
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Justin R. Erenkrantz
University of California, Irvine
jerenkra@ics.uci.edu

	
Michael Gorlick 				
University of California, Irvine	
mgorlick@acm.org			

Girish Suryanarayana			
University of California, Irvine
sgirish@ics.uci.edu			

Harmonizing Architectural Dissonance in
REST-based Architectures

December 2006

ISR Technical Report # UCI-ISR-06-18

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

Harmonizing Architectural Dissonance in REST-based Architectures

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3440 USA

1

{jerenkra,sgirish,taylor}@ics.uci.edu,

2

mgorlick@acm.org

ISR Technical Report # UCI-ISR-06-18

December 2006

Abstract

REpresentational State Transfer (REST) guided the creation and expansion of the modern web.
What began as an internet-scale distributed hypermedia system is now a vast sea of shared and
interdependent services. However, despite the expressive power of REST, not all of its benefits are
consistently realized by working systems. To resolve the dissonance between the promise of
REST and the difficulties experienced, we sought insights from numerous architectures in both
web and non-web domains. Our investigation yields a set of extensions to REST, an architectural
style called Computational REST (CREST), that not only offers additional design guidance, but
pinpoints, in many cases, the root cause of the apparent dissonance between style and implemen-
tation. Furthermore, CREST explains emerging web architectures, such as mashups, and points to
novel computational structures in domains such as distributed computation and multimedia
streaming.

Justin R. Erenkrantz

1

, Michael Gorlick

2

, Girish Suryanarayana

1

, Richard N. Taylor

1

Harmonizing

Ar

chitectural Dissonance in REST

-based

Ar

chitectur

es

Institute for Softwar

e Resear

c

h

Univer

sity of California, Irvine

1

{jer

enkr

a,sgirish,taylor}@ics.uci.edu,

2

mgorlic

k@acm.or

g

ISR

T

echnical Report # UCI-ISR-06-18

Justin R. Erenkrantz

1

, Michael Gorlick

2

, Girish Suryanarayana

1

, Richard N.

T

aylor

1

Abstract
REpresentational State Transfer (REST) guided the

creation and expansion of the modern web. What began
as an internet-scale distributed hypermedia system is
now a vast sea of shared and interdependent services.
However, despite the expressive power of REST, not all
of its benefits are consistently realized by working sys-
tems. To resolve the dissonance between the promise of
REST and the difficulties experienced, we sought
insights from numerous architectures in both web and
non-web domains. Our investigation yields a set of
extensions to REST, an architectural style called Com-
putational REST (CREST), that not only offers addi-
tional design guidance, but pinpoints, in many cases,
the root cause of the apparent dissonance between style
and implementation. Furthermore, CREST explains
emerging web architectures, such as mashups, and
points to novel computational structures in domains
such as distributed computation and multimedia
streaming.

1. Introduction

Representational State Transfer (REST) is an archi-
tectural style that characterizes and constrains the
macro interactions of the active elements of the web -
its servers, caches, proxies, and clients. However,
REST is silent on the micro-architecture of the individ-
ual element; that is, the structure, components, and
micro-interactions within a single active element. In
this paper, we explore the thesis that to maintain the
fidelity of REST’s principles on the macro-level inter-
actions requires previously unspecified constraints on
the micro-architecture of those individual elements.

We pursue here two parallel, but related, lines of
investigation. Firstly, we draw upon our experience as
application developers struggling to build web applica-
tions that conform to the REST style. Here, we dis-
cover both the macro consequences of failing to hew to

the constraints of REST, and how micro architectures
(on the scale of a single element) must be rearranged to
align with REST’s goals. Second, we contend that
REST, as an applied architectural style, is far more per-
vasive and common than previously thought. Identify-
ing REST-based constructions and interactions in
settings other than the modern web clarifies the role of
REST in influencing the micro-architectures of ele-
ments, irrespective of domain.

These two lines of inquiry lead to a deeper under-
standing and broadening of the fundamental REST
principles. From these insights, we arrived at CREST,
an elaboration of REST that includes a few key addi-
tional constraints, as the macro demands of REST
require specific, but subtle, computational mechanisms
deep within the micro structures of clients. However,
these mechanisms, in the case of classic REST-based
clients, are a simplification of a more general form -
which we term network continuations - the exchange of
the representations of the execution state of distributed
computations. It is the presence and exchange of net-
work continuations, in their various forms, that induces
the micro-architectural constraints observed in classic
web clients. With this in mind, both prior complica-
tions in the structure of clients and the elaborations of
the Web such as AJAX or mashups are accounted for
by a single fundamental mechanism - network continu-
ations as a legitimate and rightful constraint.

Finally, the network continuations of CREST gener-
alize a large class of loosely coupled, distributed com-
putations and point the way toward more general and
adaptive large-grain computational structures. In other
words, the principles of CREST indicate new forms of
computational interaction, just as REST reflected an
emergent class of request/response behaviors among
server/client interactions. Thus, CREST not only
explains phenomena for which REST alone cannot
account, but also predicts the macro- and micro-archi-
tectures of new forms of distributed services.

The rest of the paper is structured as follows. Sec-

tion 2 recaps the REST style. Section 3 recounts our
experience creating REST-based web applications.
Section 4 reviews how the concepts of REST have been
applied to non-web domains. Section 5 introduces the
CREST architectural style with an evaluation of the
architectural power of CREST in Section 6. The paper
concludes with a summary of CREST in Section 7.

