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Abstract:  
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This paper surveys theories and techniques for designing and analyzing security of such 
systems. The paper gives an overview of security models, introduces formal foundations 
for system composition and security engineering, and investigates available techniques 
for security design and analysis, focusing on each technique’s adoption of composition 
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ABSTRACT 
Software systems made of software components are 
becoming more and more common. This paper surveys 
theories and techniques for designing and analyzing security 
of such systems. The paper gives an overview of security 
models, introduces formal foundations for system 
composition and security engineering, and investigates 
available techniques for security design and analysis, 
focusing on each technique’s adoption of composition 
mechanisms and support for security property.  

1. INTRODUCTION 
The word “component” [125] has been used in computer 
software for a long time, even though its original meaning 
carried a different implication than its current definition. 
Ever since the first software engineering conference, 
methodologies using mass-produced software components 
have been proposed in various forms. However, it is not 
until the early 90s, with the maturation of object and 
component technology, the proposal and adoption of 
component standards, the proliferation of PCs, and the 
ubiquity of Internet connections, did component-based 
software engineering become an important paradigm in 
practice [31]. 

Much of the previous work has been focusing on the 
functionality side [74]. The core set of questions that have 
already been investigated is: given the functionalities of a 
set of components and the desirable composite 
functionality, what components can be used and which one 
should be selected? How can they be adapted, if necessary? 
Is there any need for development of new components? 
Another set of important questions, also enjoying fruitful 
research, has been how to design a component to maximize 
its reusability and how to describe and expose the various 
ways to reuse a component. Significant progress has been 
made in answering these questions and transferring 
solutions into usable technologies. 

However, before component-based software engineering 
can achieve its full potential, other extra-functional 

properties, such as performance, reliability, and security, 
must also be addressed. We need techniques for designing a 
software system to achieve the desired extra-functional 
properties from its constituent components. We also desire 
techniques to help us analyze such a system with respect to 
these extra-functional properties.  

Among these extra-functional properties, security is of 
special importance. Given recent trends in technology 
deployment and advance in adversary techniques, it has 
become a national emergency to secure the information 
infrastructure. The modern networked and component-
based software environment proposes several challenges for 
engineering security. First, components may come from 
different trust domains, and their security features are not 
always easy to certify. Second, operating such an 
environment needs interaction with several trust domains, 
requiring unprecedented flexibility of software systems. 
Third, given the full spectrum of possible components, 
expressing a complete and consistent security policy for the 
complete environment and each constituent component is 
difficult. Finally, security mechanisms should allow a wide 
range of granularity in software components.  

This paper investigates the security property of software 
systems made of components, surveying techniques that 
have been proposed to design and analyze security for such 
systems. The paper proposes a framework for investigation, 
analyze available techniques against this framework, 
compare the advantages and drawbacks of each technique, 
and identify some issues meriting further exploration.  

The paper is organized as follows. Section 2 briefly surveys 
proposed security models that a software system can adopt. 
Section 3 lists categories of components studied in this 
paper, mechanisms to connect them, and challenges on 
security imposed by them. Section 4 proposes a framework 
under which techniques studied in literature is surveyed and 
compared. Section 5 examines security design and analysis 
techniques in detail, focusing on the security issues each 
technique is trying to address and the composition 
mechanism each technique utilizes. Section 6 makes some 
discussion and outlines an agenda for future research.  

2. SECURITY MODELS 
Because security is a very broad subject, this section only 
gives a brief overview of security models. These models are 
the most common ones that are supported by the techniques 
surveyed in Section 5. For other security topics, Bishop 
provides a comprehensive and recent overview [15]. 
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The main security properties are confidentiality, 
integrity, and availability [85]. Confidentiality ensures 
there is no improper information disclosure. Integrity 
ensures there is no improper information modification. 
Availability ensures there is no improper denial of service. 

The terms of security policy, security model, and 
security mechanism are defined as follows. Security 
policies define what rules are to be enforced and what goals 
are to be achieved. A security model provides a formal 
representation of security policies. Security mechanisms are 
hardware devices and software functions used to implement 
security policies [112].  

The most basic type of security mechanism to enforce secure 
access, solidly established ever since the seminal work of 
Anderson [5], is a reference monitor. The reference 
monitor is a trusted computing base (TCB) that is 
trusted to intercept every possible access from external 
subjects to the secured resources and assure that the access 
does not violate any policy. Widely accepted practices 
require a reference monitor to be tamper-proof, non-
bypassable, and small. A reference monitor should be 
tamper-proof so that no alteration of it is possible. It should 
be non-bypassable so that each access is mediated by the 
reference monitor. It should be small that it can be 
thoroughly verified. A more comprehensive and deeper 
treatment of reference monitors can be found at [15]. 

Security policy composition, which occurs when multiple 
sub policies coming from different sources are combined 
into an integral policy, has been extensively studied [16, 60]. 
The study has investigated questions such as what 
operations are available, how to decide whether to grant or 
reject an access request, and how to resolve conflicts 
between sub policies. Since the topic of policy composition 
is about composition of passive policy, and the interest of 
this survey lies in the composition of active software and its 
security implication, the topic will not be covered further. 

