
requirements, but also possible areas of
concern, important assets, and current
protection strategies; information that is

 69

essential for the effectiveness of Octave
RE5. Elicitation of other types
of requirements besides security

NF



Moderate support for other non-
functional requirements like
confidentiality and integrity
requirements elicitation is provided

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

I Security requirements are elicited
iteratively, through a series of
workshops that help refine what the
customers want

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Moderate.

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



High internal analysis of the security
requirements elicited is performed by the
analysis team; this serves to verify them

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 None. There is no clear support provided
for detecting and/or resolving
unambiguity issues in the security
requirements

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 Moderate support for completeness
assurance can be obtained from the
variety of stakeholders identified.

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate-high. Octave strives for clear
security requirements; to aid in this the
security requirements (threat profiles)
can support visual representations to aid
in ensuring they are as clear as possible

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Low support is explicit for alternative
requirements consideration; although the
different threat categories could be used
to determine missing security
requirements that are needed to secure
them

RA6. Analysis helps prevent
security requirements conflict

 Low. While the stakeholders can help in
dealing with requirements conflict, there
is no mention of steps that developers
can take in order to identify conflicts and
resolve them

 70

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va



The threat profiles can be used to
moderately validate that the system has
effectively adopted the necessary
measures to mitigate the threats
described

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



A detailed cost-benefit analysis can be
performed in order to determine the
financial implications of certain specified
security requirements (high support)

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Moderate.

RS4. Consistency degree of the
specification produced

 Low. Could not find much evidence of
any support for guaranteeing that the
resulting specifications are consistent,
although the process to specifying the
security requirements suggests that the
resulting specification would be
consistent

RS5. Support for specifying
non-functional requirements
other than security ones

 Not Supported.

RS6. Overall clarity and
understandability of the
requirements specification

 The overall clarity and understandability
of the security requirements specification
is moderate-high

 RS7. Level of formality of
the specification

S The specifications produced are semi-
formal

 RS8. Rigor of the
specification process (how
formal is the process itself)

F The process of the approach is formal

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Moderate. The specification helps in
determining what steps are needed in
order to effectively secure the
requirements

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Difficult. Not only do you have to
concentrate the specific requirement that
needs to be updated, you must also
consider the threat profiles and possible
risks that are associated with them

 71

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 None.

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 It is difficult to learn how to effectively
apply Octave; this because background
knowledge on a variety of aspects like
risk assessment and information
infrastructure are also necessary

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 High. Octave can easily be adapted to
cover small or large projects; specific
methods like Octave and Octave-S are
specifically designed for each one

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is abundant information available

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Low. Could potentially help during
implementation where the security
requirements can be integrated with the
security strategy developed

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

 None.

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 There are moderate benefits for testing.
Among what is elicited from the
customers are the areas of concern; these
can be used as plausible scenarios of
what could go wrong with the system,
and therefore define test cases that
embody those scenarios

 72

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Moderate.

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Moderate. While a variety of the
artifacts produced could be used later on;
there are not a whole lot of extra things
obtained from the requirements
engineering process that could aid later
on

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 None.

Table 9. OCTAVE Framework Application

 73

 6.10 Attack Trees

 According to Brice Schneier [Sch00], “attack trees provide a formal, methodical
way of describing the security of systems, based on varying attacks.” The notion of attack
trees [Wel03, Whi01] has been considered as a method for modeling attacks. Attack trees
have been described recently as a systematic method to characterize system security
based on varying attacks [Vie01]. Several approaches for security requirements are based
on trees. Attack Trees are used in development of intrusion scenarios, which can then be
used to identify requirements.
 Attacks against a system are represented using a tree structure, with the goal of
attacking the system as the root of the tree and different ways of achieving that goal as
leafs of the tree. Attack trees refine information about attacks by identifying the
compromise of enterprise security or survivability as the root of the tree. Each path
through an attack tree represents a unique attack on the enterprise [Moo1]. Each attack
tree enumerates and elaborates the ways that an attacker could cause the event to occur.
Each path through an attack tree represents a unique attack on the enterprise [12].

 6.10.1 Framework Application

 Table 10 shows the results of applying our framework to the attack trees
approach.

Attack Trees

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 Attack Trees provide a moderate-high
degree of support for eliciting security
requirements. This is accomplished by
modeling the steps/actions that it would
take for a certain attack to be
accomplished

RE2. Type of elicitation
technique used/recommended by
the approach

I + Ot Interviews and Other. The security
requirements are elicited by obtaining
the possible attacks on the system to be
developed from the customer, and
negating the leaf nodes that are produced
in the attack tree; these become the
security requirements

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 There is low identification of
stakeholders; although attack trees can
also help identify assets and attackers

RE4. Level of involvement of  Low. The customer is only really needed

 74

the customer (How involved in
the elicitation process should the
customer be)

to help provide some of the attacks that
the system under development could be
susceptible to

RE5. Elicitation of other types
of requirements besides security

NF



Other non-functional requirements like
privacy and safety could also be elicited
with attack trees; there is moderate-high
support for eliciting both with attack
trees

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

S Security requirements are elicited
sequentially; meaning that developers
create the attack tree from a top down
approach, and there is not much of an
iteration to adjust them if needed

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Attack trees are so focused on eliciting
security requirements based on specific
attacks, that they provide low support for
defining the scope of the system

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



The overall analysis is mainly internal;
this analysis is moderate

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 Moderate. The unambiguity resolution
is mostly dependant on the depth of the
attack tree

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 None. There is no explicit information of
any attempt to ensure that the security
requirements are complete

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate. Clarity also depends on how
deep the attack tree is (i.e. the deeper the
tree, the clearer the security requirements
because the statements become simpler)

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 High. An attack tree can theoretically
help consider many, if not all, the
possible ways of achieving a certain
attack; this helps in considering
alternative and additional security
requirements for mitigating all the attack
possibilities

 75

RA6. Analysis helps prevent
security requirements conflict

 Marginally. Though the attack tree
structure can help you spot conflict
problems, no real resolution technique is
provided

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va



+
Ve



The specification produced could support
both the validation and verification of
the resulting system. Techniques like risk
analysis, reliability analysis, and shortest
path analysis can very well be applied to
an attack tree in order to help verify
(moderate) and validate (moderate) a
system

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



+

T



Specifications produced with attack trees
can help with both cost and time
estimations if meaningful values are
assigned to the nodes of the attack tree.
Moderate support for both of these as
attack trees do not support these features
naturally, but they can be adapted to do
so

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Moderate-high. The graphical nature of
attack trees allows for easy tracing of not
only the security requirements, but also
to other aspects like goals and attacks

RS4. Consistency degree of the
specification produced

 Low.

RS5. Support for specifying
non-functional requirements
other than security ones

 Moderate. Attack trees could be adapted
to also help specify safety and privacy
requirements.

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate. The overall clarity and
understandability of attack trees could
potentially be higher if the trees are
expanded deep enough

 RS7. Level of formality of
the specification

I The specification produced is informal,
because, aside from the tree structure, the
trees are usually filled using natural
language

 RS8. Rigor of the
specification process (how
formal is the process itself)

S The approach is semi-formal; they
provide their own structure and syntax
but still rely on natural language

RS9. Overall security level of
the resulting system (How

 Low. The problem with attack trees is
that they depend too much on the

 76

secure can the resulting system
be based on the specifications?)

expertise of the security analyst and
developers producing them.
Additionally, there is no standard way of
either constructing them or analyzing
them.

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Moderate-easy. Given the simplicity of
attack trees updating them should not be
that difficult; also, their graphical nature
helps identify other aspects that could be
affected by updates

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Not Supported.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Low. While there is no mention about
automation of attack trees, we believe
that a variety of steps in their process
could be easily automated

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 While to make them as effective as
possible a lot depends on your expertise
on security attacks, attack trees
themselves are easy to learn and relate to

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 Low. Attack trees could become
extremely complex and ultimately
useless if applied to large systems

RM6. Information availability
regarding the approach (How
popular is this approach?)

 There is moderate level information
available.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 None. While attack trees could be used
in architecture risk analysis, no real
integration support is provided

 77

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

D



Attack trees can support design
decisions in order to mitigate attacks
moderately.