2. Representation State Transfer (REST)
architectural style overview

The Representational State Transfer (REST) archi-
tectural style, first presented at ICSE 2000 [8] with a
more complete description in [9], governs the proper
behavior of participants on the World Wide Web. As
depicted in Figure 1, in a typical REST interaction on
the modern Web, a user agent (e.g. a web browser, such
as Mozilla Firefox) requests a representation of a
resource (web page, such as HTML content) from an
origin server (web server, such as Apache HTTP
Server), which may pass through multiple caching
proxies (such as Squid) before ultimately being deliv-
ered.

As presented in [9], REST’s goal is to reduce net-
work latency while facilitating component implemen-
tations that are independent and scalable. Instead of
focusing on the semantics of components, REST places
constraints on the communication between compo-
nents. REST enables the caching and reuse of previous
interactions, dynamic substitutability of components,
and processing of actions by intermediaries, thereby
meeting the needs of an Internet-scale distributed
hypermedia system [8].

All REST interactions are context-free. This is not to
imply that applications are without state, but that each
interaction contains all of the information necessary to

understand the request, independent of any requests
that may have preceded it. The key abstraction of infor-
mation in REST is a resource. Any information that can
be named can be a resource: a document or image, a
temporal service (e.g. “today’s weather in Minneapo-
lis”), a collection of other resources, a moniker for a
non-virtual object (e.g. a person), and so on. A resource
is a conceptual mapping to a set of entities, not the
entity that corresponds to the mapping at any particular
point in time. The representation of a resource is a
sequence of bytes, plus representation metadata to
describe those bytes. Hence, REST introduces a layer
of indirection between an abstract resource and its con-
crete representation. In turn, REST components can
perform a small set of well-defined operations on a
resource by using a representation to capture the cur-
rent or intended state of that resource and transfer that
representation between components.

2.1. Macro and micro REST architectures

Looking to the REST architectural style for answers
on how to construct REST-based applications leads to a
partially unfulfilling experience. REST provides guid-
ance on how to construct macro-architectures in the
REST style by informing how independent REST
nodes should properly communicate. REST purposely
provides little-to-no guidance as to how to build micro-
architectures in a principled manner - that is, what
types of components are required, and how those com-
ponents should be built, arranged, and interact within
the context of a single REST node. Yet, as we discuss
below, we believe there is a compelling and previously
unexplored relationship between how REST governs
the interaction of nodes at the macro level and how
those nodes should be designed at the micro level.

FIGURE 1. Process view of a REST-based architecture at one instance of time (From [9])

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$ $

Origin Servers

User Agent

$$

DNS

$DNS

Proxy

Proxy Gateway

wais

http

orb

http

http

http http

a

b

c

3. Insights from Web-based examples

A simple Google search for “REST” yields many
websites devoted to REST that provide evidence
regarding the difficulty of understanding and applying
REST principles. A number of web systems do not
exhibit the benefits anticipated by REST’s constraints.
To help us better understand this phenomenon, we
recount our experiences building and repairing two
such systems: mod_mbox, a service for mail archiving,
and Subversion, a configuration management system.

3.1. mod_mbox

As core contributors to the open-source Apache
HTTP Server, we wanted a scalable web-based mail
archiver to permanently capture the design rationales
and decisions that we made on our project mailing lists.
However, early web-based mail archivers presented
scalability and persistence problems. Some systems,
such as MHonArc [13], converted each incoming mes-
sage into HTML and recomputed the list index as the
messages arrived. Constant regeneration is problematic
for high-traffic lists - such as our target lists. To host
the amount of anticipated messages, the server would
unnecessarily and constantly spend its time updating
the archive. Therefore, though written as a web service,
the scalability of the server was in doubt.

Other web-based archivers, such as Eyebrowse [6],
used a relational data store that was internally depen-
dent upon the ordering as to when messages were
loaded into the archives. Therefore, if we suffered
hardware failures and regenerated the archive, any pre-
vious links could be stale or now point at a different
message. This meant that any persistent hypertext links
- such as those from our own code - could be broken if
we had to regenerate the archive.

Therefore, relying upon our experience with the
Apache HTTP Server, we felt we could create a new
web-based archiver based on the REST style that
would not suffer from these shortcomings. However, as
we found, REST on its own was not expressive enough
to guide the creation of our system. The architecture of
our archiver, mod_mbox, added two additional con-
straints to its REST architecture drawn from our study
of MHonArc and Eyebrowse: dynamic representations
of the original messages as well as the use of a consis-
tent namespace [19].

Instead of creating HTML representations as the
messages arrive, mod_mbox delays that transformation
until a request for a specific message is received. When
a message arrives for archival, a metadata store is
updated with the new message’s information. When

that message is requested from the archive, a plug-in to
the Apache HTTP Server creates a dynamic HTML
representation of the message with the help of the
metadata store. This clear distinction between the
resource and representation minimizes the computa-
tional costs for preparing the archive which allows
mod_mbox to handle more traffic. To achieve a consis-
tent namespace, mod_mbox relies upon relevant meta-
data (the Message-ID header) accompanying the
original message. Therefore, if the metadata index has
to be recreated, the exposed resources will remain the
same allowing for long-term persistence of links. By
adopting these constraints, mod_mbox now archives all
of the mailing lists for The Apache Software Founda-
tion (in excess of 2.5 million messages to date).

