
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Thomas A. Alspaugh
University of California, Irvine
alspaugh@ics.uci.edu

Relationships Between Scenarios

May 2006

ISR Technical Report # UCI-ISR-06-7

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

ISR Technical Report UCI-ISR-06-7 — May 2006 (revised Dec. 2006)

Relationships Between Scenarios

Thomas A. Alspaugh

Institute for Software Research
Department of Informatics

University of California, Irvine
alspaugh@ics.uci.edu

Abstract. Scenarios are widely used in requirements analysis and other
activities, but their informality is a challenge for reasoning about them
and providing significant tool support. This research describes an ap-
proach for identifying aspects of scenarios that people use consistently,
structuring them, and using this structure to support work with scenar-
ios. Our approach clarifies how scenarios can be related (for example
by specialization) and how they can be used to give each other context
and constraints, and provides a foundation for more extensive automated
support. Automated support for scenario manipulation and analysis lets
human expertise be concentrated on the tasks that need it most. Our
approach is implemented by an XML language and a Java package for
it. We describe how they have been used in goal-driven specification-
based testing, computed social worlds of autonomous animated agents,
and analysis of business rules and scenarios.

ISR Technical Report UCI-ISR-06-7 — May 2006 (revised Dec. 2006)

Relationships Between Scenarios

Thomas A. Alspaugh

Institute for Software Research
Department of Informatics

University of California, Irvine
alspaugh@ics.uci.edu

Abstract. Scenarios are widely used in requirements analysis and other
activities, but their informality is a challenge for reasoning about them
and providing significant tool support. This research describes an ap-
proach for identifying aspects of scenarios that people use consistently,
structuring them, and using this structure to support work with scenar-
ios. Our approach clarifies how scenarios can be related (for example
by specialization) and how they can be used to give each other context
and constraints, and provides a foundation for more extensive automated
support. Automated support for scenario manipulation and analysis lets
human expertise be concentrated on the tasks that need it most. Our
approach is implemented by an XML language and a Java package for
it. We describe how they have been used in goal-driven specification-
based testing, computed social worlds of autonomous animated agents,
and analysis of business rules and scenarios.

1 Introduction

Scenarios (and use cases containing them) describe uses of a system in terms of
situations, interactions between agents, and events unfolding over time. They are
widely used in a number of ways during the development process, and by a vari-
ety of participants [AM04,BFJZ92]. Stakeholders (customers, users, and others
affected by a system) use them to communicate what is wanted, and developers
(designers, programmers, testers, etc.) use them to confirm their understanding
[BFJZ92,MMMR98,Rob04]. They may be the primary form in which require-
ments are recorded [Coc00,Hau04,JCJÖ92], a preliminary form from which spe-
cialists produce more refined forms such as goals and requirements or behavior
models [LW98,UCKM04], a guide and scaffolding in a process by which other
artifacts such as goals are developed [RSBA98]. They are used to simulate and
explore a system’s use [BFJZ92] or a design’s utility [Sut03], to present a test
or validation [BBL+04], and to derive tests from requirements [ARSZ05].

In all these uses, the informal natural language form of scenarios is a key
advantage. Their narrative form takes advantage of people’s natural abilities for
constructing and understanding stories. However, their informality limits the
extent to which automation and tool support can be effective, and makes it
challenging to define relations between them. This paper presents an investiga-
tion into the ways and degree to which the underlying structure and meaning

ISR Technical Report UCI-ISR-06-7

of scenarios can be brought to the surface and made use of, without interfering
with the advantages of informal scenarios. The investigation has taken place in
the context of the definition and implementation of ScenarioML, a language for
structuring and marking up the text of scenarios. A fundamental requirement
on this language is that it must always be possible to automatically produce
an informal natural language text form from any marked up scenario, in order
to preserve the key advantage of using scenarios in the first place. ScenarioML
satisfies this requirement while also supporting the structuring and marking up
that allows automation and tool support.

In the process we have defined and implemented identification of key relation-
ships among scenarios: scenario equivalence and specialization, and implication
of one scenario by another. These relationships are defined in terms of our asser-
tion that the meaning of a scenario is the (usually infinite) set of occurrences it
describes in the world. We have also identified potentially powerful generaliza-
tions of ordinary scenario usage, including using one scenario to state the context
for others, and independently constraining the behavior one scenario describes
by specifying its relationship to a second scenario. Scenarios expressed in this
form can be read by a program, analyzed and manipulated internally, and output
in the same or another form or used to drive another process. Scenario-specific
editors and stronger scenario management tools are the most obvious use of this
language. Additional automated uses of scenarios have been explored.