The focus of the rest of this section is about security models. 
These models are utilized by the techniques surveyed in 
Section 5. There are different types of security models. Two 
common types are access control models and information 
flow models.  

2.1 Access Control Models 
Two dominant types of access control models are 
discretionary access control (DAC) models and 
mandatory access control (MAC) models. In a 
discretionary model, access is based on the identity of the 
requestor, the accessed resource, and the permission that 
the requestor has on the resource. The permission can be 
granted or revoked at will by the owner of the resource. 
However, in a mandatory model, the access decision is 
made according to a policy by a central authority.  

The Access Matrix Model is the most common discretionary 
access control model. It was first proposed by Lampson [77] 
and later formalized by Harrison, Ruzzo, and Ullmann [48]. 
In this model, a system contains a set of subjects (also called 
principals) that has privileges (also called permissions) and 
a set of objects on which these privileges can be exercised. 
An access matrix specifies what privilege a subject has on a 
particular object. The rows of the matrix correspond to the 

subjects, the columns correspond to the objects, and each 
cell lists the allowed privileges that the subject has over the 
object. The access matrix can be implemented directly, 
resulting in an authorization table. More commonly, it is 
implemented as an access control list (ACL), where the 
matrix is stored by column, and each object has one column 
that specifies privileges each subject possesses over the 
object. A less common implementation is a capability 
system, where the access matrix is stored by rows, and 
each subject has a row that specifies the privileges 
(capabilities) that the subject has over all objects.  

 
Figure 1, Access Control Matrix 

Mandatory Access Control models are less common and 
more stringent than discretionary models. They can prevent 
both direct and indirect inappropriate access. The most 
common types of mandatory models work in a multi-level 
security (MLS) environment, which is typical in a military 
setting. In this environment, each subject (on behalf of a 
user) and each object is assigned a security label. The labels 
have dominance relationship between each other, forming a 
lattice [28]. For example, in Figure 2, the label “top secret” 
dominates the label “secret”, the label “secret” dominates 
the label “classified”, and the label “classified” dominates 
the label “unclassified”. The label on an object specifies the 
sensitiveness level of the information, and the label on the 
subject identifies the clearance and trustworthiness that the 
subject has. The subjects/objects with a dominating label 
are at a higher level, and the subjects/objects with a 
dominated label are at a lower level.  

 
Figure 2, Dominance Lattice 

The most famous MLS MAC model, which is a model for 
confidentiality, is the Bell-LaPadula model [9]. The 
model specifies two rules that must be satisfied by each 
access to protect confidentiality: 1) no read up (originally 
called simple security): a subject is allowed reading an 
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object only if its security clearance dominates the security 
level of the object. That is, the label of the subject is over the 
label of the object in the lattice. Thus, a low-level subject 
cannot read a high-level object. 2) no write down (originally 
called *-property) : a subject is allowed writing an object 
only if its security clearance is dominated by that of the 
object, so a high-level subject cannot write to a low-level 
object (to leak more sensitive information intentionally or 
unintentionally). These rules prevent confidential 
information from flowing to less trustworthy subjects.  

Another important MLS MAC model is the Biba model 
[10]. This is a model for integrity, and can be considered as 
a mathematical dual of the Bell-LaPadula model. The model 
assigns an integrity label to each subject and object, as the 
confidentiality label of the Bell-LaPadula model. The Biba 
model has two principles. The first is “no read down”: a 
subject can only read an object whose integrity label 
dominates its own so it can trust the integrity of the object. 
The second is “no write up”: a subject can only write to an 
object whose integrity label is dominated by its own so it 
won’t violate the integrity of the object. These rules prevent 
information stored in lower level and less reliable objects 
from flowing to and affecting higher level and more reliable 
objects.  

Both the Bell-LaPadula model and the Biba model work in a 
static environment, where the security labels of subjects and 
objects change little, if any. The Chinese Wall model [17] 
can be considered as a dynamic mandatory access control 
model. In this model, objects are assigned to different 
domains. Each domain represents its own interest, and its 
interest potentially conflicts with those of other domains. 
Initially, a subject can access any domain initially. However, 
once it is granted access to a domain, it is prohibited access 
of any other conflicting domains thereafter. It is essentially 
limited within the wall of its own domain. The Chinese Wall 
model is a model of dynamic separation of duty, and can be 
mapped to the Bell-LaPadula model if dynamic security 
labels are allowed in the Bell-LaPadula model [109].  

Both the Bell-LaPadula model and the Biba model originate 
from a military setting. They do not fit well in a commercial 
environment. The Clark-Wilson model [22] summarizes 
many common security rules practiced in commercial 
activities. It defines four basic criteria that require 
authenticating all subjects, auditing all activities, allowing 
only well-formed transactions, and separating duty. The 
model have are two types of data items and two types of 
procedures. Data items are either constrained data items or 
unconstrained data items. Procedures are either integrity 
verification procedures or transaction procedures. 
Constrained data items are the items whose validity is 
verified by Integrity Verification Procedures. These data 
items can only be changed by Transaction Procedures. The 
model also requires that administrators must certify all 
procedures and the system should enforce the certified 
procedures. This model is not as formal as other models, 
though. It is not easy to analyze and enforce.  

