
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Alex Baker
University of California, Irvine
abaker@uci.edu

André van der Hoek
University of California, Irvine
andre@ics.uci.edu

Reframing Software Design: Perspectives on
Advancing an Elusive Discipline

July 2006

ISR Technical Report # UCI-ISR-06-10

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Reframing Software Design:
Perspectives on Advancing an Elusive Discipline

Alex Baker and André van der Hoek
Institute for Software Research & Department of Informatics

University of California, Irvine
Irvine, California 92697-3440, U.S.A.

+1 949 824 6326

{abaker, andre}@ics.uci.edu
ISR Technical Report # UCI-ISR-06-10

July 2006

Abstract: Software engineering researchers and practitioners have long had an uncertain and
uneasy relationship with design. It is acknowledged that software design is critical and major
strides have been made in advancing the discipline, but we all are keenly aware that some-
thing “is just not quite right” and that design remains one of the least-understood aspects of
software engineering. In this paper, we present our novel Eyeglass framework and use it to
offer a series of fresh perspectives on software design, its accomplishments, and fundamental
challenges ahead. The Eyeglass framework is inspired by the broader discipline of design and
evaluates software design in terms of seven interrelated dimensions: ideas, representation,
activities, judgment, communication, domain of use, and domain of materials. The main con-
clusion of our examination is that we have unnecessarily limited ourselves in our explorations
of software design. While there has been some success, to further advance the discipline we
must step back, reframe software design to address all seven dimensions, and engage in a
deep study of these dimensions, individually and as a whole.

Reframing Software Design:
Perspectives on Advancing an Elusive Discipline

Alex Baker and André van der Hoek
Institute for Software Research & Department of Informatics

University of California, Irvine
Irvine, California 92697-3440, U.S.A.

+1 949 824 6326
{abaker, andre}@ics.uci.edu

ISR Technical Report # UCI-ISR-06-10
July 2006

ABSTRACT
Software engineering researchers and practitioners have long had
an uncertain and uneasy relationship with design. It is acknowl-
edged that software design is critical and major strides have been
made in advancing the discipline, but we all are keenly aware that
something “is just not quite right” and that design remains one of
the least-understood aspects of software engineering. In this pa-
per, we present our novel Eyeglass framework and use it to offer a
series of fresh perspectives on software design, its accomplish-
ments, and fundamental challenges ahead. The Eyeglass frame-
work is inspired by the broader discipline of design and evaluates
software design in terms of seven interrelated dimensions: ideas,
representation, activities, judgment, communication, domain of
use, and domain of materials. The main conclusion of our exami-
nation is that we have unnecessarily limited ourselves in our ex-
plorations of software design. While there has been some success,
to further advance the discipline we must step back, reframe soft-
ware design to address all seven dimensions, and engage in a deep
study of these dimensions, individually and as a whole.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering; D.2.9 [Software Engineer-
ing]: Management – life cycle; D.3.2 [Programming Languages]:
Language Classifications – design languages.

General Terms
Design.

Keywords
Design, software, software design.

1. INTRODUCTION
Design has long been recognized as having a critical role in soft-
ware engineering. With the ever-increasing complexity of the
software systems we develop today, this role has certainly not
diminished. The quality of a design can make the difference be-
tween a software system that is successfully developed, deployed,
and used, and one that fails miserably somewhere along the way.
Given this critical role, one would expect the software engineer-
ing literature to be brimming with discussions leading to an exten-
sive and ever-expanding body of knowledge on design. Some of

this is indeed present. Hefty debates rage over whether UML is a
design notation and, if accepted as such, whether it is an appropri-
ate one. New design methodologies are regularly proposed, each
aiming to improve upon or provide an alternative to previous
methodologies and each fueling discussions on relative strengths
and weaknesses. Coupling and cohesion are time-tested metrics
for evaluating the structural quality of a modular design that, over
time, have been refined, supplanted, and complemented by nu-
merous other metrics. Many other examples of contributions to
the field of software design and debates regarding those contribu-
tions exist.
As in any community, with each new major approach or technol-
ogy typically emerges a set of strong proponents and opponents.
It does not take long to find someone who swears by using UML
and someone who despises it. Some methodologies so quickly
establish a dedicated following, it is clear that people are jumping
on a bandwagon, not critically evaluating the relative merits of
the new methodology before they adopt it [9]. Find a suitable
audience, and a conversation on a new metric degenerates into a
heated discussion regarding the usefulness of metrics in general.
Just bring up the topics of formalism, design patterns, architec-
ture, or aspect-oriented design, and it may be that similarly
charged and sometimes bitter debates emerge.
The goal of this paper is not to take sides in these debates. Rather,
we wish to encourage, broaden, and enrich the debates by looking
at them from the perspective of our novel Eyeglass framework.
Based on a deep exploration of design as it is understood and
practiced across a variety of disciplines, we put together the Eye-
glass framework from seven closely-interrelated dimensions that
are common to any form of design: (1) ideas, (2) representation,
(3) activities, (4) judgment, (5) communication, (6) domain of use,
and (7) domain of materials. In reframing software design in
terms of these seven dimensions, then, the goals of our paper are:

• To provide a new theoretical framework in which we believe
software design should be viewed, researched, and practiced.
No longer should we treat software design as merely a phase
in the software life cycle. Instead, we must treat it in light of
the complex and interrelated dimensions that define design.

• To shed light on existing efforts at advancing software de-
sign and come to an understanding why some work, some do
not, and others are only partially successful. Again, this does
not mean we will settle the aforementioned debates. Instead,
we provide a basis for carrying them out and moving them

from what often amount to emotional arguments to discus-
sions about these efforts’ relative strengths and weaknesses
in terms of the framework’s dimensions.

• To bring to bear opportunities for improving software design
as we know it today. The framework clearly highlights areas
of research in which the community has made great strides,
but also contrasts those advances with a clear indication of
where our efforts have been deficient.

We believe such a reframing is long overdue. Ask a software
engineer about what it takes to create a good design, and one is
likely to get a description that is rather vague and primarily fo-
cuses on notations and formal verifiability. It is far less likely that
you would receive an answer about strengths and weaknesses of
the field, or a description of how a software designer actually
goes about their task. Few other design disciplines have such
trouble describing a “good design” or “a good design process”,
providing evidence that software design is not yet mature and
does not currently have the frame of reference to reflect on itself.
We hope that our contribution of the Eyeglass framework, as well
as the conclusions we draw from it, will help start the discussion
that is needed to move toward an established discipline.
The remainder of this paper is structured as follows. We begin, in
Section 2, with a brief look at definitions. We introduce our new
Eyeglass framework in Section 3, and first illustrate its use with a
look at several non-software design disciplines in Section 4. We
then provide a brief contextualization in terms of the framework
of a variety of views on software design in Section 5. Thereafter,
we place some software design research contributions in context
and identify several promising and challenging research directions
in Section 6. Section 7 concludes with a final word that presents
our hopes for a future in which software design emerges as a ma-
ture discipline with a healthy theoretical and practical basis.