This research focuses on scenarios rather than use cases for several reasons. A
use case groups together the scenarios that achieve a particular goal in alternative
ways, plus the scenarios that describe associated exceptional cases and actions.
The possibilities we have identified reside at the level of an individual scenario,
not at the higher level of organization of a use case. Secondly, use cases have a
definition and relationships that are widely accepted, if not necessarily strictly
defined, so that generalizations and additions are less likely to be of interest.
Finally, since use cases consist of scenarios, results from research in scenarios can
be incorporated into use cases through that path. We focus on scenarios rather
than message sequence charts (MSCs) and similar modeling constructs because
those are especially appropriate for architecture- and design-level specification
and have received much attention in that context. MSCs and similar constructs
are less appropriate for higher-level requirements specification, where the actors
are often human beings and the range of possible actions and interactions is
broad and less well defined. Scenarios at this level have not been investigated
to the extent that MSCs and other design-level formalisms have been, and can
benefit from more attention.

The remainder of the paper is organized as follows. Section 2 summarizes
related work. Section 3 motivates and presents the core of the ScenarioML lan-
guage. Section 4 discusses how ScenarioML events are compared and their rela-
tions determined. Section 5 discusses its implementation and tool support, and
briefly presents applications and validation to date. We outline our future work
in Section 6, and summarize and present conclusions in Section 7.

2

ISR Technical Report UCI-ISR-06-7

2 Related Work

There has been a substantial amount of work on scenario and use case languages,
models, and semantics. Many authors have proposed event schemas in one form
or another. Various forms of alternation, iteration, and exception/interruption
are described by Dardenne et al. [DLF93], the Message Sequence Charts spec-
ification [ITU99], Maiden [Mai98], and many others. Basic scenarios have been
extended with specific sets of temporal relations between events, including im-
portant work by Maiden [Mai98] and by Breitman et al. [BLB05]. Episodes under
one name or other appear to have been nearly universal in scenario and use case
languages, including notably Potts et al. [PTA94] and the OMG [OMG03]. The
structure of ScenarioML is built squarely on this work. The features of Scenar-
ioML that distinguish it most strongly from this related work are its extensive
and consistent use of parameterization, variables for newly created or identified
entities, quantification for restricting variable bindings, markup for expressing
anaphora unambiguously, co-matching so that one scenario may be used to con-
strain the context of another, and the emphasis on matching the world as the
basis for the meaning of events and scenarios and for relationships between them.
The present work focuses on this last item.

A number of XML languages for use cases exist, notably OMG’s interchange
language for all parts of UML [OMG05]. In contrast, ScenarioML is not de-
signed to match a particular notation but is designed to embody the aspects of
scenarios that people use and interpret consistently, with the goal of supporting
automation based on this consistency.

Nentwich et al.’s xlinkit is a general-purpose framework for expressing and
checking consistency constraints in XML documents [NEFE03]. This framework
is much more general than ScenarioML and aimed at documents of all sorts,
not specifically scenarios. ScenarioML supports the checking of analogous con-
sistency constraints within scenarios, for example checking that the scenario an
episode references has in fact been defined.

3 The ScenarioML Language

Scenarios are inherently informal, but nevertheless have certain aspects that are
treated consistently by people. ScenarioML provides formal structure and sup-
port for a number of such aspects that we have identified from our own experience
and in observations and discussions with authors and users of scenarios:

– Same wording means same thing. If the same wording is used in two places to
mean two different things, this is (in general) considered a mistake. Different
wording either means something different, or at least raises the question in
a reader’s mind of what different meaning might have been intended.

– Implicit parameterization of scenarios and events, with actors, agents, sys-
tems, etc. being the implicit parameters. A “customer” mentioned in a sce-
nario is very likely to be in essence a parameter that may refer to a different
individual in every occurrence of the scenario. Furthermore, within a scenario

3

ISR Technical Report UCI-ISR-06-7

the same individual is meant by every reference to that customer, either as
repetitions of “the customer” or anaphorically with other phrasing (“he”).

– Implicit time parameterization. The scenario may take place once at some
unspecified time, more than once, or possibly never (e.g. an antiscenario).