The Role-based Access Control Model (RBAC) [113] is 
a more recent development. It introduces roles as the 
entities that are authorized. In real environments, a user can 
perform different roles in different contexts, even though 
the identity of the user remains the same. A role-based 

access control model captures this concept naturally by 
introducing an extra level of indirection, role, into the norm 
of subject/object/privilege. Instead of authorizing a 
subject’s access to an object, the authorization is expressed 
as a role’s access to an object, and the subjects can be 
assigned to different roles. This model eases management of 
users, roles, and accesses. It allows roles to form a 
hierarchy. It enforces principles such as least privilege and 
separation of duty. The model supports more timing and 
dynamic constraints than usual access control models.  

 
Figure 3, Role-based Access Control, from [112] 

2.2 Information Flow Models 
Mandatory Access Control models can prevent overt 
channels that allow inappropriate information flows, but 
they are still vulnerable to covert channels where an 
information flow exists in a clandestine manner utilizing 
stealthy storage or timing facilities [76]. Information 
Flow Models are confidentiality models that are also 
called secrecy models. These models are interface models 
that specify how the information should or should not flow 
between principals so that there are no covert channels. 
They do not suggest how this can be achieved [85].  

There have been many proposals of different information 
flow security properties. Most of them adopt a trace-based 
viewpoint. In these models, subjects are usually called 
agents. Agents are classified into two categories: low level 
agents and high level agents. A trace is inputs received and 
outputs generated from these agents. The focus of an 
information flow security model is to prevent low level 
agents from receiving any secret information from high level 
agents.  

The first information flow security property proposed is 
Non-Interference [45], which requires low level output 
should not be affected by high level input. This assures that 
a low level agent cannot get information about the high level 
inputs.  

Other properties have also been proposed. Non-Deducibility 
on Input [124] utilizes information functions to require that 
low level agents cannot deduce information about high level 
agents. Restrictiveness [82] requires that low level agents 
cannot differentiate between possible states after certain 
state transitions. Correctability [61] requires that a trace 
after a perturbation (adding or removing an input) and a 
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correction (adding or removing an output) is still a valid 
trace. Non-Deducibility on Strategy [134] specifies that a 
low level agent cannot tell a high level agent from a process 
formed from the composition of the high level agent and a 
strategy, where a strategy is a process that computes inputs 
to the high level agent based on previous histories.  

These models can be applied differently, depending on 
whether the secrecy is intended for high-level inputs only or 
both inputs and outputs, whether synchrony is required, 
whether non-determinism is allowed, and whether 
probability, instead of possibility, is considered. 

However, the programming language community looks at 
the problem of information flow security in a different 
manner [111]. Instead of focusing on prevention of any 
possible information flow, a less stringent but more realistic 
approach is taken to track the more explicit information 
flow. An example is given by Sewell and Vitek [116], where 
an intentional approach for information flow security is 
proposed, unlike the traditional extensional trace-based 
approach. This intentional approach assigns an agent 
“colors”, which designate principals that have causally 
affected the agent. The colors can be considered as the type 
of the agent, and a type theory calculus is used to check the 
validity for information flow security. 

3. COMPONENT TYPES AND 
CONNECTION MECHANISMS 
The word “Component” in software has a long history and is 
heavily overloaded. Different authors have used this word to 
designate various types of entities. This section gives a brief 
overview of the types of components that will be studied in 
this survey.  

Components, whether they are the results of decomposition 
from a component of a higher level of abstraction, or they 
are the units to be composed into a composite component, 
need to interact with each other, possibly to achieve a 
common goal. Different types of components require 
different interaction and connection mechanisms. In 
addition to types of components, this section also discusses 
the mechanisms connecting components together.  

When designing and analyzing security of a system 
consisting of its constituent parts, the modular structure 
brings up new challenges not encountered in a monolithic 
entity. Different types of components and different 
connection mechanisms may bring different types of 
security issues.  

Components are classified into four types: abstract 
computation, module/object/component, CBSE 
(Component-based Software Engineering) Component, and 
COTS (Common-Off-The-Shelf) component. This catalog of 
component types, connection mechanisms, and security 
challenges does not intend to be exhaustive. It lists only 
representatives found in literatures and serves as the 
foundation for further discussion in this paper. 

3.1 Abstract Computation 
In the formal methods community, a component generally 
refers to some abstract computation. Correspondingly, the 
connecting mechanism is generally expressed as the input 
and output relationship between the computations.  

For example, in the Abadi-Lamport framework [1] (see 
Section 5.1.1), a component is generally an abstraction of the 
underlying computation, likely described with various types 
of logic. Under the setting of the trace-based information 
flow security, such as MAKS [80] and Non-Interference 
[45](see Section 5.1.3), a component is a computation that is 
expressed as the set of input/output traces of the 
computation. A component in the process algebra approach 
[36, 37, 39] (see Section 5.1.3) is a process that changes its 
state depending on the input.  