2. DEFINING DESIGN
In any profession where creative thought is needed to devise solu-
tions to problems, some form of design decisions take place. An
architect might be tasked with designing a building, or a fashion
designer with the year’s fall wardrobe. Beyond such obvious ex-
amples though, design, whether intentionally initiated or resulting
as a side effect of a broader goal, permeates human endeavor. A
department store manager must design schedules, organizing the
time constraints of various employees and devising an optimal set
of shifts. And the layout of such a store’s merchandise must be
designed to maximize purchases, and therefore profits, while also
accommodating fire exits, advertisement visibility and the store’s
aesthetic.
But given this breadth of endeavors, what exactly is design?
Many definitions have been put forward, some of which we list
here:

• “The imaginative jump from present facts to future possibili-
ties” (Page [25]).

• “The optimum solution to the sum of true needs of a particu-
lar set of circumstances” (Matchett [21]).

• “Initiating change in man-made things” (Jones [16]).

• “To conceive or plan out in the mind” (Merriam-Webster).
We will not attempt to add to these definitions, but for the pur-
pose of this paper, will simply adopt the final definition presented

above, provided by Merriam-Webster. We recognize, however,
the difference between the activity of design and the product of
design. That is, the activity of design involves the generation of
ideas and thoughts, but these must be recorded as a tangible prod-
uct that can foster discussion, be evaluated for various qualities,
guide implementation, and so on. We will use the term “design”,
therefore, in the following ways in the paper:

• Design – the activity. This refers to the human creative en-
deavor as defined by Merriam-Webster.

• Design – the product. This refers to the artifact that eventu-
ally results from the activity of designing.

• Design – the discipline. This refers to the broader notion of
design as a field of study with its art, practices, understand-
ings, conventions, etc.

Where our use is ambiguous, we will affix the appropriate term to
clarify the meaning of the word “design”.

3. THE EYEGLASS FRAMEWORK
The act of designing can take on many forms. For each product
that humans create, from bridges to bracelets, there are countless
ways to approach that product’s design. But what makes some
types of products easier to design than others? What makes one
approach to design more effective than another? The answers to
these questions involve many factors, including, but not limited
to, the type of product being designed, design tools utilized and
the communication habits of the design team. These factors vary
widely and must be organized in some way to enable a proper
evaluation and comparison of different design approaches.
In this paper, we introduce our new Eyeglass framework to pro-
vide this kind of organization. To date, such frameworks have
been scant. Most theoretical work focuses on meticulously defin-
ing design [16, 23] or providing philosophical descriptions of
design activities as exercises of human thought [3, 31]. Practical
contributions tend to either be too precise (e.g., in providing a set
of “universal principles of design [20]”) or not suitable as a
framework (e.g, in describing our failures in properly designing a
broad variety of everyday things [24]). While all of these contri-
butions, both theoretical and practical, are very valuable, we are
left with an inability to frame concrete understandings of different
forms of design.
To remedy this situation, we set out to construct our Eyeglass
framework as a general, yet concrete, framework that provides:

1. a philosophical stand on what we believe are the fundamen-
tal dimensions that constitute and influence design; both as
an activity and a product; and

2. a strong practical component in framing how to evaluate and
compare design disciplines, perspectives, and technologies.

To do so, we engaged in a deep exploration of design as it is un-
derstood and practiced across a variety of disciplines, and fur-
thermore brought in the various leading theoretical perspectives
[3, 16, 31]. The result is shown in Figure 1. At its core, the
framework recognizes the definition by Merriam-Webster: design
activities (the center of the right eyeglass) lead to and manipulate
ideas (the center of the left eyeglass). Surrounding these two core
elements of design, the framework recognizes that, first, activities
are strongly affected by the judgment that guides them and, sec-
ond, ideas can be accessed and shared only after they have been

put in a concrete representation. The framework further recog-
nizes that design, in interpreting and manipulating, is a form of
communication—whether with the self or with others. Finally,
representation, judgment, and communication are strongly influ-
enced by the domain of use, where lies amassed wisdom regard-
ing the purpose for which a design solution is constructed, and the
domain of materials, where lies amassed wisdom regarding the
available resources from which a design solution is constructed.

Below, we discuss each of the dimensions, as well as their rela-
tionships to the other dimensions, in more detail.

3.1 Ideas and Representation Figure 1. Eyeglass Framework.
In order to understand design, we must address the nature of “de-
sign as a noun”; that is, we must examine the artifact that results
from the activity of designing. While it is common to think solely
in terms of a tangible result, the reality is that there is an intangi-
ble and a tangible part. At its core, a design is a set of intangible
ideas regarding a desirable solution, as they exist in the mind of a
designer. A design idea can be nearly anything and, in our frame-
work, simply represents some degree of intellectual progress to-
wards a design solution, consisting of decisions, preferences,
rationale, facts, etc. For example, when a new villa is being de-
signed, the decision to limit the building to one story could repre-
sent one design idea. Another design idea might be that the entire
building should be constructed out of oak, to make it distinct from
all neighboring villas. Although ideas are at the heart of this
framework, it is not possible to dictate or predict their creation,
and such is not our goal. Ideas are formed of creative processes,
the shapes of which we can only hope to begin to put in context
through the other dimensions of our framework.
Ideas are commonly written down, or otherwise recorded in some
form, but they must not be confused with any of these tangible
representations. Such representations are organized by our
framework in a separate, albeit closely related dimension. Count-
less ways exist to express a given idea, whether in a sketch, tex-
tual description, formal design document, or even just in the spo-
ken word of the designer. Because a representation is the primary
form in which ideas are accessed and manipulated, the choice of
representation shapes how a given designer views the ideas at
hand. A well-chosen representation can make an abstract idea
much easier to understand. By the same token, a poorly-chosen
representation will make such understanding more difficult, and at
times may even portray the image of an entirely different idea
than originally intended. For example, while expressions of tex-
ture are difficult to express and easily misinterpreted with words
or even images, a physical sample of an appropriately textured
material makes a fine representation of such an idea. Note that
representations do not have to be singular in nature, that is, they
can represent multiple ideas in concert and could even portray
multiple aspects of the same idea. A drawing of a newly designed
clothing item, for instance, often indicates its shape, color, pat-
tern, and sometimes even material.