– Division of scenarios into events. Each event can at least conceptually be
identified in the world as a separate occurrence from the events around it.
Individual events can occur independently of others in the scenario; it is at
least conceivable that one event in a scenario may occur, and the next-listed
event may not.

– Temporal relationships among events. The relationships are most commonly
a simple sequence, but other relationships are encountered (“While the cus-
tomer is entering his PIN ...”) and any consistent relationship is possible.

– Simple events that are defined by the text that describes them.
– An entire scenario as a single event of another scenario, termed here an

episode of that scenario. In use case terms, one “includes” another.
– Event schemas that may be equivalent to a repeated event (an iteration), a

choice drawn from two or more alternative events (an alternation), or one
event possibly superseded by another (an interruption or an exception).

– An implicit model of the world (an ontology), containing at a minimum the
entities mentioned in the scenario. These entities are often categorized into
types (“An ATM card” which refers to an instance but implicitly charac-
terizes a set of similar instances), and may have relationships to entities of
the same or other types (“the PIN that corresponds to the customer’s ATM
card”). Some entities exist outside the time span of the scenarios, and can
be identified by name (“the ATM at the main branch on Hillsborough St.”);
others are created as the result of an event in a scenario, and are identified
by a reference that reaches back to that event, directly or indirectly. The
world described may be ‘the’ world, or a hypothetical world containing (for
example) planned systems that do not yet exist.

The syntax of ScenarioML supports a scenario author who wishes to make
explicit any or all of these aspects that people treat consistently.

Figure 1 shows an excerpt from an industrial scenario for the Mirth medi-
cal informatics middleware system, both in XML and in a ‘stakeholder-friendly’
informal natural language text form derived automatically from the XML. This
scenario exhibits several of the features discussed above. The scenario is param-
eterized explicitly (with parameters kindOfModule and user). Each parameter is
identified with a type (KindsOfModules and Users, respectively) defined in an
ontology not shown in the figure. The scenario is divided into top-level events
that in this case occur in a sequence. Event 4 is a schema equivalent to a choice
drawn from several alternatives (due to space limitations, only alternative A is
visible in the figure). Alternative A is another schema equivalent to a repeated
event; the repeated event is given the ‘number’ ∗because it may occur more
than once. The text of simple events and other text components contains words
and phrases that have been identified (manually) as references to entities and
types defined in the ontology and to the scenario’s parameters. This ‘stakeholder-
friendly’ text form is HTML presented by a web browser, and the references are

4

ISR Technical Report UCI-ISR-06-7

Fig. 1. ScenarioML scenario excerpt, in stakeholder-readable and XML forms

expressed in it as hyperlinks to their referents. In the XML the references are
expressed with elements mixed with the text as markup. Each such ref element
names its referent with a to= attribute. Space does not permit discussion of the
entire ScenarioML language (presently 49 element types and 20 attribute types);
here we will focus on events only.

The author and his research team have become accustomed to writing sce-
narios directly in ScenarioML using a text editor with XML support, validation
against the ScenarioML schema, and occasionally checking the derived informal
text form to verify our work; with practice we have become relatively efficient.
However, we cannot and do not expect people who write informal text scenar-
ios to choose to write scenarios in ScenarioML directly. We are in the process
of developing a ScenarioML scenario editor in the form of an Eclipse plugin,
supported by an IBM Eclipse Innovation Award. The plugin provides a visual
editor interface analogous to the form of an informal text scenario, with support
for structuring scenarios, making textually-expressed parameterization explicit,
linking words and phrases in text events to entities in an ontology, and other
tasks that are needed in order to create, edit, and work with ScenarioML sce-
narios. We plan validation studies with the editor to show the extent to which
this approach can be made both palatable and effective for the range of kinds of
people that work with scenarios.

Figure 2 shows the elements of ScenarioML discussed in the remainder of
this paper and their relationships. There are four classes of events: simple events
defined by a text description, episodes that use another scenario as an event,
compound events composed of other events in a temporal pattern, and event

5

ISR Technical Report UCI-ISR-06-7

Scenario

Event

Parameter

Argument

+
✱

✱

✱

Simple
Event

Episode

✱

Instance

+

Compound
Event

✱

✱

Type

✱

✱
sub

Event
Schema

✱

✱

Reference

or

✱

?

?

is a specialization of

refers to a

is a component part of a

belongs to a

Fig. 2. Metamodel of events and related constructs in ScenarioML

schemas. Compound events and event schemas are themselves events, but also
have other events as their component parts.