The connection mechanism for Abadi-Lamport 
specifications is the general logic conjunction, where the 
specifications of two smaller computations are juxtaposed 
and the composite system should satisfy both specifications. 
The composition between traces takes the form of outputs of 
one trace becoming inputs of another trace. The 
composition in process algebra is similar, where one process 
takes input from another process’s output. The two 
processes share a common event.  

As will be clear in Section 5.1, the composition utilized 
formal computations raises two types of challenges for 
security. The first is how to prove that one component will 
enforce proper access control for other components. This 
can be handled by the usual Abadi-Lamport framework. The 
second challenge is bigger: how to ensure one component 
cannot acquire information about other components. The 
usual Abadi-Lamport framework cannot handle this 
challenge very well, requiring new formalisms and 
techniques.  

3.2 Module, Object, and Component 
In the more common case, a component designates a 
smaller part of a larger system. In most imperative 
programming languages, the component is named as either 
a module, a function, or a procedure. The connection 
mechanisms are function calls between these procedures. In 
object-oriented programming languages, the basic 
components are objects, and these objects are connected 
together by sending and responding to messages between 
each other.  

Software architecture is a more recent approach for 
developing large and complex software [119]. It views the 
constituent parts of a system as components and 
connectors. Components in this setting, which should not be 
confused with general uses of the term in other contexts, 
perform computation. Connectors are in charge of 
communication between components. Components can take 
many forms in this setting. It can be as small as a function 
or an object, or it can be as large as a complete application. 
There are also many types of connectors [89]. The dominant 
types are variants of procedure calls: local or distributed, 
synchronous or asynchronous. Some other common forms 
of connectors are blackboard data repository and event 
publication/subscription. 

Modules, objects and components are the most common 
constituent parts of software systems. Most design and 
analysis techniques for security apply to these components. 
Some security questions that have been investigated are: 
where the security features should be allocated, how to 
assure policy enforcement, and what form will best facilitate 
the flexibility and evolution implementations.  
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When answering these questions, one issue relevant to 
software research is how to separate security from other 
functional and extra-functional concerns. Some promising 
techniques addressing this issue are meta-object protocols 
(see Section 5.4) and the aspect technology (see Section 0). 
These technologies extend the standard object-oriented 
technology. They utilize the connection mechanism, object 
method, in novel manners. They split objects into either 
base objects and meta-objects, or base objects and aspects. 
They connect the split objects through compile-time 
manipulation or run-time instrumentation. These 
technologies can handle security property such as access 
control and data encryption in a flexible manner.  

3.3 CBSE Components 
Component-based Software Engineering (CBSE) [125] takes 
a more specific view towards components. In this context, 
the components generally adhere to a component model, 
such as COM/COM+, JavaBeans, CORBA Component 
Model, and .NET components. The specific component 
model constrains the exposed form of a component, such as 
its external interfaces, syntactic and semantic descriptions, 
and deployment constraints.  

The component model also provides the connection 
mechanism. The dominant mechanism is procedure calls. 
Two components are connected together when one 
component invokes a service provided by the other. The 
connection is generally facilitated by a broker supplied by 
defined in the component model. The broker masks all 
communication-related details, such as locating 
components and marshaling data. Developments that are 
more recent provide advanced brokers that support some 
advanced connection services like transactional methods 
and asynchronous communications.  

CBSE components generally come without source code. To 
develop a complete application, components that come from 
different sources need to be connected together. These 
issues raise challenges for security design and analysis, as 
discussed in Section 3.4. 

3.4 COTS Component 
Like “components”, Common-Off-The-Shelf (COTS) is 
another overloaded term. In this classification, it is used to 
refer to software such as operating systems, databases, and 
word processors. Compared to Section 3.2, these 
components are not developed in-house, and source code is 
generally not available. Compared to Section 3.3, these 
components do not conform to any form of a component 
standard, and COTS components’ granularity is generally 
larger. As a result, integrating COTS components generally 
requires custom-made connection mechanisms.  

Like CBSE components, COTS components generally come 
without source code. They may also come from different 
sources. The lack of source code and the heterogeneous 
origin of CBSE components and COTS components impose 
new challenges that do not exist when all components come 
from the same trusted origin with full source code. Lindqvist 
and Johnson identifies security risks present in the life cycle 
of using commercial off-the-shelf software products [78]. 
They divide the life cycle into the following phases: 
component design, component procurement, component 

integration, Internet connection of system, system use, and 
system maintenance.  

In the component design phase, the design can be 
inadvertently flawed. Even worse, it might be intentionally 
flawed by malicious designers. The component might 
contain excessive functionality that is not necessary for a 
usage scenario. The design of the component might be open, 
or it can be widely spread, which gives adversaries precious 
information. The documentation for design might be 
insufficient or even incorrect. 

In the component procurement phase, a procurer might 
make a decision before conducting sufficient validation for 
the component to be procured. During the delivery, a 
validated component might come through an insecure 
channel that might tamper the component. 