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 Moderate. Since attack trees help focus
on measurable goals, this information
can be used to create specific test cases
that test for a certain attack to happen

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Moderate-high. The focus of attack
trees is decomposing an attack to the
point that independent events are
considered that constitute the whole
attack; this focus can be directly
translated to the testing effort to test for
situations described in the “leaf” nodes
of the tree

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Low. Countermeasures can be easily
derived from attack trees; this
information can help reduce the amount
of implementation options for the
security measures

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 None. There is no explicit information
available regarding support for other
types of non-functional requirements
past requirements engineering stages

Table 10. Attack Trees Framework Application

 78

 6.11 USeR Method

 The USeR method [HaH06] is directed towards extracting security issues based on
statements made by the customers and potential users about the system to be developed.
Once these security issues have been extrtacted, USeR assists in determining the specific
security needs (requirements) for the system and their relationships to potential technical
security solutions. The USeR method prescribes that the process of determining these
security requirements should happen in parallel with determining other requirements of
the system (functional and/or non-functional).
 The USeR method is aimed at increasing the involvement of security experts during
the requirements stage of development; it accomplishes this by basing itself on the tools
and principles of Quality Function Development (QFD). [Aka97, Cha02, Coh95]. The
USeR method is based on 5 main steps,

1- Identify security-related statements

2- Determine security needs

3- Determine security requirements

4- Determine security techniques

5- Explore design implications

 6.11.1 Framework Application

 Table 11 shows the results of applying our framework to the USeR
method.

USeR

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 The USeR method provides a high
degree of elicitation of security
requirements; this is mostly
accomplished by decomposing design
documents and extracting/eliciting
possible security requirements from them

RE2. Type of elicitation
technique used/recommended by
the approach

W
+

Ot

Workshops are the primary technique
used for elicitation along with structured
meetings.

RE3. Degree of stakeholder
identification provided

 Moderate-high. The approach helps
identify user representatives, developers,

 79

(Including customer, developers,
end-users)

customers, as well as security experts

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 There is high involvement from the
customer in the elicitation process

RE5. Elicitation of other types
of requirements besides security

NF



Other non-functional requirements by
identifying other possible categories of
need like privacy and security
(moderate-high support)

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

S Sequentially. Security requirements are
elicited through following a series of 5
steps

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Low. There is some support that could
help identify possible limitations of the
system; information that could be used to
determine what is outside of the system’s
scope

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

E



A moderate external analysis of the
security requirements elicited is
performed

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 Moderate-high. The elicited security
needs and security requirements resulting
from them are constantly checked by the
customers and developers in order to
ensure unambiguity

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 High. Hierarchical diagrams are used to
help detect missing/incomplete security
requirements.

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate. The design team (customers
and developers) get together to ensure
the requirements are clear to both parties

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 Moderate-high. The approach supports
the consideration of additional as well as
missing security requirements. Support is
explicit for alternative requirements

 80

 consideration; although the different
threat categories could be used to
determine missing security requirements
that are needed to secure them

RA6. Analysis helps prevent
security requirements conflict

 Definitely. Time is dedicated to
checking for possible conflicts and
bringing the involved parties together to
help resolve them

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va



The specification produced could help
validate the resulting system with low
support

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

 None.

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 High. A matrix system is used to allow
for traceability of the security
requirements to security needs as well as
security requirements to security
techniques

RS4. Consistency degree of the
specification produced

 Moderate-high. The specifications
produced are consistent with the added
support of pair-wise comparison by
security experts

RS5. Support for specifying
non-functional requirements
other than security ones

 Moderate-high. Provides support for
identifying other possible categories like
privacy and trust; these could also be
used to help specify requirements for
them

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate.

 RS7. Level of formality of
the specification

S Semi-formal

 RS8. Rigor of the
specification process (how
formal is the process itself)

F The process for specifying the security
requirements is formal as it is very
structured and systematic

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 Moderate.

 81

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Security requirements can be easily
updated due to the high degree of
traceability provided in the specification.

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Low.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 None.

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 Easy.

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 Scalability is moderate. Applying this
approach to large systems can prove
challenging, because in large projects it
is much more difficult to bring so many
stakeholders together and this approach
depends a lot on that aspect

RM6. Information availability
regarding the approach (How
popular is this approach?)

 Low. There is not a lot of information
regarding this approach.

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Low. There is a possibility of
integration with design and possibly
implementation

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

D


+
I

Some design considerations could be
developed from the security
requirements as possible design
implications are explored as a major step
of the method. Also, implementation

 82

 

aspects are also considered during the
step where possible technologies are
explored

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 None.

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 Low.

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 Moderate-high. Security techniques are
developed in order to operationalize the
security requirements. In addition, the
method also explores current security
technology that could be used to
implement the security requirements

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 Low. Requirements related to privacy
and trust could potentially be considered
during design

Table 11. USeR Method Framework Application

 83

 6.12 CLASP

 CLASP (Comprehensive, Lightweight Application Security Process) [Vie05]
provides a well-organized and structured approach to moving security concerns into the
early stages of the software development lifecycle. CLASP is a set of process pieces that
can be integrated into any software development process. It is designed to be both
effective and easy to adopt. It takes a prescriptive approach, and documents activities that
organizations should be doing. In turn, it provides a variety of security resources that
make implementing those activities reasonable.
 The core of CLASP is made of thirty new activities that can be integrated into a
software development process. The initial section of the activities belongs to the project
manager. While those duties do not constitute a significant time commitment, they do
reflect the CLASP philosophy that effective security practices require organizational
“buy-in.” [SSI05, Tar95]

 6.12.1 Framework Application

 Table 11 shows the results of applying our framework to CLASP.

CLASP

REQUIREMENTS ELICITATION
RE1. Degree of support for
requirements elicitation

 CLASP provides moderate support for
eliciting security requirements

RE2. Type of elicitation
technique used/recommended by
the approach

I
+

Ot

Interviews and Other. This method
mainly uses existing document reviews
to elicit security requirements

RE3. Degree of stakeholder
identification provided
(Including customer, developers,
end-users)

 High degree of stakeholders
identification provided by CLASP. The
approach helps identify important people
needed for each stage of the process as
well as it assigns specific roles to them,
like auditors, specifiers, developers,
architects, etc.

RE4. Level of involvement of
the customer (How involved in
the elicitation process should the
customer be)

 There is a low degree of involvement of
the customer in the elicitation process;
they mainly help in eliciting misuse
cases for certain aspects of the process

RE5. Elicitation of other types
of requirements besides security

F


+

NF



This approach helps identify functional
requirement as well as non-functional
aspects of the system as they relate to the
security requirements elicited so far
(moderate support for both types)

RE5. Elicitation of other types
of requirements besides security

F


+

NF



This approach helps identify functional
requirement as well as non-functional
aspects of the system as they relate to the
security requirements elicited so far
(moderate support for both types)

 84

RE6. Dynamics of the
elicitation process (i.e. Iteration
of requirements elicitation or
not)

S Sequential.

RE7. Support for establishing
system boundaries (What is
inside/outside the scope of the
system being developed)

 Moderate support for determining the
scope of the system; it also helps identify
“trust” boundaries of the system as well
as the resources that would be needed
and those that would be outside of the
scope of the system

REQUIREMENTS ANALYSIS
RA1. Type of overall analysis

I



High internal analysis of the security
requirements elicited is provided. The
approach identifies a “requirements
tester” that helps in verifying the elicited
security requirements

RA2. Unambiguity resolution
level of the analysis
(Unambiguity issues can be
detected and resolved through
the analysis)

 Moderate.

RA3. Completeness resolution
level of the analysis (Analysis
can help determine if the
security requirements are
complete)

 Moderate.

RA4. Clarity resolution level of
the analysis (Analysis helps
clarify the security requirements
as much as possible)

 Moderate.

RA5. Support level of analysis
to consider alternative/additional
security requirements missed
during elicitation

 High. The variety of problem types that
have been identified (104 types of
different vulnerabilities) can be used in
order to consider alternative and
additional security requirements that
have been missed during elicitation but
are needed to address the vulnerabilities

RA6. Analysis helps prevent
security requirements conflict

 Definitely. SQUARE during its security
goals identification step helps align the
stakeholders’ views and interests; which
in turn can help prevent conflicts from
happening

 RA6. Analysis helps prevent

security requirements conflict

 Definitely. SQUARE during its security
goals identification step helps align the
stakeholders’ views and interests; which
in turn can help prevent conflicts from
happening

 85

REQUIREMENTS SPECIFICATION
RS1. The specification produced
can be used as a baseline for
system validation and/or
verification once implemented

Va


+

Ve



CLASP specifications could be used for
both validation (moderate) and
verification (low) of the system

RS2. The specification provides
a basis for cost and/or time
estimation of the overall
development project

C



The cost of implementing certain
activities can be explored in the
specifications (low support)

RS3. Traceability level of the
specification produced (How
traceable is the security
requirements specification)

 Traceability of the specification is low

RS4. Consistency degree of the
specification produced

 A moderate level of consistency is
provided. Metrics are defined by the
approach to help “standardize” the
communication between the
stakeholders, this in turn reflects in the
consistency of the specifications

RS5. Support for specifying
non-functional requirements
other than security ones

 High. There is support for specifying
other functional and non-functional
requirements as well as relating them to
the success of the specified security
requirements (helps you specify the
functional and non-functional
mechanisms needed to implement the
security requirements)

RS6. Overall clarity and
understandability of the
requirements specification

 Moderate.