3.2 Activities and Judgment
Next we will examine the nature of “design as a verb”, that is, at
the activities in which a designer engages to generate, organize,
refine, and utilize ideas. We consider each such design activity an
approach to moving forward with ideas and representations,
which includes nearly any imaginable task that a designer might
undertake for this purpose. For example, brainstorming, the

evaluation of prototypes, quietly thinking about a design, formally
proving certain qualities of a design, sketching, mentally accept-
ing or rejecting ideas, and examining existing designs of related
products are all design activities.
Just as an idea cannot be accessed without considering its repre-
sentation, an activity only has meaning in the context of the judg-
ment that guides it. Such judgment may take the form of broad
rules, personal preferences or style, a general feeling of aesthetics,
known patterns, conventional style or wisdom, and other forces
that influence a person’s decision-making process. An activity,
thus, determines which decisions will be considered and how they
will be approached, while judgment guides the actual deciding
inherent to those decisions. For example, in graphic design,
choosing between possible images to use is an important part of
the design process (the activity), and the determinations made as
the result of those comparisons are based on a certain sense of
beauty (the judgment).
Note that, as with ideas and representations, a dual relationship
exists between activities and judgment. The type of activity being
performed determines the type of judgment needed. Conversely,
the judgments that one makes influence the design activities that
one performs. As judgment tends to often be a mix of conscious
practice and subconscious thought, it is pertinent that a designer
continuously externalizes their judgment to understand how it
influences their ongoing design activities.

3.3 Communication
The relationship that ties design the activity with design the prod-
uct is communication. Communication can take on a number of
forms. Perhaps one designer writes down a series of design ideas
as part of a design document, and another designer reads the re-
sulting document. In each person’s case, a design activity is being
undertaken; the first person gives form to an idea and the second
person uses that form to advance their own understanding of the
design. We must remember that such communication need not be
so linear, nor so tangible. A sketch on a napkin or whiteboard, the
creation of a scale model, and even a spoken conversation are all
examples of communication. In each case, the representation (i.e.,
the drawing, model, or spoken sound) expresses an idea or set of
ideas and serves as the vehicle through which communication
takes place. Furthermore, the judgment inherent to each of the
various participants frames their interpretation of these ideas. In
short, we are dealing with communication, the creation and shar-
ing of information, whether with the self, with others while the
self is present, or with others while the self is not present. Each of

these categories presents a unique set of challenges, and we will
discuss them, in reverse order, below.

With others while the self is not present. This is the category of
communication that will be most familiar to software developers.
In this case, the design activity serves to record ideas so that they
might be shared with others. For instance, a group of software
engineers may create a design document, which will later be in-
dependently used by others, perhaps the people implementing the
resulting design. Of course, the original ideas may not be trans-
ported completely or accurately from one person to the next. To
understand why, it is helpful to refer to the larger structure of the
Eyeglass framework. When a document’s creator embarks on a
design activity to write down their ideas, their judgment and the
chosen representation shape the expression of those ideas. When
another designer seeks to understand the ideas, their interpretation
will once again be shaped by the representation as well as by their
own judgment. There is a risk that the ideas will be distorted by
all of these transformations. After all, the representation that is
used may have been an imperfect or ambiguous expression of the
initial ideas. Additionally, it may be possible that the judgment of
the creator and the user of the ideas may not be 100% aligned.

With others while the self is present. One way that this risk of
miscommunication can be handled is by allowing for designers to
undertake design activities together. An idea that is given a per-
manent representation by the shared work of multiple designers,
and alongside informal conversation, is more likely to be cor-
rectly interpreted when used by those designers. Similarly, if one
person creates a representation of an idea and then is present
when others attempt to use it, they can help to clear up misunder-
standings and flesh out abstracted details.

Communication with the self. Communication also takes place
when the same person creates and interprets their own ideas. This
might happen when a designer doodles or sketches, simply for his
or her own benefit, perhaps seeking to generate or organize ideas
by recording them quickly. The advantage of such communication
is that there is an increased chance that the ideas will be inter-
preted the way they were intended. A designer is likely to know
what they meant by a given drawing, list, note, or prototype. They
are also more likely to use a representation that they will find
easy to interpret later. Of course, even then there is no guarantee
that ideas will be communicated successfully. Consider, for ex-
ample, the software engineer who returns to a design they created
two years ago and cannot remember all of the details of how and
why it works. As another example, consider someone trying to
maintain a grasp on a complex, multi-dimensional design with a
multitude of constraints, the design as a whole so large that it
cannot be kept “in the mind” and can only be worked on part by
part. The difficulty of communication in these cases is further
compounded when we consider the fact that one’s judgment may
shift over time, or otherwise be applied differently at different
times.

3.4 Domain of Use and Domain of Materials
Whenever a new design must be created, whether for an evening
gown, vacuum cleaner, graphical advertisement, or word proces-
sor, the domain for that design brings with it a great deal of wis-
dom that influences the design, both as an activity and as a prod-
uct. This wisdom comes in many forms, including representations
expected to be used, shared assumptions, experience, proven suc-

cess strategies, folklore, and constraints of all sorts. In our frame-
work, we represent this wisdom in two separate dimensions, the
domain of use and the domain of materials, both of which encom-
pass all of the dimensions that we have discussed so far.
The domain of use concerns the amassed wisdom regarding the
purpose for which a design solution is being constructed. That is,
it is specific to the design problem being faced and concerns such
things as conventions, standards, constraints, expectations, and
strategies for solving that problem. For instance, in the domain of
vacuum cleaners, there is a significant body of knowledge on how
such a device is supposed to look, operate, and be internally con-
structed. As another example, graphic designers all work almost
exclusively with two-dimensional images. But depending on
whether an image is to be used on the web, on a billboard, or in a
print medium, different constraints and strategies will apply. Note
also that different domains of use may contain or relate to one
another. The domains of use of uprights, canisters, and industrial-
strength vacuums, for instance, are all contained in the domain of
use of vacuum cleaners in general. Furthermore, vacuum cleaners
are designed with many of the same considerations as chemical
carpet cleaners: both must understand the intricacies of removing
dirt from carpets. But the design of vacuum cleaners also relates
to the domain of use of pushed devices, wisdom shared with the
design of lawn mowers or baby carriages.
The domain of materials concerns the amassed wisdom regarding
the resources from which a design solution is being constructed. It
does not need to be specific to a particular design problem, but
will significantly influence the fundamental shaping of a product.
A domain of materials, then, establishes a broad base of knowl-
edge about the nature of the materials used, including the con-
straints that are placed on the use of those materials. A good ex-
ample lies in the materials that are available to construct build-
ings. Using wood offers flexibility, but concrete provides the
option to build very tall structures. Glass can provide an aesthetic
and practical flair, but is unable to support great loads and could
present a safety risk. With each choice of material, thus, come
both opportunities and constraints that provide input into the de-
sign activity. The domain of materials also includes the basic
understanding of the natural laws that compose these insights. An
understanding of the ways that weight can be distributed through
a structure, for example, is vital to the design of buildings.
Good designers are keenly aware of their domain of use and their
domain of materials, as both have the potential to strongly influ-
ence the design process. However, the assumptions of these do-
mains are not absolute, and revolutionary design ideas can result
when they are challenged. Dyson disregarded commonly held
wisdom from the vacuum cleaner’s domain of use: the assumption
that a bag be used to hold collected refuse. The Segway, mean-
while, represented a challenge to personal transport design’s do-
main of materials. This domain included assumptions about the
largely mechanical nature of such vehicles, which were flaunted
in the form of a highly computerized scooter.