3.2. Subversion

Subversion [5], a SCM designed to be a compelling
replacement for the popular CVS system, made a deci-
sion early on in the design to use WebDAV, a set of
extensions to HTTP. Hence, Subversion was expected
to conform to the REST constraints and gain from
REST’s anticipated benefits such as minimizing
latency and permitting intermediaries. A REST-based
versioning system depends upon fetching resources
from an origin server. To limit the number of connec-
tions and minimize network overhead, the client would
not create a new connection per resource - instead, it
would try to reuse a small number of connections.
Since the client must then make multiple requests on
the same connection, network latency becomes a con-
cern. This problem was anticipated in the early days of
standardization of the HTTP protocol, but was not
clearly articulated within REST - instead a mechanism
called pipelining was simply suggested to issue
requests without waiting for previous responses. How-
ever, due to the lack of detailed design guidance, Sub-
version developers did not anticipate the seriousness of
not having pipelining and instead used a straightfor-
ward serial approach to checking out resources.

To solve this performance issue in Subversion, a
custom WebDAV method on the server was imple-
mented to reduce network round-trip latency. Instead
of requesting each resource individually, the new client
would request them in bulk. As expected, this change
led to a better overall network utilization by having the
server stream responses back to the client in one large
response. However, this custom method created several
dissonances with REST. The computational and net-
work load on the server was increased as roughly 33%
more bytes had to be transferred to satisfy XML encap-
sulation requirements [15]. Additionally, simple HTTP

caches could no longer be deployed to ease the load on
upstream Subversion servers as they would not under-
stand the custom method.

Some core Subversion developers, including one of
the authors of this paper, felt that adopting a different
client framework could restore the lost REST benefits.
Therefore, an effort was undertaken to rewrite the
micro-architecture of the Subversion client. This new
framework, serf, permitted the reintroduction of serial
checkouts with pipelining over multiple connections
without significant performance loss. It achieved this
through two new micro-architectural constraints: the
concept of a bucket to perform independent data trans-
formations and enforcing non-blocking network con-
nections [7]. These buckets represent data streams to
which successive transformations are applied on-the-
fly allowing the client to use less computational
resources. Non-blocking connections improved net-
work efficiency and reduced latency, as these buckets
would not have to wait to write or read data. Once serf
was introduced to Subversion, the need for XML-
encoded data was removed and intermediary caches
could now be re-considered to help Subversion scale.
Hence, there were subtle interactions between the
macro- and micro-architectural constraints that pre-
vented the developers from fully realizing the benefits
of REST.

4. Insights from the network stack

To better understand the gap between the wholesale
success of REST on the macro-scale of the web and the
difficulty of applying REST on the micro-scale of spe-
cific clients or applications, we also looked further
afield for examples of REST. Though REST was first
codified as an application-level architectural style, its
principles are far more pervasive than one might first
think, appearing in various guises in the network stack.
Even though these systems predate REST, we discover
analogs to REST elements (server, client, etc.) which
make specific accommodations in their micro-architec-
ture for the sake of migrating computation, accommo-
dating state or content transformations, minimizing
core functions to reduce complexity, or mitigating
latency.

4.1. Network layer

The internet offers a single service, best-effort
delivery, implemented by routers that forward incom-
ing packets as they arrive by interpreting the destina-
tion address of each packet in the context of a routing
table. The state of the routing table is finite and largely
fixed and does not need to maintain any fine-grain state

with respect to traffic, history, or reachability beyond
its immediate outgoing connections.

Routing is a classic distributed computation as
packet forwarding is computed hop-by-hop by the tran-
sit routers. The robustness and scaling of internet rout-
ing is a direct consequence of the REST principles as
routing implements an abstract namespace, IP
addressing; explicit and repeated state transfer, the
header of the IP packet in hand; and generic opera-
tions, specifically best-effort forwarding from an
inbound port to an outbound port. Routing, like the
web, must also minimize latency. This goal dictates
that the micro-architecture of a router be highly con-
current to prevent congestion and reduce packet loss.
Router architects go to great lengths, using specialized
processors and complex multi-threaded implementa-
tions, to achieve a high degree of concurrency and
stage routing as pipelines of transformations to reduce
core complexity.

4.2. Network flow management

Routing may also be significantly improved without
abandoning the REST model. As now constituted, net-
work endpoints are independently responsible for con-
gestion control. Therefore, network-wide flow
management that does not increase complexity or
degrade performance and robustness is highly desir-
able. SCORE is one example that requires no distrib-
uted, dynamic, replicated and consistent flow state
network-wide since all the requisite, per-packet, flow
state is transported within each individual packet [18].
SCORE also introduces us to the idea of network con-
tinuations - the representation of the execution state of
a distributed computation (flow management). Since
each packet carries the entire state information,
SCORE’s dynamic flow management algorithm is con-
text-free as the routers need not maintain any per-flow
state. SCORE conserves our REST-based view of rout-
ing by augmenting each packet with a network continu-
ation thereby carrying forward the REST properties of
independence and scaling. SCORE also preserves the
concurrent micro-architecture of routers since flow
computations may be applied independently of other
router computations.