 RS7. Level of formality of
the specification

S Semi-formal.

 RS8. Rigor of the
specification process (how
formal is the process itself)

F Formal.

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 CLASP helps develop highly secure
specifications as well as extensive
support for assessing the level of security

RS9. Overall security level of
the resulting system (How
secure can the resulting system
be based on the specifications?)

 CLASP helps develop highly secure
specifications as well as extensive
support for assessing the level of security

 86

REQUIREMENTS MANAGEMENT
RM1. Level of difficulty for
updating security requirements
(i.e. making additions, deletions,
and/or modifications)

 Updating the security requirements can
be a difficult task. The security
requirements can be very intricate
depending on the specific system that
they are for; additionally since there is a
lot of other aspects that the requirements
are associated with, it would also be
difficult to update these associations

RM2. Level of security
requirements evolution
supported (As the system
evolves, does the approach
support for the requirements to
evolve as well?)

 Low.

RM3. Level of automation
provided (Is there any support
for automating any step and/or
process in the approach)

 Moderate-high. This approach
consciously makes itself flexible enough
to allow tools (internal and external) to
help automate a variety of the steps of
the process

RM4. Degree of learning
difficulty of the approach (How
difficult is it for a novice user to
learn this approach?)

 Learning can be difficult. There are a lot
of activities involved in the approach, as
well as many conventions to learn

RM5. Scalability of the
approach (Does the approach
support relatively easy
application to systems of various
sizes?)

 The scalability degree of the approach is
high. The recommendations and artifacts
produced by the approach can be applied
to a variety of systems; furthermore, the
approach can be applied to either new
systems or existing ones looking to
“retrofit” security into the requirements

RM6. Information availability
regarding the approach (How
popular is this approach?)

 High. Beyond information about the
approach from other sources, the
approach itself has extensive
documentation

LATER STAGES SUPPORT
LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Provides moderate support for
integrating security requirements
because they can help guide the
development team on how to apply the
security requirements to the possible
design. In addition, the approach covers
different aspects for securing the system
at later stages of the development cycle,
but it is not clear the role of the security
requirements beyond design

LSS1. Support for integrating
security requirements with later
stages of development (How
usable are the security
requirements past their
inception?)

 Provides moderate support for
integrating security requirements
because they can help guide the
development team on how to apply the
security requirements to the possible
design. In addition, the approach covers

 87

Table 12. CLASP Method Framework Application

LSS2. Constraint consideration
for later stages (Does the
approach allow for planning
other aspects of the system past
the requirements?)

A
+

D
+

I
+

M

Helps consider early thoughts about
architecture (low) with attack vectors
support as well as support from
architects when specifying the security
requirements in the first place. For
design (moderate), it provides
consideration for the application of the
security requirements and principles. It
also helps consider different technologies
available for the implementation (low)
and future aspects of the maintenance
(low) effort

LSS3. Security requirements
provide testing benefits/support
for later stages (Can the security
requirements produced be used
as a basis for testing the
system?)

 High. The approach has a strong call for
testability of the system based on the
security requirements using “automated
tests.” The approach also provides a
specific activity dedicated to identifying,
implementing, and performing security
tests of the system.

LSS4. Degree of support of the
overall focus of the approach
when it comes to testing

 The focus of the approach can be
moderately applied to security

LSS5. Level to which the
security requirements help
reduce the overall development
effort

 There is high support for reducing the
development effort with the security
requirements. On top of the support for
the other stages of development
(including testing) there is also support
for identifying the most common
vulnerabilities of the system; this
information can be used to steer the
development of the system in order to
avoid them. There is also “vulnerability
remediation procedures” that are
developed in order to establish measures
for mitigating the vulnerabilities.

LSS6. Support for other types of
non-functional requirements
(besides security) in later stages

 Low.

 88

7 Surveyed Approaches Results Comparison

 Once the framework was applied to each one of the 12 methods, the results of
each question were organized into tables that allow for easy comparison of the results of
all the approaches surveyed. Each comparison table includes a variety of information; it
summarizes each question as columns and each approach surveyed as rows. The answers
to each question are then summarized by each approach and a count of stars is kept. This
star count is done at two level, approaches and questions. The total star count for each
approach is presented as an added column; the star count for each question in the phase is
presented as an added row. Keeping the star count for both approaches and questions
allows us to observe trends not only in which approaches did better and worst, but also
which questions have more support than others.
 As described in the introduction, this survey contains 34 different questions. 30 of
these questions are subjective in the sense that their response is rated (star rating), while 4
of them are just used for data collection. From this point on, we will focus mainly on
those 30 questions that have a star rating, as most of the comparison and analysis of the
results are based on star counts.
 Tables 13 through 17 provide side-by-side comparison of the answers to each
question categorized by each one of the 5 phases of security requirements engineering
surveyed.

 89

Requirements Elicitation
 RE1

Elicit
Support

RE2
Elicit
Tech

RE3
Stakehldr

ID

RE4
Customr
Involve

RE5
Elicit Other

Reqs.

RE6
Elicit

Dynam

RE7
System
Boundar

ies

Total Star
Count (per
approach)

Misuse
Cases

 B   NF I  14 Stars

Abuser
Stories

 I    I  11 Stars

Secure
TROPOS

 Ot   NF


I  6 Stars

Sec. Prob.
Frames

       0 Stars

Anti-
Models

 Ot   NF


I  13 Stars

i*  I
Ot

  NF


I  11 Stars

Common
Criteria

    NF


S  5 Stars

SQUARE  Ot   F
NF

I  11 Stars

Octave  W   NF I  16 Stars
Attack
Trees

 I
Ot

  NF S  9 Stars

USeR  W

Ot
  NF S  15 Stars

CLASP  I

Ot
  F

NF
S  13 Stars

Total Star
Count (per
question)

27 Stars NO
Stars

32 Stars 27 Stars 23 Stars NO
Stars

15 Stars 124 Total
Star

Count

Table 13. Security Requirements Elicitation Results Comparison

 90

Requirements Analysis
 RA1

Analysis
Type

RA2
Unambig.
Resoltn

RA3
Complete
Resoltn

RA4
Clarity
Resoltn

RA5
Alternative

Requs

RA6
Conflict
Resoltn

Total Star
Count (per
approach)

Misuse
Cases

I
E

     13 Stars

Abuser
Stories

I      5 Stars

Secure
TROPOS

E      9 Stars

Sec. Prob.
Frames

E      16 Stars

Anti-
Models

I      13 Stars

i* I      13 Stars
Common
Criteria

I 
E

     22 Stars

SQUARE I
E

     20 Stars

Octave I      11 Stars

Attack
Trees

I      12 Stars

USeR E      17 Stars
CLASP I      16 Stars

Total Star
Count (per
question)

37 Stars 25 Stars 25 Stars 28 Stars 25 Stars 27 Stars 167 Total
Star Count
for Analysis

Table 14. Security Requirements Analysis Results Comparison

 91

Table 15. Security Requirements Specification Results Comparison

Requirements Specifications
 RS1

System
Valid/
Verif

RS2
Cost/
Time

Estimate

RS3
Trace
Level

RS4
Specs

Consistent

RS5
NonFunc

Specs

RS6
Clarity/
Underst

RS7
Specs

Formal

RS8
Process
Formal

RS9
Resulting
System’s
Security

Total Star
Count (per
approach)

Misuse
Cases

Va

Ve


C     I I  16 Stars

Abuser
Stories

Va


C

T

    I I  14 Stars

Secure
TROPOS

Va C
T

    S F  16 Stars

Sec. Prob.
Frames

 T     F S  10 Stars

Anti-
Models

Ve      S F  13 Stars

i* Va C     S F  19 Stars
Common
Criteria

Va

Ve

C     F F  17 Stars

SQUARE Ve


C


    S S  16 Stars

Octave Va C


    S F  14 Stars

Attack
Trees

Va

Ve

C

T

    I S  17 Stars

USeR Va      S F  15 Stars
CLASP Va

Ve

C     S F  16 Stars

Total Star
Count
(per
question)

28 Stars 28 Stars 24 Stars 28 Stars 23 Stars 23 Stars NO
Stars

NO
Stars

29 Stars 183 Total
Star

Count for
Specs

 92

Requirements Management
 RM1

Update
Difficulty

RM2
Requs.

Evo

RM3
Level of

Auto.