During the component integration phase, the components 
integrated might not match with each other’s product 
security levels. The integrator might only have insufficient 
understanding of the integration requirements. 

When a software system is connected to Internet, the 
external exposure is significantly increased, and easily 
available intrusion information and toolsets can be used 
against the connected system. The system can 
unintentionally execute malicious executable content 
downloaded from Internet. The Internet connection can 
also be used as an outward channel for stolen information.  

During normal system use, the system can be used in 
unintended ways, and the user might not fully understand 
the functioning of the system. 

Finally, in the system maintenance phase, fixes and updates 
to a system might be insecure, some side effects can happen 
due to maintenance, and there can exist maintenance 
backdoors that can be exploited maliciously. 

To manage these security risks, Lindqvist and Johnson 
suggest that users should have a well-defined and relevant 
security policy[78]. Users should adopt a holistic 
perspective, partition the system into smaller parts shielded 
from each other, confine distrusted components, anticipate 
contingencies, and actively evolve the system and remedy 
defined flaws. The user organization should support secure 
operations from all levels of management. End users should 
also be aware of previous security breaches and learn from 
past mistakes. 

4. SURVEY FRAMEWORK 
This section introduces a framework that will be used to 
compare the techniques that have been proposed for 
designing and analyzing security for systems made of 
components. The focus is how each technique helps 
achieving modular. How the technique responds to the 
following questions is studied. 

• Security Model: What kind of security model does 
the technique adopt or support? Does it support 
discretionary access control, mandatory access control, 
or information flow security? 

• Component Type: What kind of components does the 
technique integrate? Is the component an abstract 
computation? Is the component general software? Is 
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the component compliant of some component models? 
Is the component a large COTS component? 

• Connection Mechanism: What connection 
mechanism does the technique provide? What 
mechanism does it rely on? What are the security 
limitations of these connection mechanisms? What 
kind of dynamism will the technique address?  

• Approach: Is the technique a top-down approach or a 
bottom-up approach? A top-down approach begins 
with a system wide security requirement and develops 
how security should be addressed at each level of 
abstraction to achieve the system wide security goal. A 
bottom-up approach will determine what security can 
be achieved from the constituent components and what 
changes need to be made to achieve full satisfaction if 
the initial result is not satisfactory. Some techniques 
can work in both manners.  

• Formalism/Tools: What formalism does the 
technique use? How much automation can the 
formalism support? How much automation can be 
conducted at run-time? What tool does the technique 
employ for design and analysis? 

The framework is illustrated in Figure 4. 

 
Figure 4, Framework of Survey 

5. TECHNIQUES FOR DESIGN AND 
ANALYSYS OF MODULAR SECURITY 
This section utilizes the framework developed in Section 4 
to classify techniques proposed in literature. Since the 
framework tries to cover as many facets as possible, each 
technique does not always have every aspect.  

Section 5.1 surveys the formal methods available for secure 
composition. Along with the formal models outlined in 
Section 2, they can be used as the formal foundations for 
other techniques.  

From Section 5.2 to Section 5.4, some simpler techniques 
used to implement and compose real software are 
investigated. Based on its complexity and expressiveness, 
these techniques are categorized as following: wrapper, 
agent, and Meta Object Protocol. 

Section 5.5 surveys techniques used to specify security 
requirements of components. A component in this section is 
more complex than components in the previous sections. 
They are deployable units, as those required by major 
commercial CBSE technologies.  

Section 5.6 investigates some general composition 
frameworks that compose secure modular systems. Section 
0 explores an especially powerful composition technology, 
the aspect technology. Finally, Section 5.8 surveys 
architectural techniques for security design and analysis.  

5.1 Formal Foundations 
5.1.1 Abadi-Lamport Composition in Alpern-
Schneider Framework 
In the formal method filed, the theory of Abadi and Lamport 
serves as the foundation for composition. While the theory 
can deal with integrity adequately, it is insufficient for 
confidentiality.  

Abadi and Lamport proposes a general composition 
principle and a proof rule that compose concurrent 
specifications in a modular manner [1]. The composition 
works within the safety/liveness framework first proposed 
by Alpern and Schneider [4].  

In this composition framework, a state is represented by 
assignments to state variables. A trace is a set of state 
transitions caused by agents. A system specification 
describes all possible traces of the system. A property is a 
predicate that defines a set of traces. A property can also be 
viewed as the set of traces thus defined. There are two types 
of properties. A safety property defines the initial state and 
valid state transitions. A liveness property (also called 
progress property) specifies that the state transitions 
eventually occur. The specification of a system consists of 
the conjunction of various safety and liveness properties. 
Because systems, properties, and specifications can all be 
viewed as sets of traces, a system satisfies a property if the 
set of traces for the system is a subset of the traces for the 
property. The environment in which the system behaves can 
be specified in a similar manner, and a system’s 
specification is valid only when the environment satisfies its 
constraints.  