4. EYEGLASS APPLIED
To demonstrate how our framework can be used, we will apply it
to a series of non-software design disciplines. As the framework
is structured to be generic with respect to exploring and contextu-
alizing design, we should be able to apply it to a variety of differ-
ent design disciplines and gain insight into their workings. In this

section, we choose four disciplines in which design plays a sig-
nificant role and apply our Eyeglass framework. While we could
have chosen many different disciplines, we chose architecture,
graphic design, product design, and art, because they represent a
broad variety of disciplines and a broad variety of approaches to
design. Clearly, in a longer paper we would treat additional disci-
plines and investigate them in more detail. Given that the main
focus of this paper is software design, however, we necessarily
limit ourselves here.

4.1 Architecture
Architecture has been a favorite for drawing design parallels to
software engineering [12, 27]. Here, we focus on describing rele-
vant characteristics of architectural design, while, for now, ignor-
ing their parallels to software design. Figures 2a and 2b summa-
rize the two schools of thought that we will discuss below, tradi-
tional architectural design and pattern-based architectural design .
The figures use shading to indicate effectiveness in supporting
design tasks: the darker a dimension in the framework, the more
support that dimension provides for the creation of good design.
Note that the ideas dimension is always dark, since ideas are
amorphous inside the designer’s head and a discipline has no
control over them.

Figure 2. Eyeglass Framework Applied.

The domain of materials and domain of use are clearly recognized
in traditional architectural design, and play a strong role in the
design activity. The domain of materials brings with it issues such
as gravity, tensile strength, and the durability of materials. The
domain of use has established its own literature, with different
texts describing in detail the considerations, constraints, and ap-
proaches involved when designing buildings such as houses,
schools, or casinos. Note also that both the domain of materials
and the domain of use lead to a large number of implicit assump-
tions that are shared among designers. We all are aware of the
critical role of, for instance, physics (roofs need support) or par-
ticular features needed (a house needs bedrooms, bathrooms, etc.).
Such assumptions aid in the creative and communicative design
tasks undertaken in architecture.
Several representations exist for different goals. Sketches are used
to rapidly iterate over a divergent set of ideas, while scale models
shape a few of those ideas into miniature, but faithful and tangible
models that are used to review, compare, and improve candidate
solutions. A broad set of formal diagrams come into play after a
general solution has been settled upon, detailing much of the in-
frastructure that was abstracted away in the earlier phases. The
specification of such details is vital, given that diagrams of this
kind are often used outside of the presence of their creator.
A robust sense of judgment exists among architects, both in terms
of functionality and the aesthetics of eventual solutions. While
different architects may disagree over which solutions are good or
bad, they at least agree on the language in which to communicate
about designs and evaluate the differences that exist. Furthermore,
architects have created a body of recognized architectural styles
as ways to document and further converse about the differences in
judgment.
Another approach to architecture emphasizes judgment to an even
greater degree, while diminishing the importance of representa-
tions. Pattern-oriented architectural design proposes an alternative
way of building design, one “without drawings” [2]. A pattern
language of partial design solutions, which can be extended as

needed, is used to compose interlocking patterns into complete
designs. Each pattern, such as “nine percent parking” or “win-
dows overlooking life” consists of a name, a description of when
it should be used, and advice on how it should be applied. By
combining these patterns in different ways, different designs
emerge, which are then implemented directly, without further
specification in models or diagrams.
Note that this perspective on architecture disregards the robust
representations found in traditional architecture, opting instead for
simple lists of patterns. The intent is for designers and builders to
work closely together and all share a common pattern language.
This close-knit communication, combined with a shared sense of
judgment, allows for a unified design to be created and used, even
with minimal representation. The pattern-based approach strongly
leverages its domain of use, as higher-level patterns integrally
provide a sense of a building’s purpose. Meanwhile, the fact that
the low-level details of a building’s design are not specified in
advance means that these decisions can be made by the builders
themselves. These builders understand the pattern language, but
can finalize smaller design decisions as they see the building take
shape, guided directly and precisely by the constraints of the do-
main of materials. This approach, then, extends design tasks out
into the actual act of building: an idea that has not yet caught on
in modern practice, but remains an intriguing possibility.

4.2 Graphic Design
Graphic designers are tasked with creating images, usually to be
used for a commercial purpose, such as an advertisement, a CD
cover, a graph for a magazine article, or a corporate logo. In the
past, graphic designs were entirely paper-based creations, but
nowadays such images are usually created and stored digitally.
An overview of graphic design’s strengths is provided by Figure
2c.
The essence of the graphic designer’s domain of materials is made
of pixels and colors, since images are intrinsically two-
dimensional representations. Although file formats and kinds of
paper could also be considered a part of the domain of materials,

graphic design largely creates information products, which will
consist of information of a very specific type.
Various domains of use have been established within graphic
design. Some are very well-developed, such as the web domain,
which implies a very specific resolution and a set of preferable
color palettes. Meanwhile, greeting card designers can create
images of a wide variety of sizes and have the luxury of a broad
selection of color palettes. Even then, this freedom is restricted by
some domains of use, such as sympathy cards.
The idea representations used in graphic design take full advan-
tage of the constraining nature of the domain of materials and the
domain of use. As with architecture, sketches serve as powerful
forms for exploring ideas. However, while a sketch of a building
is a two-dimensional projection of a three-dimensional object, a
graphic designer’s sketch requires no transformation into its final
product, merely a filling in of abstracted details. A sketch is easily
understood, and the final state it implies easily envisioned. More-
over, available design tools such as Adobe Photoshop are entirely
structured around this observation by supporting a layered model
of design, allowing rapid exploration of alternatives and a staged
refinement of detail [1]. Such a representation would be cumber-
some in a domain of materials that allowed for aural, sensory, or
three-dimensional products, but is well suited for graphic design’s
constrained, two-dimensional representations.
Finally, a powerful sense of judgment pervades graphic design, as
numerous schools and countless books on design aesthetics and
techniques can support the education of designers. But at the heart
of this discipline is the fact that graphic design ideas are easily
communicated thanks to the consistency of idea representations
and the constraints that govern them.