3.1 Simple events

A simple event consists of text describing something happening in the world.
The text is fundamentally something to be understood by a human reader; we
do not attempt to interpret it by natural language processing, and assume only
that two simple events whose text is the same are equivalent, and that two simple
events whose text is different (once references are resolved) are not.

3.2 Episodes

An episode reuses one scenario as an event of another. It is equivalent to and
can be replaced by the events of the scenario it references, with the scenario’s
parameters text-replaced by the corresponding arguments of the episode.

Scenarios reused in this way often appear as episodes in more than one sce-
nario. The text of the reused scenario is typically not equally appropriate for
all its uses as an episode, leaving the reader to guess precisely how to interpret
it in a particular context. We address this issue through explicit parameteriza-
tion of scenarios and arguments for episodes. This is not a perfect solution (text
replacement of parameters by arguments can result in capitalization, plurality,
and other oddities) but it has worked well in a large majority of cases and more
clearly expresses the scenario author’s intent.

3.3 Compound events

A compound event comprises two or more component events with temporal con-
straints between them. The compound event begins when its earliest component
event begins, and ends when its latest component event ends. We use Allen’s

6

ISR Technical Report UCI-ISR-06-7

interval algebra to specify qualitative temporal constraints between the events
[All83]. Allen identified the thirteen relations that can hold between two con-
crete time intervals, illustrated in Figure 3. A concrete interval is one bound to a

precedes
(p)

meets
(m)

overlaps
(o)

finished
by (F)

contains
(D)

starts
(s)

preceded
by (P)

met
by (M)

overlapped
by (O)

finishes
(f)

during
(d)

started
by (S)

equals
(e)

time

Fig. 3. Allen’s interval relations

particular interval on the line of time, such as “16:02:14 through 16:02:18 GMT”
or “the first time ATM card 283749 was in ATM 182” The thirteen relations are
distinct in that only one holds between any two intervals, exhaustive in that any
two concrete intervals are related by one of the thirteen, and qualitative in that
they do not specify any numerical lengths of time, but only relative position in
time. For example, June 14 precedes June 16 (p); on any one day, morning meets
afternoon (m); and summer contains July (D). For abstract time intervals such
as those corresponding to a scenario event whose concrete time is not known,
the possible relations are given as a set of individual relations. For example, if
event a must begin before event b, but may end either before b begins, when b
begins, or after b begins but before it ends, then the relation would be (pmo).
For groups of three or more intervals, it is possible to specify relations for some
of the pairs of intervals and infer the remaining relations using an algorithm (al-
though in the general case the algorithm is NP-complete). More detail is given
in our technical report [Als05].

We divide compound events into three groups, based on the complexity of
their temporal interrelationship and (correspondingly) the complexity of tem-
poral inference on them. Simplest are chains of events related by combinations
of the five positive Allen relations (listed in Figure 4). Using positive relations

b
a

b
a precedes b

a

a meets b
b

a

a overlaps b
b

a

a finished by b
b
a

a contains b

time

Fig. 4. Positive Allen relations

constrains the chains to be listed with events in order by beginning, so that each
chain can only be written in one canonical way and there are no cycles. In prac-
tice, almost all scenarios are written as chains. Next are partial orders (dags)
of events related by positive Allen relations. Again, using positive relations con-
strains the dags so that there are no cycles, and in addition allows each dag to

7

ISR Technical Report UCI-ISR-06-7

have a canonical form (if a sort order for the children of each node is specified).
Figure 5 shows a compound event that is a dag. Inference for both chains and
dags is tractable, and we believe that they suffice to write virtually all scenarios
that are of practical interest. Last and most complex are the unrestricted graphs
of events, which allow arbitrary relations among events and are not only compu-
tationally intractable in the general case but are also very difficult for a person
to write or think about, and so are unlikely to occur in actual use.

3.4 Event schemas

The event schemas we will consider here are alternation among several alterna-
tive events and iteration of an event some number of times, either in a numeric
range of repetitions, once for each of a list of entities, or while a given condition
in the world is true. We term these ‘schemas’ as distinct from compound events
because each schema in effect causes its scenario to be equivalent to a set of
scenarios containing no schema:

– an alternation makes its scenario equivalent to a set of scenarios each con-
taining a different one of the alternatives;

– an iteration makes its scenario equivalent to a set of scenarios each containing
a a different possible unrolling of the iteration as a chain.