Reasoning composite behaviors under this framework 
comprises of two steps. The composition step uses the proof 
rule to establish under what conditions the properties of the 
subsystems can be connected together in the composite 
environment. The refinement step finds a mapping under 
which the conjunctions of subsystem properties will imply 
the composite property. Informally, a composition decides 
when subsystems can be composed together, and a 
refinement ensures the composed system implements the 
needed composite system.  

The Abadi-Lamport composition/refinement rule provides a 
solid foundation for the general divide-and-conquer 
approach. However, because security pro0perties are not 
functionalities, these properties are not preserved by 
standard notions of refinement or composition. This results 
in that assurance gained from formal proofs at one level of 
abstraction cannot necessarily be transferred to a more 
concrete level [87]. The reason, suggested in [86], is that 
general functional properties are sets of traces. Security 
properties, on the other hand, are sets of sets of traces, or 
power sets of traces. It is believed that luckily integrity, and 
hopefully availability, is mostly preserved under refinement 
and composition. However, confidentially is generally not 
preserved [114], because refinement into components can 
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bring new chances of interaction and observation that are 
not possible in a monolithic system. This makes the security 
composition problem a hard problem. 

5.1.2 Integrity 
There have been many efforts that use Abadi-Lamport 
theory to directly verify security. Generally the security 
under consideration is integrity, and the problem will be 
reduced to prove the safety and liveness of the system. Some 
prominent examples found in literatures are summarized 
below.  

Heckman and Levitt verifies the correct enforcement of 
access control policies by a set of distributed servers [49]. 
The verified system consists of two server processes, each 
implementing one system call. Both the safety property and 
the liveness property of the composite system are verified. A 
Higher Order Logic theorem prover is used to assist the 
proof. Of the 23000 lines of code for the proof, about 7% is 
about composition proof, 24% is for the refinement of 
safety, and 69% is for the refinement of liveness.  

Hemenway and Fellows apply the composition theorem 
with the Formal Development Methodology tools [51]. A 
system consisting of a workstation, the IPC communication, 
and the network communication is modeled. The 
enforcement of a mandatory access control policy is verified.  

Bieber uses a state machine to model the imperative 
properties and adopts temporal logic to describe declarative 
properties [13]. Even though he tries to handle information 
flow properties, the approach still mainly verifies safety.  

Composability for Security Systems (CSS) [99, 100] is 
another logic-based method to reason about security of 
components and their composition. It uses PVS [101] to 
prove theorems, with a custom developed proof strategy. It 
mainly investigates integrity of composite systems. 

The features of the CSS framework are: 1) it makes agents, 
which performs actions, explicit to support security 
analysis; 2) composing components will invoke 
environmental constraints automatically; 3) it does not 
support quantifiers, simplifying proofs at cost of some 
expressiveness.  

The CSS framework provides two lessons for using logic in 
security verification. The first is the elimination of state 
translators. Previously a translator between the states of 
components and the state of their composition was 
employed. This complicated the property proof. CSS instead 
uses a single common state that has a field for each 
component state. A theorem about the configuration of the 
system is also added. Both the common state and the 
configuration theorem simplify the proof. Secondly, they 
discover that a refinement proof is easier to perform than a 
property proof. To prove a lower level specification is 
secure, it is more difficult to prove the property on the 
specification itself directly. It is easier to first prove the 
security on a higher-level specification and then prove that 
refining from the higher level specification to the lower level 
specification preserves the security. This is a common 
theme in logic based security design and analysis 
approaches [27, 44].  

The CSS framework is used to prove that a file manager 
always returns a secure file handle to a process manager 

[104]. The components are developed and different 
approaches to compose them are investigated to compare 
the tradeoffs of different architectures. The effort confirms 
that first proving the properties on the components and 
then proving a refinement mapping between the system and 
the components is easier than directly proving the 
composite property on the system. The effort also argues 
that this route can reuse existing proofs in proving newer 
properties. 

The techniques enumerated above demonstrate the 
effectiveness of the Abadi-Lamport theory. However, these 
examples also illustrate how labor intensive the verification 
activity can be, even for a small problem. These approaches 
also require highly skilled professionals with special 
expertise and training.  

5.1.3 Confidentiality: Information Flow 
Security 
As discussed before, confidentiality cannot be sufficiently 
treated in the Abadi-Lamport composition. Researchers 
took a different path towards this property. They have 
proposed frameworks unifying information flow security 
properties and have studied composing these properties 
under the frameworks.  

Unifying Framework. The various information flow 
security properties listed in Section 2.2 have been proposed 
with different intentions. These properties operate under 
different formalisms, making comparison among them 
difficult. There have been many efforts to unify these 
properties under a single formal framework so that the 
properties can be compared, deeper insights can be gained, 
and a consensus on which property is the most desirable 
might be reached. A unifying framework can also provide a 
more solid foundation to study the composition of these 
properties under different operations. 

Naturally, most unifying frameworks are based on trace and 
logic because these are used for defining most of the 
properties originally. Four representative frameworks are 
outlined here. These efforts lay down the foundation to 
study securely composing abstract computations for 
confidentiality. 