4.3 Product Design
The discipline of product design spans a broad variety of artifacts,
from televisions and toasters to teacups and mugs. Nonetheless,
the approaches used to design these items have a great deal in
common, as summarized in Figure 2d. First, we observe that three
kinds of representations are ubiquitously used: sketches, models,
and prototypes [18, 34]. Prototypes in particular make effective
tools for evaluation; they are developed as abstractions of a poten-
tial, demonstrating many key ideas in an easily understood man-
ner. This is especially necessary because judgment in the field of
product design tends to be largely subjective. Given a particular
design, one can expect a wide variety of opinions. Focus groups,
trial use, and expert evaluations are therefore commonplace in
absence of accepted standard criteria of beauty, effectiveness, or
sales potential.
The design of a product is strongly influenced by its particular
domain of use. For example, television designers are aware of
modern input and output formats, as well as the high priority of
high picture quality. Meanwhile, the domain of use for designing
containers for hot beverages contains insight about heat insula-
tion, handle shapes, and required durability. The domain of mate-
rials also has a strong impact on the designs that are created. The
properties of specific materials are generally well-understood by
designers, and can be readily tested with models and prototypes.
Occasionally, a new material will develop that will fundamentally
change the design of a given product, for example, the shift from
analog to digital input has drastically changed the design of tele-
vision sets. In general, however, these paradigm shifts are rela-

tively rare, allowing a particular product design field to mature
and establish standard ways of approaching design.
A particularly interesting aspect of product design lies in its activ-
ity dimension. For some time, product design was relegated to
experts in a given domain of use, but the success of such compa-
nies as IDEO in creating innovative products in a variety of fields
challenges that assumption [18]. A possible reason for this suc-
cess can be found in the writing of John Chris-Jones, who de-
scribes design in terms of divergent thought, which creates ideas,
transformative thought, to organize ideas, and convergent
thought, for arriving at a final solution [16]. The IDEO approach
meets the needs of each of these activities, with a special empha-
sis on divergence, encouraging profuse brainstorming and the
creation of ideas at every opportunity. Such an approach helps to
compensate for a less developed sense of the domain of use, and
demonstrates the power of divergent thought to find design solu-
tions.

4.4 Art
While art purists may disagree, art is also a design discipline, at
least in the sense described here and shown in Figure 2e. We cer-
tainly feel that most artwork is designed; a plan is laid out on
what kind of art to create, what kind of materials to use, how to
engage in the act of creating the art piece, etc. Consider a painter,
who will usually make explicit choices about what to paint and
certainly about which kind of canvas and type of paint to use.
Further evidence of design in art is revealed by studies of existing
paintings, which regularly reveal outlines hidden underneath the
paint. Sculptors must combine careful planning with tactical deci-
sion-making while they work. By the very nature of sculpting,
material can only be removed, never added, so a sculptor must
ensure that each of his or her design decisions lead towards the
desired result.
The artist, as designer, has few restrictions on his or her domain
of materials, as nearly any object or information product might be
the subject of art. Once the materials have been chosen, however,
they may severely restrict the representation and thereby possi-
bilities of expressing the artist’s ideas. The domain of use also
provides considerations, as different gallery spaces and audiences
will be more inclined to be receptive of certain pieces of art.
Making art is traditionally seen as a solitary act, making it unique
among the fields we have examined so far. Because of this, the
artist is free to use whatever representations and judgment they
see fit to create their work, with little concern for the need to
communicate with anyone else within the design process. In many
ways, this is the strength of art. While other design fields must
consider the communication needs inherent to their process, an
artist has the freedom to focus on the creation of the product.
Finally, while there is no need to share judgment with other de-
signers, an artist will eventually need to consider the way that a
work will be interpreted by its audience. While more commer-
cially motivated artists might be constrained by this aspect of the
judgment dimension, its influence is often minimal. In fact, one of
the strengths and facilitators of art design is the fact that its appeal
need not be universal, and that the flaunting of conventions is
accepted, if not encouraged.

5. EYEGLASS APPLIED TO SOFTWARE

As we discussed in the introduction to this paper, software engi-
neering researchers often have an incomplete understanding of
design as it applies to their field. Some consider design to take
place in a single phase in the software process, while other ap-
proaches consider design to be “in the code”. Still other research-
ers have forwarded views that software development should be
viewed as an engineering discipline, or as an art form. But each of
these views possesses significant blind spots with regards to the
essential dimensions of design, as presented in our framework.
We illustrate so here, by exploring these existing perspectives and
briefly discussing their contributions and shortcomings.

Figure 3. Eyeglass Framework Applied to Software.

5.1 Software Design as a Phase
The concept of a “design phase” is extremely pervasive among
software engineers. The purpose of such a phase is usually to take
a requirements document and come up with a design document
that will guide subsequent implementation. While this phase may
be revisited a few times in an incremental or spiral approach, the
view of “design as a phase” is underlying much of the modern
software development process.
The problem with this concept is that the actual process of design-
ing is not very well understood. For example, in the literature
discussing the waterfall or spiral model, there is very little discus-
sion of the specific activities that should be undertaken within the
process of creating a design document, or about the ideal commu-
nication structures between designers. While some methodologies
do specify ways of moving from requirements to design, this is
often misleadingly billed as a purely transformational and largely
mechanical activity, not as a creative process of design. And
while formats such as UML exist to represent the final design
document, there is very little written about how to represent ideas
within the process of designing – hence our low assessment in
Figure 3a.
There is some support for design in the domain of use: an under-
standing exists about what types of projects will benefit from
specific diagram types and design structures. There is also a sense
of judgment that guides work in the design phase, consisting of
some basic rules, patterns [12] and heuristics [29]. But compared
to other design fields, this support is still minimal, resulting in a
weakly supported design process.
Nonetheless, by recognizing design as a phase, this approach must
be commended for at least establishing the notion that design is an
integral part of software engineering. Without this recognition, we
probably would not have many of the design technologies that are
in existence today.