ScenarioML also has schemas for interruption of one event by another at
some point, and for exceptions, where one event may preempt the remainder of
another at some point, but these will not be considered in this paper.

3.5 Matching events to the world

As mentioned in the Introduction, we say that the meaning of a scenario (or an
event) is the set of occurrences it describes in the world. In this subsection we
discuss how this can be implemented, by matching specific events to occurrences
in the world.

A simple event is a text description of a single occurrence. The simple event
matches the occurrences it describes, and none other. Since we leave the inter-
pretation of text to human readers, matching of an event to an occurrence must
be done either by a person or by a software oracle written for that event.

We can generalize for simple events containing references. If the simple event
contains markup for references, the occurrence must involve the appropriate
entities referred to.

– If the reference is to a specific named entity, the occurrence must involve it.
– If the reference is an anaphoric one to the entity involved in the occurrence

matched by another event, then this event’s occurrence must correspond.
– If the reference is to a new entity, the entity must be one previously unknown.

A compound event comprises a group of component events with specific tem-
poral relations. Therefore, a compound event can match an occurrence that com-
prises a group of component occurrences if the component events can be mapped
onto the occurrences so that

8

ISR Technical Report UCI-ISR-06-7

– each component event matches its corresponding occurrence, and
– the relation between each pair of occurrences is contained in the relation

between the corresponding events.

Figure 5 illustrates the matching of a compound event’s subevents to occur-
rences in the world. Each subevent is mapped to a unique occurrence that it
matches. For example, occurrence a is matched by event A. In this figure, we

a

d

e

b

f

c

A

B

E

C

F

D

m

moF

p

oFD
pmo

pm

Events in
 a scenario

Occurrences
in the world

tim
e

Fig. 5. Mapping events to occurrences

don’t know whether A matches a because it is a simple event that describes a,
or an episode, compound event, or event schema that recursively matches the
component suboccurrences (not shown) of a.

The compound event then matches if occurrence relations are contained in
corresponding event relations. Figure 6 illustrates this. Event A is mapped to
occurrence a and E to e, so in order for the compound event to match, the
relation between a and e, which is (p), must be contained in the relation between
A and E (and similarly for the other corresponding relationships). The relation
between A and e is (pm) which does in fact contain (p). Examination of the
figure shows that every occurrence relation is contained in the corresponding
event relation, so this compound event matches.

Because the compound event is a dag, with only positive relationships in
the partial order, it is not necessary either to infer the remaining relationships
among the subevents, or determine the remaining concrete relationships between
the suboccurrences; once we have established that the partial order relationships
correspond, we know the others will correspond as well. This is an example of the
computational simplification that separating chains and dags out of the general
case affords us.

Event schemas are matched against occurrences in the expected ways. An
alternation schema matches an occurrence if any of its subevents matches the

9

ISR Technical Report UCI-ISR-06-7

a

d

e

b

f

c

A

B

E

C

F

D

m

moF

p

oFD

pmo

pm

Events in
 a scenario

Occurrences
in the world

m
p

p

D

o

p

Fig. 6. Mapping corresponding relations

occurrence. An iteration schema matches a (compound) occurrence if the occur-
rence is a chain matched by any of the iteration’s unrollings.

Finally, an episode matches an occurrence if the scenario the episode refers
to, with arguments substituted for parameters, matches the occurrence.

4 Comparing Events

We have shown how each kind of event can be matched recursively against
occurrences in the world. In this section, we will explore how this can be leveraged
to compare two events. Since the meaning of an event is the set of occurrences
it describes in the world, we shall compare two events by comparing their sets
of occurrences. Three of the relations that result are illustrated in Figure 7.

S1

S2

......{ }

S2 equivalent to S1

S1

S2

......{ }

S2 specializes S1

S1

S2

......{ }

S2 implies S1

Fig. 7. Three relations between events

10

ISR Technical Report UCI-ISR-06-7

– Two events are equivalent, if their sets are equal.
– One event is a specialization of another, if its set is a subset of the other’s.
– One event implies another if every occurrence of the other is contained in

an occurrence of the first (this can only occur with compound events).

Specialization and implication produce partial orders of events, with every
implication partial order a subset of some specialization partial order.

4.1 Simple events

Two simple events without references are equivalent if they are textually equal.
Two simple events with references are equivalent if their texts are equal

except for references in corresponding locations in their text, and if corresponding
references are equivalent; two references are equivalent it they refer to the same
instance or range over the same sets of instances.