John McLean proposes the first such framework, Selective 
Interleaving Function (SIF) [84, 86]. It views each 
information flow security property as a function that takes 
two traces and interleaves fragments of these traces to 
generate a new trace. Different properties can be described 
using corresponding functions that takes related fragments 
and perform appropriate processing on the first and the 
second trace. A partial ordering among the proposed 
properties is established, based on the implication 
relationships between their equivalent functions.  

Peri et al. suggest a simple unification framework based on 
the many-sorted logic [105]. They study a limited set of 
proposed properties with the logic and restate the 
properties using formulas of the logic. 

MAKS is another concise unifying framework [80]. Its basic 
building blocks are Basic Security Predicates. A predicate 
can be Removal (R), Backward Strict Deletion (BSD), 
Backward Strict Insertion (BSI), Backward Strict Insertion 
of Admissible Events (BSIA), Forward Correctable Insertion 
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(FCI), and Forward Correctable Deletion (FCD). These 
predicates describe operations available on traces. MAKS 
proves that existing properties can be constructed from 
these predicates. The implication relationship between the 

predicates can be used to order the corresponding security 
properties. The result is illustrated in Error! Reference 
source not found..  

 
Figure 5, Information Flow Properties, from [80] 

Halpern and O’Neill uses a modal logic of knowledge to 
unify the various properties [47]. Their framework models 
states of both the agents and the environment. The 
framework extends the notion of Non-Deducibility on Input 
[124] in several aspects. First, its notion of secrecy allows 
asymmetric secrecy from one agent to the other, unlike the 
symmetry of the original definition. Since the secrecy is 
modeled as knowledge, it can be more specific on what is to 
be guarded, relieving the requirement that everything is a 
secret. Second, its notion of a trace (called Run in the 
framework) makes time more explicit. It introduces an 
allowability function based on time that can uniformly 
handle complete synchrony, complete asynchrony, and any 
middle points between the two extremes. Third, it also 
introduces a probability measure to handle probabilistic 
secrecy. This measure can be either a global measure on all 
possible runs, or a locally defined one on partitions of runs. 
In addition to these extensions, using model logic of 
knowledge also enables the framework to model resource-
bound adversaries where revealing of secrecy is 
computationally expensive.  

Some unifying frameworks based on process algebras are 
also suggested. Process algebras are compact, can express 
composition naturally, and can handle situations where 
traces on inputs and outputs are insufficient. For example, 
process algebras can specify that a low level agent should 
not get any information by observing a high level agent 
being deadlocked. This is a possibility that is not addressed 
in other formalisms. 

Security Process Algebra (SPA)[36, 37, 39] is a security 
extension to the process algebra Calculus of Communicating 
Systems (CCS) [91]. It views various definitions of 
information flow securities as requirements on the 
processes, and uses equivalence relations to classify those 
properties based on their implication relationships. It uses 
trace equivalence and test/failure equivalence to classify 
existing properties, and proposes behavior equivalence as a 
stronger definition of equivalence. The behavior equivalence 
is based on weak bisimulation of processes, where processes 
are equivalent if they can accept the same nondeterministic 
events. Based on this notion of equivalence and the 
definition of Non-Deducibility on Strategy [134], SPA 
proposes a new security property, Bisimulation Non-
Deducibility on Composition, where a high level agent can 
compose with a general process.  

Ryan and Schneider applies a different process algebra 
Communicating Sequential Process (CSP) [57] to unify 
information flow properties [110]. They eliminate the 
difference between inputs and outputs, viewing them as just 
events. They use power bisimulation to unify those 
properties. Power Bisimulation is a different equivalence 
than the weak bisimulation used in the Security Process 
Algebra. 

Composition. The composition problem has received 
significant attention within the information flow security 
community. The general question to be answered is: given a 
component with one property and a component with 
potentially different properties, when they are composed 
using one composition construct, what property will the 
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composite system satisfy [86]? A simplified version is: when 
two components with one property are composed using a 
particular composition construct, will the composite system 
also satisfy that property? If yes, then it can be said that the 
property is compositional (composable) under that 
composition construct.  

The notion of composition depends on the formalism 
adopted. Selective Interleaving Function classifies 
composition into three different constructs [86]. In a 
product composition, two components are juxtaposed, 
without any interaction. In a cascade composition, one 
component’s output is fed as another component’s input. In 
a feedback composition, in addition to the input/output 
relationship established in cascade, the output of the second 
component is also the input of the first component, forming 
a loop between the two components.  

The three composition constructs are illustrated in Figure 6, 
Figure 7, and Figure 8, respectively. In these figures, σ1 and 
σ2 are the components, σ is the composed system, Ini and 
Outi are input and output channels.  