5.2 Design in the Code
The notion of “design as a phase” was unchallenged, more or less
until the recent emergence and rapid adoption of agile methods
[5]. These approaches distinguish themselves by shunning design
as a phase, instead preferring to program profusely, making the
code itself the ultimate source for design decisions. An important
offshoot of this decision is the fact that the final result of the de-
sign process in software is no longer a design document, but the
program itself. We will question the wisdom of code as a design
representation below, but making this choice does have some
interesting implications with respect to the other dimensions of
the framework.

Because coding is this perspective’s primary design task, the
community’s understanding of programming, refactoring, and
“bad smells” [11] can, indirectly, be leveraged as support for
design activities and judgment. Similarly, research aimed at im-
proving the coordination of work among programmers can now be
viewed as enhancing our understanding of design communication.
The practice of pair programming is especially effective from our
framework’s perspective, allowing code to be used “with others
while the self is present”. Additionally, because code is the de-
sign, many people participate as designers, which is more realistic
than the “design as a phase” view in which it is assumed one, or at
best, a few designers make all decisions. Programmers continu-
ously make decisions that influence a design (as evidenced by the
problem of design deviation [26]). Agile approaches recognize
this and attempt to address it with a focus on frequent examina-
tion of code structure and subsequent refactoring.
That said, from the perspective of our framework and its implica-
tions for design, code is a terrible choice as a design representa-
tion. It does not support any form of rapid and creative explora-
tion; after all, we must program and build something working
before we can truly evaluate it. Furthermore, while the functional-
ity of a program is clearly expressed in its code, the actual, crea-
tive design ideas that the program embodies are often quite ob-
scured, leading to a needlessly difficult design process.
Figure 3b summarizes these points. Agile development represents
an interesting alternative as it allows for a much more appropriate
view of design’s role in software development (e.g., everybody is
involved, the design activity is explicitly recognized, design
communication is stressed), but unfortunately the choice of code
as the medium for design negates many, if not all, of these poten-
tial benefits. Nonetheless, it provides us with an interesting lesson
in that “design as a phase” is not the only possible perspective;
perhaps if we can blend the better parts of several of these per-
spectives, a more suitable one can be found.

5.3 Software as Engineering or Art?
Beyond the debate of how we should carry out the creation of
software lies a debate that is, in many ways, much larger. For
some time, there has been disagreement about what the funda-
mental nature of software engineering really is: is it an act of
engineering, or an act of art?
There are appealing arguments on both sides. The incredibly
complex, mathematical nature of a large program seems to cry out
for a standard set of rules and practices. This view is reflected in
Shaw’s call for software engineering to be more like a mature
engineering field [32] and the Software Engineering Body of
Knowledge’s stated “engineering-based approach” [4]. Alter-
nately, software engineering can be seen as art, requiring the crea-
tion of novel solutions that are communicative and elegant.
Brooks, for example, in describing great designers, emphasizes;
“software construction is a creative process” [7].

Davis, however, provides us with an alternative viewpoint, ob-
serving that during a software project, elements of engineering are
needed at some times and elements of artistry at others [9]. He
then engages in a comparison of software development to custom
home design to illustrate his mixed point of view.
Perhaps then, rather than engineering or art, the most appropriate
metaphor for software development is that it is a design task. This
is not incompatible with the other views presented in this section,
but in many ways helps to unite them, for design contains ele-
ments of both engineering and art. An artistic side provides us
with the activities that will create ideas, while a sense of engineer-
ing is needed to understand the practical implications of those
ideas, and to devise representations to communicate them pre-
cisely. Both art and engineering contribute important elements of
judgment; a sense of aesthetics, as well as practical decision-
making support, is vital to an effective design process. By fram-
ing software as a design discipline, we can see these disparate
attitudes largely reconciled.

6. ACCOMPLISHMENTS & CHAL-
LENGES
Now that we have conceptually examined software design from a
very high level, it is time to examine how the Eyeglass framework
concretely helps us focus our efforts at the level of detailed re-
search directions, approaches, and tools. To do so, we revisit each
of the dimensions of the Eyeglass framework, briefly discuss
contributions within that dimension, and lay out some fundamen-
tal research questions that we feel must be addressed. Finally, we
will discuss the issue of design’s role in the software process, a
concern that crosscuts the framework’s dimensions.

6.1 Ideas and Representation
The ideas dimension of software engineering, as with any field, is
beyond improvement. We cannot change the minds of designers.
We can only provide them with the context to generate good de-
sign ideas. This, of course, is the essence behind our framework
so it should be no surprise it applies here as well.
The first dimension of this context is formed by the representa-
tions that can be used for expressing design ideas. This has been
an area of much research. Models of software, and the languages
in which to express them, have been an integral part of the re-
search pursuit since the inception of the software engineering
field. In practice, too, models and modeling languages have re-
ceived a large amount of attention. The result has been a continu-
ous flurry of notations, from early efforts such as data flow dia-
grams [10] and structured diagrams [15] to newer results such as
UML and architectural description languages [22].
Judged from a design perspective, the dimension of representation
in software design is ripe for improvement in two different ways.
First, we must improve existing notations. As an example, Perry
and Wolf got it right when they led a call for “elements, form, and
rationale” as a basis for modeling software architecture [27]. This
vision resonates strongly with our framework, but has not yet
materialized. Study any existing architecture description lan-
guage, and one finds a strong focus on elements, a minor focus on
form (with styles), but a lack of rationale [19]. Even then, the
modeling of elements resembles code, which is not likely to be
conducive to a creative design exercise. Support for such explora-
tion was actually much more prominent in earlier modeling lan-

guages, exactly because they were less formal, further removed
from code, and more intuitive to understand [10, 15]. In terms of
supporting creativity, we seem to have moved backwards since
then.
Suggestion 1: We must create new modeling languages that sup-
port design in all of its dimensions, and do not just focus on docu-
menting a design after it has been thought out. That is, we must
create design representations, not programming abstractions.
Representation also has the potential to be improved if we explore
additional forms of expression. Software is extremely exact but
this does not mean that our representations of it need to be. Par-
ticularly from a communication point of view, say during a brain-
storming session, we cannot be expected to just draw UML dia-
grams on a whiteboard. Many designers have informally adopted
other means of designing, sketching, drawing different concerns
at different levels of abstraction concurrently, erasing and redraw-
ing, and so on. This implies a highly tangible activity, which may
be better served by a highly tangible representation. Sketching is
a beginning, but greater conceptual support and tool support for
activities of this kind is needed. Other disciplines have found
useful and effective representations that are structurally different
from the final product (e.g., the scale model, 3D visualization).
Even if it means a temporary loss of precision, so must we search
for ways to make software design more tangible.
Suggestion 2: We must explore tangible representations of design,
moving away from the notion that the only way in which we can
express a software design is in a language of some form.