4.3. Network transport

Stateful, connection-oriented protocols, such as
TCP, may be recast as context-free by replacing end-
point state with state transfer. Aura and Nikander [2, 3]
first observed that a stateful network connection, where
both endpoints retained state that determined the
progress and rate of an exchange, could be converted to

a context-free connection, wherein only one endpoint

maintained the state required by the connection.1 They
suggested that servers employing such connections
would exhibit far more graceful behavior under heavy
connection loads, since the amount of state required
server-side was reduced to a small constant and was
invariant with respect to the number of ongoing con-
nections. This insight was revisited in Trickles [17], a
reconstruction of the TCP network stack using the
techniques of Aura and Nikander - demonstrating
throughput comparable to a stateful TCP stack and
exactly the scaling performance predicted earlier.

The REST principles apply in full to this reconstruc-
tion of TCP: an abstract namespace, positions in a byte
stream; the repeated explicit transfer of state, the TCP
control block; and a small set of generic operations,
segment transmission, positive acknowledgement, and
selective retransmission. Trickles recast the TCP con-
trol block as a network continuation which transformed
a TCP endpoint into a scalable context-free server
where server and network latency is minimized by con-
currency, multiple simultaneous transactions between
endpoints is permitted (independence of transactions),
and a set of highly constrained generic operations is
provided (minimal core functions).

4.4. Network sessions

The adoption of REST disciplines at the lower
transport layer induces new behavior at the session
layer immediately above. As seen with Trickles, trans-
forming a stateful connection to a context-free one has
intriguing architectural consequences [17]. Stateful
connections bind the connection to specific endpoints,
while context-free connections allow endpoint migra-
tion. With a context-free connection, a server replica
may service any packet of a context-free connection
transparently - either to failover or offload work (load
balance). Conversely, since clients hold the state
required to resume a connection, client-side connection
delegation is also feasible, as the state can be provided
to an intermediary acting on its behalf. This allows cli-
ents to nominate upstream intermediaries.

Viewed in this way, the presence of explicit state
exchange in REST has profound implications on the
scalability of both the macro- and micro-architectures.
It also suggests a regime of long-lived connections that
see only intermittent, infrequent use but whose connec-
tion state may be traded or shared among a collection
of trusted partners.

4.5. Network applications

A new class of applications has recently emerged on
the Web that extend the notion of a REST interface in
interesting ways. One such example is Google Maps
[11], which employs an application model known as
AJAX [10], consisting of XHTML and CSS, a browser-
side Document Object Model interface, asynchronous
acquisition of data resources, and client side Javascript.

AJAX expands on an area for which REST is silent,
the interpretation environment for delivered content.
This silence was deliberate, as content interpretation
and presentation is highly content- and application-
specific. Browsers have long provisioned for helper
applications that are executed when unknown content
arrives. However, instead of running the helper in a dif-
ferent execution environment, AJAX blurs the distinc-
tion between browser and helper by leveraging client-
side scripting to download the helper application
dynamically and run it within the browser’s execution
context.

Dynamically downloading the code to the browser
moves the computational locus away from the server.
Instead of performing computations solely on the
server, some of the computations (perhaps for presenta-
tion logic) can now be executed locally. By reducing
the computational latency such that these events hap-
pen locally, AJAX makes possible a new class of inter-
active applications with a degree of responsiveness that
may be impossible in purely server-side implementa-
tions.

The innovation of AJAX is the transfer, from server
to client, of a computational context whose execution is
“resumed” client-side. Thus, we begin to move the
computational locus away from the server and onto
other nodes. REST’s goal was to reduce server-side
state load; in turn, AJAX implementations serve to
reduce server-side computational load. Thus AJAX,
respecting all of the constrains of REST, expands our
notion of resource.

5. Computational REST architectural style

Driven by the insights from the previous sections
and summarized in Table 1, we formulated three addi-
tional macro constraints for REST to better explain the
phenomena we identified. These macro constraints, in
turn, lead to a larger body of micro constraints, acting
on the level of a single active element (server, cache,
client, etc.). The relationships between the macro con-
straints on one side and the micro constraints on the
other appear to be both rich and complex.

1. The authors used the term stateless, but we believe context-free is
a better description as one side still always maintains state. In this
situation, the client presents the state to the server every time.

5.1. Macro-architectural guidelines

These new macro guidelines apply to multiple
active elements simultaneously. We examine each
macro guideline in turn, computational namespaces,
the locus of computation, and execution dynamism.
Each expresses an aspect of computational transfer -
the REST exchange of computations as resources.

5.1.1. Computational Namespaces. The pervasive
practice of exposing content-specific namespaces sug-
gests that computations be expressed as resources. This
constraint is far more specific than the minimal guide-
lines REST provides, but the specificity preserves
metadata and data boundaries. Consider a user request-
ing that a list of items available for purchase be sorted
in descending order of price. Often, this computation is
executed at the origin server and an appropriate repre-
sentation returned. By expressing the sort criteria in the
namespace, a smart intermediary or browser can take
the original list (possibly cached) and perform the sort
closer to the requestor, thereby improving scaling and
decreasing latency.