RM4
Learning
Difficulty

RM5
Scalability

RM6
Info

Availability

Total Star
Count (per
approach)

Misuse
Cases

      13 Stars

Abuser
Stories

      9 Stars

Secure
TROPOS

      13 Stars

Sec. Prob.
Frames

      10 Stars

Anti-
Models

      9 Stars

i*       6 Stars

Common
Criteria

      12 Stars

SQUARE       15 Stars
Octave       9 Stars

Attack
Trees

      11 Stars

USeR       11 Stars

CLASP       14 Stars

Total Star
Count (per
question)

25 Stars 8 Stars 12 Stars 27 Stars 34 Stars 26 Stars 132 Total
Star Count

for
Management

Table 16. Security Requirements Management Results Comparison

 93

Later Stages Support
 LSS1

Sec. Requs.
Integration

LSS 2
Constraint
Consider

LSS3
Testing
Benefits

LSS4
Focus for
Testing

LSS5
Reduce

Development
Effort

LSS6
Other
Requs.
Later

Total Star
Count (per
approach)

Misuse
Cases

      9 Stars

Abuser
Stories

 I     7 Stars

Secure
TROPOS

 A
D

   


13 Stars

Sec. Prob.
Frames

 A     8 Stars

Anti-
Models

      4 Stars

i*  D

I

    12 Stars

Common
Criteria

 D
I

    9 Stars

SQUARE  A     5 Stars

Octave       7 Stars

Attack
Trees

 D     10 Stars

USeR  D
I

    9 Stars

CLASP  A

D
I

M

    18 Stars

Total Star
Count (per
question)

7 Stars 29 Stars 19 Stars 21 Stars 28 Stars 7 Stars 111 Total
Star

Count for
LSS

Table 17. Later Stages Support for Security Requirements Results Comparison

 94

 7.1 Best Approaches per Phase

 With the side-by-side comparisons of how well each one of the approaches
performed at each phase and each question, the first aspect we were able to determine is
the approaches that performed the best at each phase. The determining factor for the
approaches that performed best was based on the total star count per phase; meaning that
those approaches that had the higher star count provide the best support for that phase.
 Figure 9 shows the best approaches found for the Elicitation phase; in this case we
had a total of 4 approaches (misuse cases, Octave, USeR, and CLASP) that came out as
best.

Figure 9. Best Approaches for Elicitation

 95

 Figure 10 shows the best approaches found for the Analysis phase; in this case we
had a total of 3 approaches (Security Problem Frames, Common Criteria, and SQUARE)
that came out as best.

Figure 10. Best Approaches for Analysis

 96

 Figure 11 shows the best approaches found for the Specification phase; in this case
we had a total of 3 approaches (Misuse Cases, i*, and Common Criteria).

Figure 11. Best Approaches for Specification

 97

 Figure 12 shows the best approaches found for the Management phase; in this case
we had a total of 4 approaches (Secure Tropos, Common Criteria, SQUARE, and
CLASP)

Figure 12. Best Approaches for Management

 98

 Figure 13 shows the best approaches found for the Later Stages Support phase. This
was a very difficult phase to find any decent, let alone best approaches as it will be
explained later. We had a total of 3 approaches (misuse cases, Common Criteria, and
CLASP) that came out as better ones, each one with 2 “High” responses.

Figure 13. Best Approaches for Later Stages Support

 99

7.2 Best Overall Approaches

 In order to determine the best approaches throughout the survey, we added the
star count per phase of each approach. Figure 14 ranks the 12 approaches surveyed based
on their total star count. It is important to mention that according to our results, the top
approach, CLASP, offers more support than the rest of the approaches. This higher level
of support is not only because CLASP has the highest star count, but also because the
difference between CLASP and the runner up, misuse cases, is 5 stars. This 5 star
difference in the total star count is the highest difference in star count from among all
other approaches. We can therefore deduce that in a way, CLASP offers considereable
more support than the other 11 approaches surveyed. On the contrary, security problem
frames offer the least amount of support when it comes to security requirements
engineering.

Figure 14. Overall Approaches Ranking

 100

8 Results and Observations

 Based on the results of the framework application and their comparison, we have
formulated certain observations and recommendations that are significant as one analyzes
the results of each approach across all of the phases of security requirements engineering.
This section discusses 4 specific aspects of our results,

1- General observations about the results
2- Approaches’ unexpected strengths
3- Current approaches’ weaknesses
4- General recommendations

 8.1 General Observations

 These are general observations that discuss associations found between various
aspects of our survey that are confirmed by our results.

Observation 1- High customer involvement promotes good analysis and
good specifications of security requirements

 RE4
Customer
Involve

RS4
Specs

Consistent

RA3
Complete
Resoltn

RA4
Clarity
Resoltn

RA6
Conflict
Resoltn

RS3
Trace Level

Misuse
Cases

     

Abuser
Stories

     

Secure
TROPOS

     

Sec.
Prob.
Frames

     

Anti-
Models

     

i*      
Common
Criteria

     

SQUARE      
Octave      
Attack
Trees

     

USeR      
CLASP      

 101

Table 18. Observation 1

 Based on the results of the application of the framework, we found that half (6 out
of 12) of the approaches have at least a moderate-high customer involvement and are
represented in yellow in table 18. Based on the responses to the customer involvement
level we were able to discover that those approaches that obtained a high response also
obtained a high response in a variety of other aspects; thus, high customer involvement is
associated to high responses in the aspects below,

1- High customer involvement -> High specification consistency
- A moderate number of approaches with high customer involvement also had a high
specification consistency. Out of the 6 approaches with at least a moderate-high
customer involvement, 4 of them have at least a moderate level of security specifications
consistency

2- High customer involvement -> High completeness resolution
- A high number of approaches with high customer involvement also had a high level of
completeness resolution in the analysis. Out of the 6 approaches with at least a
moderate-high level of customer involvement, 5 of them have at least a moderate
security requirements completeness resolution level

3- High customer involvement -> High clarity resolution
- A moderate number of approaches with high customer involvement also had a high
level of clarity resolution in the analysis. Out of the 6 approaches with at least a
moderate-high customer involvement, 5 of them have at least a moderate level of
security requirements completeness resolution

4- High customer involvement -> High level of requirements conflict resolution
- A moderate number of approaches with high customer involvement also had a high
level of requirements conflict resolution in the analysis. Out of the 6 approaches with at
least a moderate-high customer involvement, 4 of them have high security requirements
conflict resolution

5- High customer involvement -> High level of traceability
- A moderate number of approaches with high customer involvement also had a high
level of traceability; 4 of them have at least a moderate level of traceability

 102

Observation 2- Formality of the approach’s process
affects the overall security, consistency, and scalability
of the security requirements

 RS8
Process
Formal

RS9
Resulting
System’s
Security

RS4
Specs

Consistent

RM5
Scalability

Misuse
Cases

I   

Abuser
Stories

I   

Secure
TROPOS

F   

Sec.
Prob.
Frames

S   

Anti-
Models

F   

i* F   
Common
Criteria

F   

SQUARE S   
Octave F   
Attack
Trees

S   

USeR F   
CLASP F   

Table 19. Observation 2

 We found that a moderate number of approaches (7 out of the 12) surveyed use a
formal process for specifying the security requirements; they are represented in yellow in
table 3. Based on the approaches that have a formal process for the specification of
security requirements we observed that this aspect relates to a high response in a variety
of other aspects; thus, a formal process for security requirements correlates to a high level
of support in the areas below,

1- Formal Process -> High overall security of the resulting system
- While all of the 7 approaches following a formal process to security requirements
specification obtained at least a moderate level of overall security of the resulting system,
it is important to note that 3 out of these are a high level of overall security. These are the
only cases of a high level; specifications specified using a formal process

 103

2- Formal Process -> High specification consistency
- A high number of approaches that use a formal process also had a high level of
specification consistency. Out of the 7 approaches with a formal specification process, 6
of them have at least a moderate-high specification consistency

3- Formal Process -> High scalability
- A moderate number of approaches that use a formal process also had a high level of
scalability. Out of the 7 approaches with a formal specification process, 5 of them are
highly scalable

 104

Observation 3- Original approaches offer more support for security
requirements engineering than derived approaches

 RE
Requirements

Elicitation

RA
Requirements

Analysis

RS
Requirements
Specification

RM
Requirements
Management

LSS
Later Stages

Support
Misuse
Cases 

  

Abuser
Stories

Secure
TROPOS

  
Sec.
Prob.
Frames

Anti-
Models

i* 
 

7

Common
Criteria

  

SQUARE 
 

Octave 

Attack
Trees

 

USeR  

CLASP  

10

Table 20. Observation 4 part 1

On table 20, you can see that all (6 out of 6) original approaches are the best
approach at least in one phase; only 3 (out of 6) of the derived approaches are the best
approach for at least one phase. Furthermore, original approaches come out as best
approaches a total of 10 times throughout the 5 phases. In comparison, the derived
approaches come out as best approaches only 7 times throughout the 5 phases of the
framework. Again, the results prove difficult to determine which set is better that the
other, as both are very close to each other.