6.2 Activities and Judgment
Software design as an activity has actually received relatively
little attention. While one certainly cannot expect a detailed proc-
ess specification that, when followed, would unequivocally lead
to a high-quality design, this is perhaps not what is necessary. To
date, we have seen a large emphasis on design environments,
tools with which we can graphically lay out a design [28]. These,
however, have somehow ended up being documentation tools
(powerful ones at that, we admit). There has been some progress
in terms of guidance via critics and constraints [30], but these
tools fail to truly support creative exploration. Compare them
with Adobe Photoshop, which is used for graphic design. Its un-
derlying conceptual base and method of interaction are both di-
rectly geared towards creative exploration. By analogy, we must
develop lightweight approaches to generating, storing, and ma-
nipulating ideas, whether they are represented as text, physically,
or as a carefully abstracted drawing. These approaches may come
in the form of new notations and tools, but cannot be merely in-
cremental improvements over current tools. We must re-envision
them to integrally support the creative act of design. Software
storming [17], heuristics [29], and sketching languages [13] are
early examples.
Suggestion 3: We must create new modeling tools that support a
designer in their creative activity, that is, integrally support the
divergence – transformation – convergence model of design that
is put forward by John Chris-Jones and inherent to exploration.
Judgment has long been a factor in software engineering and de-
sign. In fact, one could argue that metrics are a form of judgment,
as exemplified by the ubiquitous understanding and use of cou-
pling and cohesion. Software patterns [12] and architectural styles
[33] are another form of judgment. Both codify standard “good”

ways of organizing a design. Patterns are especially interesting,
since they have penetrated the broader software engineering
community, thereby establishing a sense of shared judgment,
which is key to the maturity of any design discipline.
That said, our judgment could still be improved significantly. The
number of metrics governing design is small and focused on
structure. How a software performance person looks at a design is
very different from the way a scalability engineer does. Exactly
what a designer looks for when interpreting a design and declar-
ing it “evolvable” is unknown; we still know little compared to
other design disciplines about what makes us appreciate one de-
sign and reject another outright.
Suggestion 4: We must pursue a sense of software aesthetics to
provide a way of evaluating the quality of a design from different
dimensions. This aesthetics must allow for different views, crite-
ria, needs, and alternative bodies of design appreciation.
Note that this sense of aesthetics will not be born solely from the
availability of lots of metrics and patterns. These form an essen-
tial part of judgment, but we also must develop an intuitive sense,
as taught and learned via numerous examples and great discus-
sion.

6.3 Communication
The careful reader will observe that all four suggestions thus far
strongly relate to communication, either with the self or with oth-
ers. This reflects the essential role that communication plays in
our framework: without it, design simply would not happen.
The literature affirms this theoretical position with concrete ob-
servations and observes that design, as a critical medium of com-
munication, must adhere to principles of clarity, non-ambiguity,
etc. [35]. When we design new notations, then, this role should be
kept in mind and understood for its implications on those nota-
tions. But when push comes to shove and we actually develop
these new notations and sometimes other representations, it is rare
we find someone speaking up for communication needs; it takes a
backseat to issues such as meta-modeling, formality, and expres-
siveness.
Better representations are not the only way to improve communi-
cation. Shared judgment helps in providing a context in which
some parts of an otherwise complex idea can be omitted. Metrics
and patterns are examples of improvements that indirectly im-
prove communication by helping the interpretation of design arti-
facts to remain consistent. But too often precision (metrics) or
generality (patterns) is the focus of the creation of these artifacts;
communication, again, takes a backseat.
Suggestion 5: We must make communication the primary objec-
tive when devising new software design tools, methodologies, or
approaches, and examine our contributions in this light – that is,
in terms of usability, communicativeness, speed of communication
and interactivity.

6.4 Domain of Use and Domain of Materials
The domain of use in software design has received some atten-
tion. We know certain design languages are better for certain
domains [35], we have explored Domain-Specific Software Ar-
chitectures [36] (now called Product Line Architectures [6]), and
we are experimenting with generative programming (e.g., aspect-
oriented programming, model-driven architecture, multi-

dimensional separation of concerns) [8]. In addition, certain de-
sign methods attempt to work on bridging the gap from the do-
main (specified in requirements) to the design, as is the case with
the Problem Frames approach [14]. These are all good forays into
leveraging the domain of use for purposes of design.
Compared to other disciplines, however, an interesting phenome-
non has occurred. As a discipline, software engineering seems to
have decided on remaining as generally applicable as possible.
We have resisted that which has strengthened other design fields:
partitioning of the design approaches depending on different do-
mains of use. We recognize the differences between designing a
web application and next-generation space flight software, but
thus far the literature has not started to reflect this in practical
terms. We should not be afraid of partitioning into different sub-
domains, as it is a normal maturing of our discipline and stands to
bring great benefits in terms of the design process.
Suggestion 6: We must explore a much greater role of the domain
of use in the shaping of our discipline, allowing subdomains to
emerge that each address specific classes of design problems with
domain-specific representations, design tools, aesthetics, etc.
Our current domain of materials is interesting because of its stun-
ning simplicity yet amazing deficiency: code is simply not a good
domain of materials! In the end, code is what frames our designs,
more so than we may wish to admit. Even our representations are
intimately tied to code. Object-orientation is currently the domi-
nant approach to design; yet, it is originally a code-level concept
that has made its way up to the level of design. So it is with many
design modeling concepts. Our design languages end up still be-
ing programming languages, with shared assumptions and limita-
tions. This makes us dependent on an entirely different commu-
nity, which does not necessarily share our vision of what design is
to be. This can no longer continue. The essential material of
which our programs are built is something that demands our atten-
tion and innovation. Fourth generation languages, in a way, are an
example of what is possible: databases are designed on the spot
with instant generation of prototypes. The key is the domain of
materials, which is turned into fill-out forms. While code is un-
derneath, it is hidden as a material. Of course, the domain of use
helps a lot in this case, as it provides the constraints on the types
of program for which this approach could effectively materialize.
Suggestion 7: We must take matters into our own hand with re-
spect to the development of programming languages. We, as the
software engineering community, need to get strongly involved in
the definition of new programming languages and other forms of
material so they suit our needs: those of a design discipline.