5.1.2. Locus of computation. The desire to transition
the computational locus away from the origin server
toward the client for the sake of reducing latency or
improving interactive response leads to a more general
form of computational exchange. This exchange
requires the transfer of a continuation, a closure or con-
text, and a code base - though in some cases the latter
two elements may be elided. A continuation is always
required, because otherwise the client node in the
exchange cannot determine where to (re)start the com-
putation. In many cases, the continuation is nothing
more elaborate than a call to the equivalent of a C
main()—the sole entry point of the computation.

In AJAX applications, that single call is specified as
an XHTML onload event that is triggered when the
server-supplied representation is fully loaded into the

client. For example, the trivial XHTML fragment
<body onload="main()"></body>

informs the AJAX client to initiate the client-side com-
putation by calling the Javascript function main() once
the full page is loaded. In a more general AJAX form, a
closure and continuation are constructed server-side as
a single Javascript object whose attributes and meth-
ods comprise the closure and continuation respectively.

 is transmitted to the client as Javascript source
appearing in the

<head> ... </head>
element of the page. Irrespective of the details of the
representation, the computation, as a triumvirate of
continuation, closure, and code base, is expressed as a
web resource.

Just as the REST model induces web intermediaries,
shifting the locus of computation induces computa-
tional intermediaries where the ability to generate con-
tinuations allows computation to be shifted from one

node to another.2 A service may, over time, move com-
putation outward from servers, to intermediaries, or to
clients as it evolves. Existing intermediaries, such as
web caches, can be used as is since the movement of
computation can be expressed in terms and representa-
tions that are backward-compatible with modern REST
practices, protocols, and representations.

5.1.3. Execution dynamism. The drive to delay con-
tent transformation and support long-lived connections
that may be traded among computational partners leads
to execution dynamism where computation within a
node may vary over time in form, content, and seman-
tics. Since the node is not bound to any one single
{continuation, closure, code base} triple, that triple
may change - in part or in its entirety - over the execu-
tion history of the node. We sketch a few brief exam-
ples to illustrate. Let denote a particular triple
{continuation, closure, code base}. It is easy to imag-
ine a node supporting two or more such “environ-
ments” simultaneously; in fact, Javascript engines
embedded within web browsers do just that.

, each derived from separate, distinct,

and otherwise unrelated origin servers, may participate
in any number of cooperative computing relationships,
for example, as producer/consumer in a larger in-node
pipeline, as co-routines, or as active states in a large
intra-node state machine. Here the distinct remains

unchanged but the relationships may change over time.

Table 1. Insight and macro constraint summary

Insight New constraint

Delay content transformation needed to
amortize the cost of computation

Execution
dynamism

Expose content-specific namespaces to
permit resource layering & extensibility

Computational
namespaces

Support the transition of the computa-
tional locus away from the origin to
result in more efficient allocations

Computational
namespaces, locus
of computation

Support long-lived connections that can
be traded among partners

Execution
dynamism

2. It is important to observe that neither the REST nor CREST styles
are tied to HTTP, XHTML, Javascript or any other common web
technology and (C)REST-based implementations are possible
using altogether different protocols, representations, and program-
ming languages.

O

O

C

Ci and Cj, i j≠()

Ci

Alternatively, individual may come and go over

time as a computation unfolds within a node.
Finer-grain dynamism within a single is also fea-

sible. One notion is that the closure of may expand
over time as follows: if a closure fails to resolve a refer-
ence , then the closure returns to a sequence of origin
servers, in order of decreasing preference, to obtain
content to resolve , thereafter caching the content in
the expanded closure. Alternatively, the content in the
closure may contain expiration dates and any reference

 past an expiration date requires that the content be
refreshed. A similar variation may be applied to the
code base. Infrequently used functions, appearing only
as stubs in the code, are resolved, much in the manner
described for references, at the time of call. For the
purposes of adaptation or upgrade a node may down-

load a new environment and substitute it, on-the-fly,

for .

5.2. Micro-architectural guidelines

We now enumerate design guidance on the struc-
ture, components, and interactions within a single
REST element and briefly indicate their relationships
to the macro-architectural guidelines introduced above.

5.2.1. Migrate computations. The new macro-archi-
tectural constraints of computational namespaces and
execution dynamism indicate that the computational
components within a micro-architecture may need to
freely migrate across the macro-architecture. This
would allow a service to scale up as needed by deploy-
ing more physical resources; instead of operating as a
single origin server, a micro-architecture may now
dynamically be broken down into a combination of
intermediaries and origin servers. Suitable supporting
frameworks can facilitate this transition by allowing
the computations to operate within the context of any
REST node (server, intermediary, user agent, etc.).

5.2.2. Constrain transformations. Computational
namespaces and execution dynamism also suggest that
every time content is transformed, it must be com-
pleted without an implied reference to another transfor-
mation. This is not to say that transformations can’t be
explicitly chained together; however, if an implicit
dependency chain emerged, it would jeopardize the
integrity of the computation as implicit dependencies
may not be preserved during migration.

5.2.3. Minimize core functions. Once we introduce
the concept of execution dynamism and a locus of

computation, we get a glimpse as to how REST-based
architectures are expected to evolve. New functionality
can be introduced on another node or within the current
micro-architecture. When new functionality is intro-
duced at the micro-architectural level (such as a new
protocol or encryption method), the architecture must
be able to accommodate these tasks. Hence, by reduc-
ing the immutable core of the micro-architecture to the
bare minimum (such as reading and writing bytes), the
new functionality can be dynamically introduced.