To further confirm this observation, figure 14 shows how the top three approaches
(based on the total amount of stars through out the 5 phases) correspond to original
approaches.

 105

 8.2 Approaches’ Unexpected Strengths

 Some surprising results also emerged from our survey; in each phase we found a
specific area (question) with an unexpected level of support. Table 23 shows 5 different
questions, one per each phase. This is a very positive observation about the strength of
the approaches, as they go beyond our expectations when it comes to specific areas of
elicitation, analysis, specification, management, and later stages support.

Areas of Unexpected High Support
 RE5

Elicit Other
Reqs.

RA1
Analysis Type

RS2
Cost/Time
Estimate

RM5
Scalability

LSS3
Testing
Benefits

Misuse
Cases

NF I
E

C  

Abuser
Stories

 I C

T
 

Secure
TROPOS

NF E C
T

 

Sec. Prob.
Frames

 E T  

Anti-
Models

NF I   

i* NF I C  
Common
Criteria

NF I 
E

C  

SQUARE F
NF

I
E

C  

Octave NF I C  
Attack
Trees

NF I C

T
 

USeR NF E   
CLASP F

NF
I C  

Table 23. Unexpected Positive Results

 106

 It was refreshing to find in our results that when it comes to elicitation, analysis,
and specification there are specific aspects of each that surpass our expectations of
support provided.

- Elicitation. We found it interesting that a high number of approaches (10 out of 12) also
help elicit other types of requirements besides security. This is surprising because we
expected that the approach would be so focused on security that it would not really
provide much support for eliciting other types of requirements. While it was not
surprising to see that the majority of support was for eliciting other non-functional
requirements, a low number of approaches (2 out of 12) provide support for eliciting
functional requirements as well.

- Analysis. When it comes to the analysis phase, it was interesting to see that the majority
of approaches (8 out of 12) provide a high level of analysis support (either internal,
external, or both). While we expected analysis to be an area well covered by approaches,
we did not expect to find such high level of support for it.

- Specifications. It was interesting to find out based on our results that a majority of the
approaches surveyed (10 out of 12) provide some kind of support for estimating cost,
time, or both of the development of the system. This is an added benefit of specifications
that we were not expecting the approaches to provide much support for, but it is
interesting to see how valuable cost and time estimation is for them.

- Management. We found that there is an unexpectedly high support when it comes to
scalability; half of the approaches surveyed are highly scalable.

- Later Stages Support. We did not expect to find any testing support at all; surprisingly
there is a moderate level of support when it comes to testing benefits that the approaches
surveyed provide.

 107

 8.3 Approaches’ Weaknesses

 This survey uncovers areas that need further development; figure 15 shows the
overall support available at each phase based on the surveyed approaches. The figure
shows the percentage of current support available for each phase based on the approaches
surveyed. This percentage represents the average support for each phase calculated based
on the total star count for each approach. The higher the percentage, the more support
that is currently being offered for each phase.

Figure 15. Support per Phase Offered by Surveyed Approaches

 The percentages of support for each phase as shown in figure 15 have been
calculated based on the ratio between the total star count for each phase obtained by all
12 approaches and the maximum amount of stars available for that phase.
 For example,
- Security requirements specification phase has 9 questions in our framework

- Only 7 of these questions have a subjective star rating (None/Low/Moderate/Moderate-
High/High) associated with them (therefore there is no star count for two of them)

- 5 of these questions have a maximum number of 4 stars possible. Two questions have a
maximum number of 8 stars possible. The maximum number of stars possible is
(12*5*4) + (12*2*8) = 432 max stars for specification

 108

- The score for specification is then 183 total star count/ 432 max stars = 42% support

- The standard deviation for the security requirements specification phase is 6.71%

 Table 24 shows the calculations for all of the 5 phases explored in the survey; it
provides information regarding the total star count for each phase, the maximum amount
of stars possible for that phase, and the percentage and standard deviation related to its
current support. As explained in the example above, only those questions with star count
criteria were considered in the calculations.

Phase Total Star

Count
Max Stars Percentage of

Support
Standard
Deviation

Elicitation 124 Stars 288 Stars 43.05% 14.64%
Analysis 167 Stars 336 Stars 49.70% 18.41%
Specification 183 Stars 432 Stars 42.36% 6.71%
Management 132 Stars 288 Stars 45.83% 12.26%
Later Stages Support 111 Stars 432 Stars 25.69% 14.34%

Table 24. Phases Support Calculations

 8.3.1 Determining Areas of Weakness

 Areas of weakness are determined based on two specific characteristics,
percentage of support available and questions with the lowest star count.

 8.3.1.1 Percentage of support

 As explained above, the higher the percentage, the more support available for that
phase; the lower the percentage, the less support that is available. Based on our
calculations, we determined that there is a lot more support for the first four phases
(elicitation, analysis, specification, and management) than for later stages support. Figure
15 shows the percentage of support for each phase; later stages support, as expected in
the introduction, is far more lacking of support.

 109

 8.3.1.2 Questions with Lowest Star Count

 Another of the advantages of keeping a star count not only horizontally
(approach-specific) but also vertically (question-specific) is that it allows us to infer
possible areas that lack support based on the questions with the lowest star count. Table
26 shows the 4 questions from our survey that received the lowest star count; based on
this we can infer that not only later stages support needs improvement, but also
management. Not surprisingly, half of the questions with the lowest star count (2
questions) belong to the later stages support phase; once again verifying that there is a
lack of support for security requirements at later stages of development.

Lack of Support for Management and Later Stages

 RM2
Requs. Evo

RM3
Level of Auto.

LSS1
Sec. Requs. Integration

LSS6
Other Requs.

Later
Misuse
Cases

   

Abuser
Stories

   

Secure
TROPOS

   

Sec.
Prob.
Frames

   

Anti-
Models

   

i*    
Common
Criteria

   

SQUARE    
Octave    
Attack
Trees

   

USeR    
CLASP    
Star
Count

8 Stars 12 Stars 7 Stars 7 Stars

Table 26. Lack of Support for Last Two Phases

 110

 There were a lot of “None” answers for the last two phases of our survey. To put
in perspective the results shown in table 26, the average star count per question for the
entire survey was 21.7 stars per question. Below we explain the specific areas of need
found based on the most lack of support for specific questions,

- No evolution support. The majority of approaches (7 out of 12) provide NO support for
security requirements evolution

- No automation support. A moderate number of approaches (5 out of 12) provide NO
support for automating any steps/processes of the approach

- No support for security requirements integration. The majority of approaches (8 out of
12) provide NO support for integrating the security requirements in a way that they are
useful in later stages of the development

- No support for other types of requirements. The majority of approaches (8 out of 12)
provide NO support for other types of requirements besides security in later stages of the
development

We can conclude then that both security requirements management and later
stages support are phases of security requirements engineering that need to be advanced.
With the results of our survey we have narrowed down the areas of need to four of them
as presented above; we consider support for integrating and making the security
requirements useful at later stages of development the most important one.

 111

 8.4 General Recommendations

 Once the results have been compared and certain observations were made, we
have designed a set of four recommendations that we believe are important when it
comes to engineering security requirements. These recommendations can be very helpful
for developing security requirements with specific characteristics; how these
characteristics can be obtained based on our results is explained below. While we are not
arguing that our results definitively prove that certain aspects affect important
characteristics of security requirements; we nonetheless have observed that certain
approaches that obtain a high level of support in certain questions also receive a high
level of support in other aspects. This leads us to recommend that there exist a possibility
that improving specific aspects found in our survey, could potentially lead to
improvements of specific characteristics of security requirements.

Recommendation1 – How to obtain a high level of traceability

 RS3
Trace
Level

RE1
Elicit

Support

RE3
Stakehldr

ID

RM1
Update

Difficulty

LSS5
Reduce

Development
Effort

Misuse
Cases

    

Abuser
Stories

    

Secure
TROPOS

    

Sec.
Prob.
Frames

    

Anti-
Models

    

i*     
Common
Criteria

    

SQUARE     
Octave     
Attack
Trees

    

USeR     
CLASP     

Table 27. Recommendation 1

 We consider that traceability is extremely important in achieving our objective of
integrating security requirements into other stages of the system development. Based on

 112

the results of the application of the framework, a small number of the approaches
surveyed (3 out of the 12) have at least a moderate-high level of traceability for security
requirements. This number is extremely low for those approaches that obtained a high
response; there are 2 out of 12 approaches that have a high level of traceability of the
security specifications, and are represented in yellow in table 27.
 Below we show two ways we found, based on our results, for obtaining a high
traceability of security requirements. Later on we also discuss the added benefits of
having a high level of traceability.