The relation of specialization between two simple events containing references
is complex and not discussed here due to limitations of space.

4.2 Compound events

Two compound events are equivalent if (i) there is a bijection between their
subevents such that corresponding subevents are equivalent, and (ii) correspond-
ing pairs of subevents have the same temporal relation in each of the com-
pound events. But they may also be equivalent if one or both contain compound
subevents, in which case the two compound events may need to be reduced to
compound events with only simple events as subevents in order to determine
equivalence. Here the classification into event chains, dags, and graphs is use-
ful: chains of chains reduce to chains, and chains of dags or dags of chains or
dags reduce to dags, while compound events involving graphs reduce to graphs.
Because chains and dags have canonical forms, their comparisons are computa-
tionally straightforward. Comparison of graphs is computationally intractable;
fortunately, event graphs appear to be extremely uncommon in actual scenarios.

Specialization of two compound events is analogous, with an injection be-
tween subevents whose temporal relations in the first are subsets of those in the
second. The computational approach and issues are also analogous.

A compound event A implies another compound event B if there is a bijection
between their subevents such that

– each subevent of A specializes the corresponding subevent of B, and
– the relation between every pair of B ’s subevents is contained in the relation

between the corresponding pair of A’s subevents.

The computational approach and issues are analogous.
The only compound events that are comparable to simple events are the

degenerate ones that contain a single simple event; in that case, the compound
and simple event are compared in terms of the singleton simple subevent.

11

ISR Technical Report UCI-ISR-06-7

4.3 Schemas

Alternation schemas are comparable if one’s alternative subevents map to the the
other’s: equivalent if corresponding subevents are equivalent, and a specialization
(implication) if corresponding subevents are specialized (implied) in the same
direction.

Iteration schemas have more complex possibilities for comparison. In the
simplest cases, two iteration schemas are comparable if their iterated events are
comparable. They are equivalent if their subevents are equivalent, the schemas’
temporal relations are equal, and the sets of iterations are the same; one spe-
cializes (implies) the other if its subevent specializes (implies) the other’s, its
temporal relation is a subset (superset) of the other’s, and its set of iterations
is a subset (superset) of the other’s. However, there are a range of additional
possibilities based on relations between the unrollings, as for example when one’s
subevent is a chain of repetitions of the other’s, which this paper will not address.

An alternation and an iteration can be related only if the alternation’s alter-
natives are related to the iteration’s unrollings

An alternation is specialized by each event that is one of its alternatives, and
is implied by the same events. Only a degenerate alternation of one alternative
can be equivalent to a compound or simple event. Similarly, an iteration that
may match a single repetition is specialized by an event that is a specialization
of its subevent, and is implied by the same event. Only a degenerate iteration of
exactly one repetition can be equivalent to a compound or simple event.

4.4 Episodes

Finally, two episodes are compared by comparing the events of their respective
scenarios, with parameters replaced by arguments.

5 Implementation, Validation, and Application

The syntactic form of ScenarioML is specified by a grammar and (somewhat less
strictly) an XML schema. Its semantics are implemented in a Java package most
of which is generated by a Perl script from the ScenarioML grammar. The pack-
age provides methods for examining, comparing, and operating on the scenarios
embodied by the objects, and for constructing objects from ScenarioML input
and marshalling the resulting objects back into ScenarioML or into other output
forms. HTML output is implemented (Figure 1), and LATEX output has been
prototyped for feasibility. The package implements a conservative comparison of
events for equivalence, specialization, and implication, in that if it identifies two
events as related, a person would judge the events have that relation, but the
converse is not always true. We are continuing to explore the extent to which
automated comparison may be extended.

ScenarioML has been validated by using it to write scenarios for a variety of
systems and contexts, including the Mirth medical informatics middleware sys-
tem [ASW+06], a Traffic Information System (TIS) in a private plane [ATB06],

12

ISR Technical Report UCI-ISR-06-7

banking business rules, Web site personalization, and others. The Mirth scenarios
were the basis for an empirical validation that showed a range of industrial stake-
holders preferred to read and work from ScenarioML scenarios over use cases,
and that two comparable participants re-expressing use cases in ScenarioML
and in sequence diagrams, respectively, uncovered more requirements problems
by using ScenarioML [ASW+06]. Interestingly, it took comparable amounts of
time to write the scenarios in ScenarioML with an XML editor and to write
comparable sequence diagrams with a specialized sequence diagram tool.