5.2.4. Mitigate latency. Adding a notion of a locus of
computation at the macro-architecture hints that micro-
architectures should adopt a strategy for minimizing
the impact of network and computational latency on
other nodes. If these interactions are synchronous, any
latency in the macro-architecture will be reflected in
the micro-architecture; for example, a user agent
becomes unresponsive while it fetches a resource, or an
intermediary node stalls while composing multiple rep-
resentations from upstream sources. Therefore, the
micro-architectures should have potent mechanisms for
reducing the impact of latency. While threading is one
viable strategy, it is prone to race conditions and dead-
locks. A framework can instead leverage a single net-
work thread responding to asynchronous network
events. These events notify the micro-architecture as to
when data can be received or sent without waiting. In
all cases, the framework requires timers to bound wait-
ing for a response.

5.2.5. Provide multiple interfaces. To support execu-
tion dynamism and facilitate a reasonable learning
curve, there should be ample assistance to ease writing
code controlling the micro-architecture. For example,
basic tasks (such as fetching a resource) should be eas-
ily supported in a minimum of code. But, as an archi-
tect becomes familiar with the framework, there should
be a corresponding gradual increase in the allowable
control and expressiveness.

Ci

C

C

r

r

r

C'

C

Table 2. Macro/micro constraint relationships

Macro constraints Micro constraints

Computational namespaces,
execution dynamism

Migrate computations

Computational namespaces,
execution dynamism

Constrain transformations

Execution dynamism,
locus of computation

Minimize core functions

Locus of computation Mitigate latency

Execution dynamism Provide multiple interfaces

5.3. CREST Architectural Style

Broadly speaking, we can gather these constraints
together to codify a new architectural style that
expands the concept of state transfer to include compu-
tational transfer. Just as REST requires transparent
state exchange, our new style, Computational REST
(CREST), further requires the transparent exchange of
computation. This evolutionary expansion of REST is
easier to appreciate if one regards state exchange from
the perspective of a programming language continua-
tion - the representation of the execution state of a pro-
gram such that the computation may be suspended
(rendered as a continuation) and resumed at a later
point in time by reconstituting the continuation as an
active execution state. Thus, in the CREST model, the
client is no longer merely a presentation agent - it is an
execution environment supporting the computational
goal of the CREST exchange. A summary of the
CREST style and benefits is presented in Table 3.

6. Evaluation of CREST

We adopt a three-dimensional approach to evaluat-
ing the CREST design guidelines. We first examine
whether CREST can adequately explain the disso-
nances observed in existing systems that were situated
in a REST-based environment. Towards this end, we
revisit the motivating examples from Section 3,
mod_mbox and Subversion. Next, using the example

of web mashups, we investigate how CREST guide-
lines help elucidate emerging architectures that could
not be satisfactorily explained by REST alone. Finally,
we hypothesize how CREST can guide the composi-
tion of future architectures, including new forms of
web computations.

6.1. Explaining mod_mbox and Subversion

As previously introduced in Section 3.1, mod_mbox
took specific advantage of exposing a computational
namespace and the use of dynamic representations.
Using CREST as our guide, we now understand that
the choices at a micro-architectural level had a notice-
able impact at the macro-architectural level. Instead of
exposing storage details in the namespace, mod_mbox
only exposed content-specific metadata: the Message-
ID header. This level of indirection shielded the macro-
architectural feature of namespaces from decisions
made at micro-architectural level. Similarly, by delay-
ing the creation of message representation, mod_mbox
was able to later evolve gracefully. Subsequent
mod_mbox development added an AJAX interface.
Instead of creating new representations at indexing
time, mod_mbox could simply dynamically expose a
new XML-based namespace and representation suit-
able for AJAX when an AJAX-capable client requested
it. Adding AJAX supported the further shifting of the
computational locus away from the original server.

Table 3. CREST Architectural Style Overview

Guidelines Rationale Exemplar

mod_mbox: Mail archiver system, Serf: Subversion using Serf framework,
Mashups: AJAX-based site combinations, Multimedia: Dynamic transcoding of content

Macro-architecture guidelines

Computational
Namespaces

Desired computations in CREST must be explicitly identi-
fied in the request for a resource

New representation formats can be
exposed ad hoc (mod_mbox)

Locus of computation Late-binding of identification as to where the computation
will occur allow for scalability and customization

Allow dynamic reconfigurations for
data streams (Multimedia)

Execution dynamism The macro-architecture can optionally configure itself on-
the-fly by distributing code

Downloading of JavaScript into a web
browser context (Mashups)

Micro-architecture guidelines

Migrate computations Computations should freely move around between CREST
micro-architectures to permit scalability and customization

Moving presentation logic from server
to browser via AJAX (mod_mbox)

Constrain transformations Alterations of data streams should happen explicitly instead
of implicitly

Individual transformations are atomi-
cally in a single bucket (Serf)

Minimize core Allow CREST frameworks to support different protocols All protocol logic in buckets (Serf)

Mitigate latency Reduce the impact of combining resources from multiple
upstream sources or those which have expensive operations

Asynchrony and non-blocking net-
work operations (Serf)

Provide multiple APIs Facilitate a learning curve for developers adopting CREST Coarse and fine-grained APIs (Serf)