1- High support for elicitation-> High level of traceability
- All of the approaches that have a high support for elicitation have a high level of
traceability. Out of the 2 approaches with a high level of traceability, both of them have
at least a moderate-high level of support for eliciting security requirements

2- High degree of stakeholder identification-> High level of traceability
- All of the approaches that have a high level of stakeholder identification have a high
level of traceability. Out of the 2 approaches with a high level of traceability, both of
them have at least a moderate-high level of support for identifying stakeholders

The added benefits to having high traceability in your security requirements include,

1- High level of traceability-> Easy to update security requirements
- All of the approaches that have a high level of traceability produce security
requirements that are easy to update. Out of the 2 approaches with a high level of
traceability, both of them have at least a moderate-easy level of effort to update the
security requirements

2- High level of traceability-> Support to reduce overall development effort
- All of the approaches that have a high level of traceability also help reduce the overall
development effort. Out of the 2 approaches with a high level of traceability, both of
them provide at least a moderate level of support for reducing the overall development
effort

 113

Recommendation2 – How to obtain a high level of testing benefits

 LSS3
Testing
Benefits

RE7
System

Boundaries

RA5
Alternative

Requs

RS1
System

Valid/ Verif

RS5
NonFunc.

Specs
Misuse
Cases

   Va
Ve



Abuser
Stories

   Va 

Secure
TROPOS

   Va 

Sec.
Prob.
Frames

    

Anti-
Models

   Ve 

i*    Va 
Common
Criteria

   Va
Ve



SQUARE    Ve 
Octave    Va 
Attack
Trees

   Va
Ve



USeR    Va 
CLASP    Va

Ve



Table 28. Recommendation 2

 Testing benefits is an aspect that we also consider important; based on the results
of our framework application we can provide information as to how to obtain them.
Based on the results of the application of the framework, we found that a small number of
the approaches surveyed (3 out of the 12) have at least a moderate-high level of
traceability in the security specifications they create. These approaches that provide at
least a moderate-high testing benefits are represented in yellow in table 28.
 Below we show ways of obtaining a high level of testing benefits from the
security requirements,

1- Moderate system boundaries identification -> High level of testing benefits
- Most of the approaches that have at least a moderate level of support for system
boundaries identification have at least a moderate-high level of testing benefits.

 114

2- High elicitation of alternative security requirements -> High level of testing benefits
- All of the approaches that have a high support for eliciting alternative/additional
security requirements also have a high level of testing benefits. Out of the 2 approaches
with high level of testing benefits, both of them have a high level of elicitation of
alternative security requirements

 While testing capabilities are themselves a benefit, there are added benefits
associated with high levels of testing support as discovered in our survey,

1- High level of testing benefits -> Support for both verification and validation
- All of approaches that have at least a moderate-high level of testing benefits also
provide support for using the security requirements specification in the validation and
verification of the system.

High level of testing benefits -> High level of non-functional requirements specification
- All of approaches that have at least a moderate-high level of testing benefits also
provide support for specifying non-functional requirements other than security ones. Out
of the 3 approaches with at least moderate-high level of testing benefits, all of them
provide at least moderate-high support for specifying non-functional requirements
besides security

Recommendation 3 – How to obtain a high level of overall security of the
resulting system

 RS9
Resulting
System’s
Security

RE3
Stakehldr

ID

RE4
Customer
Involve

RA2
Unambig.
Resoltn

RM5
Scalability

LSS 2
Constraint
Consider

Misuse
Cases

     

Abuser
Stories

     I

Secure
TROPOS

     A

D
Sec. Prob.
Frames

     A


Anti-
Models

     

i*      D
I

Common
Criteria

     D
I

SQUARE      A

 115

Octave      
Attack
Trees

     D

USeR      D
I

CLASP      A

D
I

M
Table 29. Recommendation 3

 Our last recommendation looks and how to obtain a high level of overall security
for your requirements and how this is important. There is a very small number of
approaches, 4 out of 12, which we can predict will enable a system to have at least a
moderate-high level of security once it is developed. These 4 approaches are represented
in yellow in table 29. Below we show ways of obtaining a high level of overall security
of your requirements based on the results of our survey,

1- High stakeholder identification -> High level of overall security
- Out of the 4 approaches with high level of overall security of the specifications, 3 of
them have at least a moderate-high level of stakeholder identification

2- High customer involvement -> High level of overall security
- Out of the 4 approaches with high level of overall security of the specifications, 2 of
them have at least a moderate-high level of customer involvement

3- High unambiguity resolution -> High level of overall security
- Out of the 4 approaches with high level of overall security of the specifications, 2 of
them have at least a moderate-high level of unambiguity resolution

 While a high level of overall security is one of the main objectives of security
requirements engineering, there are added benefits associated with it,

1- High level of overall security -> High level of scalability
- The majority of the approaches that have a high level of overall security also have a
high level of scalability. Out of the 4 approaches with high level of overall security, 3 of
them also provide a high level of scalability

High level of overall security -> Constraint consideration for design and implementation
- The majority of the approaches that have a high level of overall security also have a
high level of constraint consideration for other stages of development. Out of the 4
approaches with high level of overall security, 3 of them also provide design and
implementation constraint

 116

 We believe that these recommendations can be important to developing security
requirements. We consider the four aspects covered by our recommendations (clarity and
understandability, traceability, testing support, and overall security) vital to a successful
set of security requirements. In addition, these four aspects can prove essential in
accomplishing our future goals of integrating security requirements with later stages of
development, and making them useful.

 117

9 Conclusions

 The survey explores the area of security requirements engineering. While this is
not a new area, as pointed out by our results there still plenty of work ahead to make it
more effective. We believe that our most significant contributions from this survey are as
follows,

1. We decompose security requirements engineering into five phases that allow for a
more detailed probing of the support offered by each approach at each specific
phase.

2. Our framework explores a variety of aspects that are important to securely
engineering requirements.

3. Through our results, we are able to verify some requirements engineering best
practices.

4. Our survey unveils some difficulties that exist today, preventing us from
characterizing how to increase integration support for security requirements at
later stages of the development lifecycle and determining if approaches derived
from existing ones are better than those created specifically for security

5. We have determined that there are two major areas that need improvement when
it comes to security requirements engineering; management and later stages
support.

6. Based on our results, we provide a variety of recommendations in order to help
developers produce better security requirements.

 Below we summarize our survey and provide a glimpse into how the information
that was obtained in this survey will be used in our future research.

 9.1 Conclusions Summary

 The survey explored the stage of security requirements engineering from the point
of view of decomposing it into 5 sub phases. We designed an evaluation framework that
probed the support offered by current approaches to elicitation, analysis, specification,
management, and later stages support of security requirements. 12 different approaches
were surveyed; these were separated into approaches derived from others in order to
address security and approaches designed specifically for security.
 General observations as well as strengths and weaknesses of current approaches
were identified; general recommendations were also made based on them. We were able
to determine that both security requirements management and later stages support are
phases of security requirements engineering that need to be advanced. With the results of
our survey we have narrowed down the areas of need to four of them, security
requirements integration, automation, evolution, and support for other types of
requirements. We consider support for integrating and making the security requirements
useful at later stages of development the most important one. The findings of this survey
will be of tremendous help in addressing this need.

 118

 Looking back at our survey expectations described in the introduction, our results
showed that,

1. Most of the approaches surveyed did better in the initial 4 phases of security
requirements engineering (elicitation, analysis, specification, management) but
there was a lack of support for integrating them and making them useful at later
stages of development.

2. Based on our results it was difficult to determine if approaches created
specifically for security requirements did better than those that have been adapted
from existing ones to address security. Therefore we cannot declare either one the
definite winner.

3. While there was no approach that provided a lot more support than the rest

throughout the 5 phases, CLASP did significantly better than the other 11
approaches surveyed based on the total star count.

 We can then conclude that integration of security requirements into later stages of
development is a key aspect in advancing security requirements engineering. Our survey
showed that there is still a lot of work needed to support this integration. In addition,
based on our observations, we can conclude that improvements to specific aspects of
security requirements engineering should help ultimately improve their integration. For
example, we consider clarity and understandability, traceability, testing support, and
overall security to be key aspects in improving security requirements integration into later
stages of developments. The recommendations made for obtaining these four aspects
identified other characteristics that affect them, like traceability is affected by stakeholder
identification for example. Improving these characteristics will ultimately improve
security requirements integration.