The concepts of ScenarioML have been used as the foundation of an approach
for specification-based testing using plans and goals [ARSZ05,WAZR06]. This
approach annotates a system’s source code with system goals, then precompiles
them into goal and event emitters. The plans, which are essentially scenarios
whose events are goal satisfactions, are automatically translated into rules for
an expert system that recognizes when each plan has been followed successfully.
Manually produced oracles are used to verify goal satisfaction. The result is
that the running program is tested for conformance to plans and achievement of
expected goals.

Research has shown that scenarios augmented with rich media are more ef-
fective for walkthroughs, analysis, and elicitation, but the cost of videographing
users in the context of using a system can be prohibitive. We have used Scenar-
ioML to automatically produce an animated social visualization of scenarios. In
this project, actors and entities in scenarios are annotated with a small incre-
ment of extra information, from which social worlds animation software produces
an animation of the scenario’s events on the fly. An initial pilot study showed
promise that it helped users understand scenarios and find problems in them
[ATB06].

Baumer et al. use ScenarioML scenarios to drive computed social worlds of
autonomous animated agents [BTYA06]. The social norms of the computed soci-
ety are expressed as scenarios; individual agents ‘watch’ for occurrences matched
by the first events of scenarios, and contribute to the interaction by speaking
later events. User-spoken inputs are incorporated into their social norms, replay-
ing sound files automatically recorded from the input as events in an interaction.

6 Future Work

The implementation of support for operations and analysis on scenarios and
the definition of the relationships between scenarios opens possibilities for using
scenarios in combination in new ways. We envision using a scenario to specify
the expected context of other scenarios that it calls as episodes, and the use of
one scenario as a constraint on another. These uses of scenarios open new ways
of modularizing and combining scenarios, with a number of possible uses.

One such use is the integration of scenarios more fully into software archi-
tecture specifications. We believe that software architecture needs to integrate
behavioral specifications into architectural component descriptions, and use ar-
chitectural connectors as operators that combine these specifications recursively.

13

ISR Technical Report UCI-ISR-06-7

Some work has been done with (for example) Statecharts and other design-level
notations. However, we feel that requirements-level scenarios offer possibilities
of stronger connection to requirements and better interaction with stakeholders.
This area holds promise and we plan to pursue it using ScenarioML.

Scenarios are often used in design processes, but usually as a peripheral
element that supports other design artifacts. We believe that one reason for this
is the difficulty of working with scenarios without effective tool support. A goal
of our scenario tool support is to produce tools with which design can be done
with scenarios, rather than merely using scenarios.

7 Conclusions

We have described an approach for adding structure to scenarios in a way that
reflects the assumptions people ordinarily make about the meaning of text sce-
narios. This approach has been embodied in an XML language, ScenarioML, and
a Java package implementing it. In the process of working through the approach
and implementing its features, some interesting relations between scenarios have
been given clear definitions. The approach offers a foundation for automated sup-
port of editing, analyzing, and managing scenarios. It has been used successfully
in several projects and further use is planned and appears promising.

Acknowledgments

The author gratefully acknowledges the comments and suggestions made by the
anonymous reviewers of an earlier version of this paper.

References

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832–843, November 1983.

[Als05] Thomas A. Alspaugh. Software support for calculations in Allen’s Inter-
val Algebra. ISR Technical Report UCI-ISR-05-02, Institute for Software
Research, University of California, Irvine, February 2005.

[AM04] Ian F. Alexander and Neil Maiden, editors. Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle. John Wiley & Sons, Ltd.,
2004.

[ARSZ05] Thomas A. Alspaugh, Debra J. Richardson, Thomas A. Standish, and
Hadar Ziv. Scenario-driven specification-based testing against goals and
requirements. In 11th International Workshop on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ’05), pages 201–216, June
2005.

[ASW+06] Thomas A. Alspaugh, Susan Elliott Sim, Kristina Winbladh, Mamadou Di-
allo, Hadar Ziv, and Debra J. Richardson. The importance of clarity in us-
able requirements specification formats. Technical Report UCI-ISR-06-14,
Institute for Software Research, University of California, Irvine, September
2006.