As we discussed in Section 3.2, Subversion initially
suffered from network latency issues. With the explan-
atory powers of CREST, we can view, at the macro-
architectural level, the first attempt to solve this latency
issue (performing, on the server, the aggregation of
resources to check out) as moving the computational
locus back from the client to the server. Unfortunately,
while addressing the initial latency issue, this only
served to increase the overall computational load on
the server and made it such that simple intermediaries
could not be deployed to reduce load. But, with consid-
ered changes to the client’s micro-architecture, we
could repair the macro-architectural deficiencies. A
new client was deployed which addressed the issues of
latency through independent transformational elements
(buckets) and asynchronous network calls. Hence, the
computational locus (the aggregation of resources to
check out) could rightfully return to the client. The
server’s load is thereby lessened and intermediaries can
be re-deployed. Hence, with the CREST constraints,
we can express the problem, its deficiencies, and the
ultimate rectification.

6.2. Emerging architectures: Mashups

Mashups, an emerging form of REST-based service,
are characterized by the participation of at least three
distinct entities:
• A web site, the mashup host

• One or more web sites , the con-

tent providers
• An execution environment , usually a client web

browser
The mashup host generates an “active” page P for

the execution environment . P contains references
(URLs) to resources maintained by content providers

 and a set of client-side scripts in Javas-

cript. The client-side scripts, executing in , interpret
user actions and manage access to, and presentation of,
the combined representations served by .

Google Maps-driven mashups are especially popu-
lar; examples include plotting the location of stories
from the Associated Press RSS feed [20], and Goggles,
a flight simulator [4]. One highly original mashup con-
tains photographic collages whose individual “pixels”
are minute images of books and video tapes sold by
Amazon.com [16].

From the CREST perspective, mashups are nothing
more than a triple {continuation, closure, code base}
where the closure makes reference to resources on
multiple web sites . Note that from the per-

spective of CREST, there is no requirement that web
browsers be the execution environment for the mashup.

6.3. Guiding future architectures

6.3.1. Derived Mashups. By using CREST, we can
predict two future elaborations of mashups. A derived
mashup is one in which one or more content provider
web sites w are themselves mashups - with the combi-
nation execution happening on an intermediary rather
than a browser. CREST also speaks to a future web
populated by higher-order mashups. Similar to a
higher-order function in lambda calculus, a higher-
order mashup is a mashup that accepts one or more
mashups as input and/or outputs a mashup. This sug-
gests a formal system of web calculus, by which web-
like servers, clients, and peers may be cast as the appli-
cation of identifiable, well-understand, combinators to
the primitive values, functions, and terms of a given
semantic domain. Thus, CREST hints at the existence
of future formalisms suitable for the proof of REST
and CREST properties.

6.3.2. Distributed Computing. CREST also speaks to
the domain of large-scale, loosely-cooperative, distrib-
uted computation (such as seen with SETI@home [1]
or Folding@home [14]). CREST suggests that, for
some distributed computing applications, work assign-
ments be issued as purely REST exchanges where
computational results are returned to the origin server
(or a designated agent server) as a REST-based HTTP-
like POST or PUT. Since the client application code is
(re)issued with each work request, a client application
update is trivial as it requires only a single centralized
update at the origin server. Immediately thereafter,
each participating client is updated at the next CREST-
based work request/assignment exchange.

6.3.3. Multimedia. CREST can also be applied to
multimedia exchanges. Flows are content or state
transfers that extend over significant periods of time
between two endpoints. STREeaming stAte Kinemat-
ics (STREAK) extends REST to establish, route, and
redirect real-time flows originating from video cam-
eras, sensor fields, stock market tickers, and the like
[12]. CREST and STREAK can be combined to create
enterprise-scale, distributed, adaptive computations. At
the transport layer, STREAK is the mechanism by
which the topology of directed graphs of dataflow com-
putations may be rearranged at execution time in a
REST-based manner. CREST provides mechanisms
and guidelines for starting, pausing, resuming, and
halting the active nodes within the dataflow graph.

For example, CREST-compliant transcoders may be

h

ω1 ω2…ωn , ωi h≠,

ε

h

ε

ω1 ω2…ωn,

ε

ω1 ω2…ωn,

ω1 ω2…ωn,

dynamically inserted into video flows, via the mecha-
nisms of STREAK, to provide client-device dependent
transcoding services that are sensitive to client limita-
tions such as screen size, connection bandwidth and
quality, processing capacity, or power reserves. Each
transcoder is a CREST-based computation that func-
tions as the transcoding equivalent of a mashup,
accepting one or more video streams as inputs (the ana-
log of a mashup's content providers) and generating
one or more refined or derived streams that may be
delivered to an end device or serve as feedstocks for
other CREST-based nodes downstream.

The division of labor, sketched above, between two
REST-based styles, STREAK for topological (connec-
tive) adaptation and CREST for computational adapta-
tion, suggests that other architectural styles, such as
dataflow, may be reinterpreted and refactored in keep-
ing with REST-based principles to create styles that
combine the best attributes of the base style with the
scaling and robustness of REST.

7. Summary

Our goal in this paper was to provide an understand-
ing of the relationship between the macro- and micro-
architectures in REST-based systems. Using REST as
our guide, we have drawn numerous insights from a
diverse collection of systems that either were web-
based and failed to express the anticipated benefits of
REST or shared the concepts of REST but found in a
domain other than the web. REST by itself was not
expressive enough at the micro-architectural level to
fully capture why these systems succeeded or failed. In
response to these sets of insights, we have introduced
an additional set of constraints to REST, creating a new
style called Computational REST (CREST).