 9.2 Research Objectives and Future Directions

 The research to come will be shaped by the results obtained in this survey; it will
aim to increase the support available for integrating security requirements at later stages
of development.
 We determined that support for integration of security requirements into later
stages of development is one of the most important needs in security requirements
engineering today. We have decided to address this need by proposing a new approach
that will provide developers with guidance and support for tracing the security
requirements into architecture, design, implementation, and ultimately testing. Our main
goal is to not only provide traceability support for the security requirements, but to make
them a vital and useful part of each stage.
 Based on the results of our framework application, we consider that there is one
approach that can be extended in order to make the security requirements it produces
useful at later stages of development; this approach is CLASP. As mentioned in the
results section, CLASP obtained the highest star count and we believe that it will be an

 119

appropriate starting point for extending security requirements. In the case that CLASP
proves to be not suited for our objective, we will explore two other approaches that were
also surveyed. These two approaches are SQUARE and USeR. SQUARE and USeR are
also considered as possible candidates because they proved to have a good potential when
it comes to their usability as well as their traceability. Instead of developing our own
approach for security requirements engineering we are looking to extend either CLASP,
SQUARE, or USeR in order to make their security requirements more traceable and
ultimately useful at the testing phase of development. We will take each approach and
decide which one is better suited for our needs, but in the case that neither of them prove
to be effective enough then we will consider developing our own approach to security
requirements engineering. The results of the survey will be extremely useful in
determining not only what the new approach should include, but also what aspects we
need to steer clear from.
 Our proposed future directions seem promising in addressing the lack of support
for security requirements at later stages of development; we want to ultimately extend
what we learn from security to help address a variety of other non-functional
requirements.

 120

10 References

[Abr98] Abrams, M.: Application of the Protection Profile to Define Requirements for a
Telecommunications Services Contract. IEEE Software, 15(2). 1998

[Aka97] Akao, Y.: QFD: Past, present and future. Transactions of the Third International
Symposium on Quality Function Deployment. 1997

[Alb02] Alberts, C., Dorofee, A.: Managing Information Security Risks: The OCTAVE
(SM) Approach. Addison-Wesley. 2002

[Alb05] Alberts, C. et. al.: Introduction to the OCTAVE Approach. CERT Coordination
Center. www.cert.org/octave/approach_intro.pdf

[Alb99] Alberts, C., Behrens, S., Pethia, R., Wilson, W.: Operationally Critical Threat,
Asset, and Vulnerability Evaluation (OCTAVE-SM) Framework, Version 1.0
(CMU/SEI-99-TR-017, ADA 367718). Software Engineering Institute, Carnegie Mellon
University. 1999

[Ale02] Alexander, I.: Initial Industrial Experience of Misuse Cases in Trade-Off
Analysis. Proceedings of IEEE Joint International Requirements Engineering Conference.
2002

[Ale03] Alexander, I.: Misuse Cases Help to Elicit Non-Functional Requirements.
Computing and Control Engineering. 2003

[Bos06] Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending
XP Practices to Support Security Requirements Engineering. Proceedings of Workshop
on Software Engineering for Secure Systems (SESS). 2006

[Bre04] Bresciani, P., Giorgini, P, Giunchiglia, F, Mylopoulos, J., Perini, A.: TROPOS:
An Agent Oriented Software Development Methodology. Journal of Autonomous Agents
and Multi-Agent Systems. 2004

[CCIB99] Common Criteria Implementation Board: Common Criteria for Information
Technology Security Evaluation, Part 2: Security Functional Requirements. ISO/IEC
15408-1. 1999

[Cha02] Chan, L.K. and Wu, M.L.: Quality Function Deployment: A Comprehensive
Review of its Concepts and Methods. Quality Engineering, 15(1). 2002

[ChD04] Chen, P., Dean, M., Ojoko-Adams, D., Osman, H., Lopez, L., Xie, N.: Systems
Quality Requirements Engineering (SQUARE) Methodology: Case Study on Asset
Management System. (CMU/SEI-2004-SR-015). Software Engineering Institute,

 121

Carnegie Mellon University. 2004

[ChF05] Chivers, H. and Fletcher, M.: Applying Security Design Analysis to a service
based system. Software: Practice and Experience, vol. 35 no. 9. 2005

[Chr92] Christel, M. and Kang, K.: Issues in Requirements Elicitation (CMU/SEI-92-TR-
012, ADA258932). Software Engineering Institute, Carnegie Mellon University. 1992

[Coh95] Cohen, L.: Quality Function Deployment: How to Make QFD Work for You.
Addison-Wesley. 1995

[CSO06] Codesecurely.org: Security Requirements Engineering. 2006
http://www.codesecurely.org/Wiki/view.aspx/Security_Requirements_Engineering

[Dav1] Davis, A.: Software Requirements: Analysis and Specification. Prentice Hall.
1990

[Dor90] Dorfman, M.: Tutorial: System and Software Requirements Engineering. IEEE
Computer Society Press. 1990

[Eas00] Easterbrook, S., Nuseibeh, B.: Requirements Engineering: A Roadmap.
Proceedings of the International Conference on Software Engineering. 2000

[ESI96] European Software Institute: European User Survey Analysis. Report USV_EUR
2.1, ESPITI Project. 1996

[Fir03] Firesmith, D.: Engineering Security Requirements. Journal of Object Technology.
2003

[Fir07] Firesmith, D.: Engineering Safety and Security Related Requirements for
Software Intensive Systems. ICSE Companion. 2007

[GiM05] Giorgini, P., Massacci, F., Zannone, N.: Security and Trust Requirements
Engineering. Foundations of Security Analysis and Design III - Tutorial Lectures. 2005

[Gio06] Giorgini, P., Mouratidis, H., Zannone, Z.: Modelling Security and Trust with
Secure Tropos. Integrating Security and Software Engineering: Advances and Future
Vision. 2006

[Gor05] Gordon, D., Stehney II, G., Wattas, N., Yu, E.: Quality Requirements
Engineering (SQUARE): Case Study on Asset Management System, Phase II (CMU/SEI-
2005-SR005). Software Engineering Institute, Carnegie Mellon University. 2005

[HaH06] Hallberg, N. Hallberg, J.: The Usage-Centric Security Requirements
Engineering (USeR) Method. Information Assurance Workshop. 2006

 122

[HaH07] Hatebur, D., Heisel, M., Schmidt, H.: A Pattern System for Security
Requirements Engineering. Proceedings of the International Conference on Availability,
Reliability and Security (AReS). 2007

[Hal04] Haley, C., Laney, R., Nuseibeh, B.: Deriving Security Requirements from
Crosscutting Threat Descriptions. AOSD. 2004

[HaL07] Haley, C. Laney, R., Moffett, J., Nuseibeh, B.: Security Requirements
Engineering: A Framework for Representation and Analysis. IEEE Transactions on
Software Engineering. 2007

[Hat05] Hatebur, D., Heisel, M.: Problem Frames and Architectures for Security
Problems. SAFECOMP. 2005

[Hat06] Hatebur, D., Heisel, M., Schmidt, H.: Security Engineering Using Problem
Frames. Proceedings of the International Conference on Emerging Trends in Information
and Communication Security (ETRICS). 2006.

[Hat07] Hatebur, D., Heisel, M., Schmidt, H.: A Security Engineering Process based on
Patterns. DEXA Workshops. 2007

[Hog04] Höglund, G., McGraw, G.: Exploiting Software : How to Break Code. Addison
Wesley Professional. 2004

[Hop04] Hope, P., McGraw, G., Anton, A.: Misuse and Abuse Cases: Getting Past the
Positive. Security & Privacy, IEEE Volume 02, Issue 3. 2004

[IAT07] Information Assurance Technology Analysis Center (IATAC) and Data
Analysis Center for Software (DACS): Software Security Assurance: State-of-the-Art-
Report. 2007

[IEEE98] IEEE: IEEE Recommended Practice for Software Requirements Specifications.
1998. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=15571

[ISO99] ISO/IEC.: Information Technology - Security Techniques - Evaluation Criteria
for IT Security - Part 1: Introduction and General Model. ISO/IEC. International Standard
15408-1. 1999

[Jac01] Jackson, M.: Problem Frames. Analyzing and Structuring Software Development
Problems. Addison Wesley. 2001

[Jac92] Jacobson, I. et al.: Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley. 1992

[Kam05] Kam, S.: Integrating the Common Criteria Into the Software Engineering
Lifecycle. IDEAS'05. 2005

 123

[Kul00] Kulak, D., Guiney, E.: Use Cases: Requirements in Context. ACM Press. 2000

[Lam04] Lamsweerde, A.: Elaborating Security Requirements by Construction of
Intentional Anti-Models. 26th International Conference on Software Engineering
(ICSE'04). 2004