14

ISR Technical Report UCI-ISR-06-7

[ATB06] Thomas A. Alspaugh, Bill Tomlinson, and Eric Baumer. Using social
agents to visualize software scenarios. In ACM Symposium on Software
Visualization (SOFTVIS’06), pages 87–94, September 2006.

[BBL+04] F. Basanieri, A. Bertolino, G. Lombardi, G. Nucera, E. Marchetti, and
A. Ribolini. Cow Suite: A UML-based tool for test-suite planning and
derivation. ERCIM News, 58:30–32, July 2004.

[BFJZ92] K. Benner, M. S. Feather, W. L. Johnson, and L. Zorman. Utilizing sce-
narios in the software development process. In IFIP Working Group 8.1
Working Conference on Information Systems Development Processes, De-
cember 1992.

[BLB05] Karin Koogan Breitman, Julio Cesar Sampaio do Prado Leite, and
Daniel M. Berry. Supporting scenario evolution. Requirements Engineering
Journal, 10(2), May 2005.

[BTYA06] Eric Baumer, Bill Tomlinson, Man Lok Yau, and Thomas A. Alspaugh.
Normative echoes: use and manipulation of player generated content by
communities of NPCs. In Artificial Intelligence and Interactive Digital
Entertainment (AIIDE-06), June 2006.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Long-
man, 2000.

[DLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of Computer Programming, 20(1–2):3–
50, April 1993.

[Hau04] Peter Haumer. Use case-based software development. In Ian F. Alexander
and Neil Maiden, editors, Scenarios, Stories, Use Cases: Through the Sys-
tems Development Life-Cycle, pages 237–264. John Wiley & Sons, Ltd.,
2004.

[ITU99] Message Sequence Chart (MSC). ITU-T Recommendation Z.120, Interna-
tional Telecommunications Union, November 1999.

[JCJÖ92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Övergaard. Object-Oriented Software Engineering: A Use Case Driven
Approach. ACM Press, 1992.

[LW98] Axel van Lamsweerde and Laurent Willemet. Inferring declarative re-
quirements specifications from operational scenarios. IEEE Transactions
on Software Engineering, 24(12):1089–1114, December 1998.

[Mai98] N. A. M. Maiden. CREWS-SAVRE: Scenarios for acquiring and validat-
ing requirements. Automated Software Engineering, 5(4):419–446, October
1998.

[MMMR98] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan. CREWS-
SAVRE: Systematic scenario generation and use. In Third International
Conference on Requirements Engineering (ICRE’98), pages 148–155, 1998.

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein, and Ernst
Ellmer. Flexible consistency checking. ACM Trans. Softw. Eng. Methodol.,
12(1):28–63, 2003.

[OMG03] OMG Unified Modeling Language specification (version 1.5). Document
formal/03-03-01, Object Management Group, Framingham, MA, March
2003.

[OMG05] MOF 2.0/XMI mapping specification, v2.1. Document formal/05-09-01,
Object Management Group, Framingham, MA, September 2005.

[PTA94] Colin Potts, Kenji Takahashi, and Annie I. Antón. Inquiry–based require-
ments analysis. IEEE Software, 11(2):21–32, March 1994.

15

ISR Technical Report UCI-ISR-06-7

[Rob04] Suzanne Robertson. Scenarios in requirements discovery. In Ian F. Alexan-
der and Neil Maiden, editors, Scenarios, Stories, Use Cases: Through the
Systems Development Life-Cycle, pages 39–59. John Wiley & Sons, Ltd.,
2004.

[RSBA98] Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding goal
modeling using scenarios. IEEE Transactions on Software Engineering,
24(12):1055–1071, December 1998.

[Sut03] Alistair Sutcliffe. Scenario-based requirements engineering. In 11th IEEE
Joint International Conference on Requirements Engineering (RE’03),
pages 320–329, September 2003.

[UCKM04] Sebastian Uchitel, Robert Chatley, Jeff Kramer, and Jeff Magee. System
architecture: the context for scenario-based model synthesis. In SIGSOFT-
2004/FSE-12: ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 33–42, 2004.

[WAZR06] Kristina Winbladh, Thomas A. Alspaugh, Hadar Ziv, and Debra J.
Richardson. An automated approach for goal-driven, specification-based
testing. In 21st International Conference on Automated Software Engi-
neering (ASE 2006), pages 289–292, September 2006.

16

	UCI-ISR-06-7-cvr.pdf
	uci-isr-06-7.abs.pdf
	uci-isr-06-7.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