The underlying insight that guides the set of CREST
constraints is that we must include computational
transfer in addition to representational state transfer to
properly capture the necessary architectural decisions.
In this paper, we looked at numerous systems to exam-
ine how CREST either better explains their set of archi-
tectural decisions or guides creation of new systems.
And, we believe that CREST can predict new systems
that we have not yet seen but are natural consequences
of the CREST constraints.

8. Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant Numbers
CNS-0438996 and CCF-0524033.

9. References

[1] Anderson, D.P., Cobb, J., et al. SETI@home: an experi-
ment in public-resource computing. Communications of the
ACM. 45(11), p. 56-61, November, 2002.
[2] Aura, T. and Nikander, P. Stateless Connections. Hels-
inki University of Technlogy, Report Research Report A46,
May, 1997.
[3] Aura, T. and Nikander, P. Stateless Connections. In
Proc. of the First International Conference on Information
and Communications Security. 1334, p. 87-97, Springer-Ver-
lag. London, November 11-14, 1997.
[4] Caswell-Daniels, M. Googles Flight Sim. <http://
www.isoma.net/games/goggles.html>, HTML, 2006.
[5] CollabNet. Subversion. <http://subversion.tigris.org/>,
HTML, 2003.
[6] CollabNet. Eyebrowse. <http://eyebrowse.tigris.org/>,
HTML, 2006.
[7] Erenkrantz, J.R. Architectural Styles of Extensible
REST-based Applications. Institute for Software Research,
Report UCI-ISR-06-12, August, 2006.
[8] Fielding, R.T. and Taylor, R.N. Principled Design of the
Modern Web Architecture. In Proc. of the 22nd International
Conference on Software Engineering. p. 407-416, Limerick,
Ireland, June, 2000.
[9] Fielding, R.T. and Taylor, R.N. Principled Design of the
Modern Web Architecture. ACM Transactions on Internet
Technology (TOIT). 2(2), p. 115-150, May, 2002.
[10] Garrett, J.J. Ajax: A New Approach to Web applications.
<http://www.adaptivepath.com/publications/essays/archives/
000385.php>, HTML, 2005.
[11] Google Inc. Google Maps. <http://maps.google.com/>,
HTML, 2006.
[12] Gorlick, M. Streaming State Kinematics and Flow Engi-
neering. UCI Institute for Software Research, Technical
Report UCI-ISR-06-3, March, 2006.
[13] Hood, E. MHonArc. <http://www.mhonarc.org/>,
HTML, 2004.
[14] Larson, S.M., Snow, C.D., et al. Folding@Home and
Genome@Home: Using distributed computing to tackle pre-
viously intractable problems in computational biology. In
Computational Genomics. Horizon Press, 2002.
[15] Nottingham, M. Understanding Web Services Attach-
ments. BEA Dev2Dev. May 24, 2004.
[16] Shanahan, F. Zollage. <http://www.francisshana-
han.com/collage/bezos/bezos_b.aspx>, HTML, 2005.
[17] Shieh, A., Myers, A.C., et al. Trickles: A Stateless Net-
work Stack for Improved Scalability, Resilence, and Flexibil-
ity. In Proc. of the Symposium on Networked Systems Design
and Implementation. Boston, MA, May, 2005.
[18] Stoica, I. Stateless Core: A Scalable Approach for Qual-
ity of Service in the Internet. PhD. Thesis. Department of
Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, 2000.
[19] The Apache Software Foundation. mod_mbox. <http://
httpd.apache.org/mod_mbox/>, HTML, 2006.
[20] Young, M. AP News + Google Maps. <http://
www.81nassau.com/apnews/>, HTML, 2006.

	UCI-ISR-06-18-cvr
	UCI-ISR-06-18
	UCI-ISR-06-18-cvr.pdf
	UCI-ISR-06-18-abs.pdf
	UCI-ISR-06-18.pdf
	Abstract
	1. Introduction
	2. Representation State Transfer (REST) architectural style overview
	2.1. Macro and micro REST architectures

	3. Insights from Web-based examples
	3.1. mod_mbox
	3.2. Subversion

	4. Insights from the network stack
	4.1. Network layer
	4.2. Network flow management
	4.3. Network transport
	4.4. Network sessions
	4.5. Network applications

	5. Computational REST architectural style
	5.1. Macro-architectural guidelines
	5.1.1. Computational Namespaces
	5.1.2. Locus of computation
	5.1.3. Execution dynamism

	5.2. Micro-architectural guidelines
	5.2.1. Migrate computations
	5.2.2. Constrain transformations
	5.2.3. Minimize core functions
	5.2.4. Mitigate latency
	5.2.5. Provide multiple interfaces

	5.3. CREST Architectural Style

	6. Evaluation of CREST
	6.1. Explaining mod_mbox and Subversion
	6.2. Emerging architectures: Mashups
	6.3. Guiding future architectures
	6.3.1. Derived Mashups
	6.3.2. Distributed Computing
	6.3.3. Multimedia

	7. Summary
	8. Acknowledgements
	9. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [1332.000 828.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [1332.000 828.000]
>> setpagedevice