6.5 Crosscutting Concern – Process
A final consideration in the exploration of our framework lies in
the timing of when design happens. From the discussion in Sec-
tion 4, it should be clear that design cannot be confined to a single
phase, nor can it be confined to a single kind of artifact. The real-
ity is that we make design decisions in virtually every part of the
software process. Despite the ideal separation of what versus how,
the requirements engineer makes choices that constrain a design.
A design does not fully constrain the implementation; a pro-
grammer will be making choices that are design choices in nature.
Even these tasks do not involve the traditional design document;
they still involve choices about how to implement functionality
that later on may end up influencing the design document none-

theless. So, we must truly step out of the box and begin to under-
stand that all of software engineering is a design process. Only
then can we garner the true value of the framework we have pre-
sented in this paper: it provides the proper perspective for soft-
ware as a design discipline.
Suggestion 8: We must treat the entire software process as a de-
sign process. Decisions can be made at each stage that constrain
or otherwise influence the design – we should treat them as such!

7. CONCLUSIONS
It is our hope that this paper sparks a renewed interest in the topic
of software design. Theoretical frameworks, views, and treatises
have been relatively scant in our field to date. Our novel Eyeglass
framework, in putting forward a new and different view of soft-
ware design, is an attempt at: (1) organizing our understanding of
software design as a design discipline, (2) highlighting where our
efforts to date have been successful and where they have fallen
short, and (3) identifying a set of research goals that we must
address to advance software design and realize its potential as a
design discipline.

Much work is to be performed, not just in addressing the concerns
and potential research directions raised by the framework, but
also in beginning and sustaining a deep theoretical discussion on
the nature of software design. Examining other disciplines, one
finds vocabularies, articulated theoretical models, shared values
on the interpretation and evaluation of alternative designs, proven
strategies and approaches, useful and effective tools that are ex-
plicitly geared towards the tasks at hand, and other aspects and
signs of highly-engaged communities. For software design to
mature to a similar level, we must dare to step away from the
technical world in which we have so far preferred to engage.

We hope our framework is not the last, and in fact we anticipate it
is not! It is only through involved discussion, reframing the re-
framed, and creating a multitude of possibly conflicting perspec-
tives that we will be able to advance software design beyond the
hurdles that hold us in place today.

8. ACKNOWLEDGMENTS
Effort partially funded by the National Science Foundation under
grant numbers CCR-0093489 and IIS-0205724.

9. REFERENCES
[1] Adobe Software Institute, http://www.adobe.com/.
[2] Alexander, C. The Timeless Way of Building. Oxford Uni-

versity Press, New York, 1979.
[3] Arnheim, R. Visual Thinking. University of California Press,

Berkeley, CA, 1969.
[4] Bagert, D., Hilburn, T., Hislop, G., Lutz, M., McCracken, M.

and Mengel, S. Guidelines for Software Engineering Educa-
tion Version 1.0. CMU SEI, Pittsburg, PA, 1999.

[5] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, MA, 1999.

[6] Bosch, J. Design and Use of Software Architectures. Addi-
son-Wesley Professional, Reading, Massachusetts, 2000.

[7] Brooks, F. The Mythical Man-Month. Addison-Wesley,
Reading, Massachusetts, 1995.

[8] Czarnecki, K. and Eisenecker, U. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Profes-
sional, Reading, Massachusetts, 2000.

[9] Davis, A. Great Software Debates. John Wiley and Sons,
Inc., Hoboken, 2004.

[10] DeMarco, T. Structured Analysis and Systems Specification.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[11] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.
Refactoring: Improving the Design of Existing Code. Addi-
son-Wesley Professional, Reading, Massachusetts, 1999.

[12] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, Reading, MA, 1994.

[13] Hammond, T. and Davis, R., LADDER: A Language to De-
scribe Drawing, Display, and Editing in Sketch Recognition.
International Joint Conference on Artificial Intelligence,
2003.

[14] Jackson, M. Problem Frames. Addison Wesley, 2001.
[15] Jackson, M. System Development. Prentice Hall, Englewood

Cliffs, N.J., 1983.
[16] Jones, J.C. Design Methods. John Wiley and Sons, Inc, New

York, 1970.
[17] Jordan, P.W., Keller, K.S., Tucker, R.W. and Vogel, D.

Software Storming: Combining Rapid Prototyping and
Knowledge Engineering. Computer, 22 (5).

[18] Kelley, T. The Art of Innovation. Doubleday, New York,
2001.

[19] Lago, P. and Vliet, H.v., Explicit Assumptions enrich Archi-
tectural Models. in 27th International Conference on Soft-
ware Engineering, (St. Louis, Missouri, 2005), IEEE.

[20] Lidwell, W., Holden, K. and Butler, J. Universal Principles
of Design. Rockport Publishers, Inc, Gloucester, 2003.

[21] Matchett, E. Control of Thoughts in Creative Work. The
Chartered Mechanical Engineer, 14 (4).

[22] Medvidovic, N. and Taylor, R.N. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE TSE, 26 (1). 70 - 93.

[23] Meggs, P. Type and Image : The Language of Graphic De-
sign. John Wiley & Sons, Inc., 1992.

[24] Norman, D. The Design of Everyday Things. Basic Books,
New York, 1988.

[25] Page, J.K., Conference Report. in Building for People, (Lon-
don, 1965), Ministry of Public Building and Works.

[26] Parnas, D., Software Aging. in 16th International Confer-
ence on Software Engineering, (Sorrento, Italy, 1994).

[27] Perry, D. and Wolf, A. Foundations for the Study of Soft-
ware Architecture. ACM Software Engineering Notes, 17 (4).
40-52.

[28] Quatrani, T. Visual Modeling With Rational Rose and Uml.
Addison-Wesley, 1997.

[29] Riel, A. Object-Oriented Design Heuristics. Addison-
Wesley, Boston, MA, 1996.

[30] Robbins, J. and Redmiles, D. Software Architecture Critics
in the Argo Design Environment. Knowledge-Based Systems,
11 (1). 47-60.

[31] Schön, D. The Reflective Practitioner. Basic Books, 1983.
[32] Shaw, M. Prospects for an Engineering Discipline of Soft-

ware. IEEE Software, 7 (6). 15-24.
[33] Shaw, M. and Garlan, D. Software architecture: perspectives

on an emerging discipline. Prentice-Hall, Inc., Upper Saddle
River, 1996.

[34] Söderman, M. Comparing Desktop Virtual Reality with
handmade sketches and real products. Exploring key aspects
for end-users’ understanding of proposed products. The
Journal of Design Research, 2 (1).

[35] Sommerville, I. Software Engineering (7th Edition). Addison
Wesley, Reading, MA, 2004.

[36] Tracz, W., Coglianese, L. and Young, P. Domain-Specific
Software Architecture Engineering Process Guidelines. ACM
SIGSOFT Software Engineering Notes, 18 (2). 40-49.

	UCI-ISR-06-10-cvr.indd.pdf
	UCI-ISR-06-10-abs.pdf
	Tech Report 10.pdf