[Lew02] Lewis, R.: Design for Security Up Front. 2002
http://articles.techrepublic.com.com/5100-10878-1059545.html

[Lin97] Linger, R., Mead, N., Lipson, H.: Requirements Definition for Survivable
Network Systems. Software Engineering Institute, Carnegie Mellon University. 1997

[Liu03] Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis
within a Social Setting In. Proceedings of the International Conference on Requirements
Engineering (RE). 2003

[Lou89] Loucopoulos, P., and Champion. R.E.M.: Knowledge-Based Support for
Requirements Engineering. Information and Software Technology. 1989

[Luc04] Bastos, L., Brelaz de Castro, J.: Systematic Integration Between Requirements
and Architecture. SELMAS. 2004

[Lut07] Lutz, R., Patterson-Hine, A., Nelson, S., Frost, C., Tal, D., Harris, R.: Using
Obstacle Analysis to Identify Contingency Requirements on an Unpiloted Aerial Vehicle.
Requirements Engineering Journal. Vol. 12. No. 1. 2007

[McG03] McGraw, G.: Software Security: Thought Leadership in Information Security.
Cigital Software Security Workshop. 2003

[Mea05] Mead, N., Hough, E., Stehney II, T.: Security Quality Requirements (SQUARE)
Methodology. (CMU/SEI-2005-TR-009). Software Engineering Institute, Carnegie
Mellon University. 2005

[Mea06] Mead, N.: Security Requirements Engineering. Carnegie Mellon University.
1996. https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/243.html

[Mea07] Mead, N.: How To Compare the Security Quality Requirements Engineering
(SQUARE) Method with Other Methods. Technical Note, CMU/SEI. 2007

[Mead04] Mead, N.: Requirements Elicitation and Analysis Processes for Safety &
Security Requirements. Proceedings of Fourth International Workshop on Requirements
for High Assurance Systems. 2004

[MeF06] Mellado, D., Fernández-Medina, E., Piattini, M.: A Comparative Study of

 124

Proposals for Establishing Security Requirements for the Development of Secure
Information Systems. Proceedings International Conference on Computational Science
and its Applications (ICCSA). 2006

[MeF07] Mellado, D., Fernández-Medina, E., Piattini, M.: A Common Criteria Based
Security Requirements Engineering Process for the Development of Secure Information
Systems. Computer Standards & Interfaces, vol 29. 2007

[MGS03] Mouratidis, H., Giorgini, P., Schumacher, M., Manson, M.: Security Patterns
for Agent Systems. Proceedings of the Eight European Conference on Pattern Languages
of Programs (EuroPLoP). 2003

[Mof03] Moffett, J. D. and Nuseibeh, B.A.: A Framework for Security Requirements
Engineering. Report YCS 368, Department of Computer Science, University of York.
2003

[MoG03] Mouratidis, H., Giorgini, P., Manson, G.: Modelling Secure Multiagent
Systems. Proceedings of the Second International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS). 2003

[MoH04] Moffett, J. Haley, C., Nuseibeh, B.: Core Security Requirements Artefacts.
Technical Report 2004/23. Department of Computing, The Open University. 2004

[Moo01] Moore, A. et al.: Attack Modeling for Information Security and Survivability.
Technical Note CMU/SEI-2001-TN-001. Software Engineering Institute, Carnegie
Mellon University. 2001

[Mou03] Mouratidis, H., Giorgini, P., Manson G.: Integrating Security and Systems
Engineering: Towards the Modelling of Secure Information Systems. Proceedings of the
15th Conference on Advance Information Systems (CAiSE). 2003

[Mou06] Mouratidis, H. and Giorgini, P.: Secure Tropos: Dealing effectively with
Security Requirements in the development of Multiagent Systems. Safety and Security in
Multiagent Systems. LNCS, Springer-Verlag, 2006

[NY01] New York State Office for Technology.: Requirements Analysis. 2001

[Olt01] Olthoff, K.: Observations on Security Requirements Engineering. Symposium on
Requirements Engineering for Information Security. 2001

[Pau93] Paulk, M., Weber, C., Garcia, S., Chrissis, M., Bush, M.: Key Practices of the
Capability Maturity Model, Version 1.1. Software Engineering Institute, Carnegie Mellon
University. CMU/SEI-93-TR-25. 1993

 125

[Pet05] Peeters, J.: Agile Security Requirements Engineering. Symposium Requirements
Engineering Information Security, 2005
www.sreis.org/SREIS_05_Program/short26_peeters.pdf

[Pet07] Peeters, J. and Dyson, P.: Cost-Effective Security. IEEE Security & Privacy.
2007

[Pie01] Piessens, F., De Decker, B., De Win, B.: Developing secure software. A survey
and classification of common software vulnerabilities. IICIS. 2001

[Red04] Redwine, S. et al.: Processes to Produce Secure Software: Towards More Secure
Software. National Cyber Security Summit. 2004

[Ric07] Caralli, R., Stevens, J., Young, L., Wilson, W.: Introducing OCTAVE Allegro:
Improving the Information Security Risk Assessment Process. Technical Report
CMU/SEI-2007-TR-012. Software Engineering Institute, Carnegie Mellon University
http://iac.dtic.mil/iatac/download/security.pdf

[Rom07] Romero-Mariona, J., Ziv, H., Richardson, D.: Toward Hybrid Requirements-
based and Architecture-based Testing. Proceedings of The Role of Software Architecture
for Testing and Analysis (ROSATEA). 2007

[Rom90] Rombach, H.: Software Specifications: A Framework. IEEE Tutorial on
Standards, Guidelines, and Examples: Systems and Software Requirements Engineering.
ISBN 0-8186-8922-6. 1990

[Rum94] Rumbaugh, J.: Getting Started: Using use cases to capture requirements. Journal
of Object-Oriented Programming. 1994

[Rze89] Rzepka, W.: A Requirements Engineering Testbed: Concept, Status, and First
Results. In Bruce D. Shriver (editor), Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences. IEEE Computer Society. 1989

[Sch00] Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John
Wiley & Sons. 2000

[SEI91] Software Engineering Institute Requirements Engineering Project: Requirements
Engineering and Analysis Workshop Proceedings. Technical Report CMU/SEI-91-TR-30
or ESD-TR-91-30, Software Engineering Institute. 1991

[Sin03] Sindre, G., Firesmith, D., Opdahl, A.: A Reuse-Based Approach to Determining
Security Requirements. Proceedings of the Ninth International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ). 2003

[SSI05] Secure Software Inc.: The CLASP Application Security Process. 2005

 126

[STEP91] Software Test & Evaluation Panel (STEP), Requirements Definition
Implementation Team: Operational Requirements for Automated Capabilities, Draft
Pamphlet (Draft PAM). 1991

[Sto01] Stoneburner, G., Hayden, C., & Feringa, A.: Engineering Principles for
Information Technology Security (A Baseline for Achieving Security). Computer
Security Division, Information Technology Laboratory National Institute of Standards
and Technology. 2001

[Tar95] Tarr, C., Peaty, S.: Using CLASP to Assess Perimeter Security. Proceedings
Institute of Electrical and Electronics Engineers 29th Annual International Carnahan
Conference. 1995

[Tun08] Tundel, Jaatun, Moland.: Security Requirements for the Rest of Us: A Survey.
IEEE Software. 2008

[Vet02] Vetterling, M. et al.: Secure Systems Development Based on the Common
Criteria: The PalME Project. Foundations of Software Engineering (SIGSOFT). 2002

[Vie01] Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security
Problems the Right Way. 1st ed. Addison-Wesley. 2001

[Vie05] Viega, J.: Building Security Requirements with CLASP. Proceedings of the
Workshop on Software Engineering for Secure Systems (SESS). 2005

[War06] Ware, M.: Using Common Criteria to Elicit Security Requirements with Use
Cases. Proceedings of the IEEE SoutheastCon. 2006

[Wei98] Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenario Usage in System
Development: A Report on Current Practice. IEEE Software. 1998

[Wel03] Welch, D., Lathrop, S.: A Survey of 802.11a Wireless Security Threats and
Security Mechanisms. ITOC Technical Report 2003-101 to the Army G6. 2003

[Whi01] Whitmore, J.: A Method for Designing Secure Solutions. IBM Systems Journal.
Volume: 40. Issue: 3. 2001

[Zah90] Zahniser, Richard A.: How to Speed Development with Group Sessions. IEEE
Software. 1990

[Zav97] Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology, 6(1). ACM Press. 1997

[Zuk89] Zucconi, L.: Techniques and Experiences Capturing Requirements for Several
Real-Time Applications. ACM SIGSOFT Software Engineering Notes. 1989