 
Figure 6, Product Composition, from [86] 

 
Figure 7, Cascade Composition, from [86] 

 
Figure 8, Feedback Composition, from [86] 

Some representative results from studying composition 
under these constructs are summarized below. It is provided 
in [86] that the feedback composition retains less security 
properties than the product composition and the cascade 
composition, because it is too restrictive on what to accept 
and too generous on what to produce. MAKS only considers 

product composition and cascade composition [80]. It uses 
a powerful lemma to unify known composition results. 
MAKS reveals why certain properties cannot hold under 
composition and suggests what emergent behaviors 
(behaviors that only exist in a composite system) can 
emerge under composition. Zakinthinos proposes a simple 
bunch-theory based framework, where a bunch is the 
content of a set [136]. The framework studies both cascade 
and feedback and discovers that properties eliminating 
dependencies on inputs are preserved under feedback 
composition. Peri et al. [105] study the composition 
problem under the many-sorted logic and prove 
compositional properties in cascade and feedback 
composition using PVS [101].  

Composition takes a different form in Security Process 
Algebra [37]. It is formed by the parallel execution of 
processes. These processes only synchronize on common 
complementary actions when one process’s output is 
another’s input. The algebra studies whether certain 
properties can still hold when the restriction operator and 
the hiding operator applies on the composition operator. 
The Bisimulation Non-Deducibility on Composition 
property has to be extended to its strong variant to be 
composable. A model checking tool, compositional security 
checker [38], is used to check the compositionality of 
security. The power bisimulation proposed in [110] is also 
composable.  

Santen et al. views the compositional problem under the 
refinement/composition perspective [114]. They argue that 
traditional possibilitistic secrecy is too strong, requiring too 
many sufficient conditions and providing too few necessary 
conditions. They suggest that in a refinement setting, if a 
concrete specification preserves the same probability of 
discovering secrecy as an abstract specification, then it is a 
secrecy-preserving implementation of the abstract 
specification. Santen et al. discovers that failing to hold 
security under composition comes from the new window of 
observation opened up by decomposing a system into 
components. 

Discussion. The information flow security property 
captures a natural notion of secrecy. Despite its general 
appeal and two decades of research for it, the topic remains 
mostly of an academic interest [108]. In real systems, high-
level agents do interact with low-level agents. Even among 
researchers, there is no universally accepted consensus 
about what is the best definition and formalism to 
characterize the information flow security property. This 
can be seen from the many proposed properties and even 
more frameworks unifying them. These properties are too 
remote from a real system and few real policies care about 
information flow security. The composition mechanisms are 
very primitive and far from real connection facilities. 
Finally, information flow security models are very difficult 
to build. Their canonical definitions took a form of an 
inductive or a universally quantified format, which is not 
constructive at all. It may be necessary to retreat to building 
a traditional access control model first and performing 
covert channel analysis afterwards [85, 90]. As suggested in 
[108], “non-interference is little more than a rather 
intriguing topic of arcane debate, at best the source of 
compelling theoretical challenges on which learned but 
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largely irrelevant papers can be written.” In spite of its 
appeal and abundance of mathematically beautiful results, 
information flow security might not be very relevant and 
practical for real software.  

5.2 Wrapper  
After surveying techniques to design and analyze abstract 
computations, the study now turns to techniques dealing 
with concrete software components, beginning with the 
simple wrapper technology. 

A wrapper is a standard technology to reuse existing 
software and probably extend it with more functionality. 
When available software provides useful capability for an 
environment but cannot be utilized in its current form, due 
to factors such as incompatible interfacing mechanisms and 
insufficient functionality, a wrapper is generally used to fill 
the gap. A wrapper is a layer of software that receives 
control from the invoking environment and performs 
additional processing before transferring control to the 
original software. After the original software finishes its 
activity, the wrapper gets back control conducts more 
processing before returning to the environment.  

A wrapper can simply change the format of input or output 
parameters so that the parameters can meet the 
requirements of the outside environment and the wrapped 
software. A wrapper can also perform more complex checks 
and analyses that can be used to improve security.  

The wrapper technology has many forms. Some agent 
technologies in Section 5.3 can be considered intelligent or 
data centric wrappers. Meta object protocols (Section 5.4) 
can also be viewed as object wrappers that utilize reflective 
and meta-level capabilities. This section focuses on simple 
procedural wrappers. It begins with application-level 
wrappers (Section 5.2.1), and then goes down to library 
function-level wrappers (Section 5.2.2), system library-level 
wrappers (Section 5.2.3), until it reaches system call-level 
wrappers (Section 5.2.4). This section illustrates how 
wrappers can be used to enhance security and survey 
techniques facilitating wrapper development and 
management.  

5.2.1 Application-level Wrapper 
Application-level wrappers are used to adapt existing 
application. Zhong and Edwards develop wrappers to make 
the most popular mail server, sendmail, a more secure 
application [140]. To tackle security risks such as accessing 
unauthorized resources, accessing resources in an 
unauthorized manner, or abusing execution privileges, they 
utilize the underlying mandatory access control (see Section 
2.1) and least privilege execution support provided by the 
operating system. The architecture of the wrapped 
application is shown in Figure 9.  

Sendmail needs to access some resources with special 
privileges during its execution, such as reading from 
configuration files, writing into user mail boxes, binding to 
specific network ports, and changing the security credential 
of processes. Due to its complexity in implementation and 
configuration, security breaches are occasionally reported.  

After careful resource and privilege analysis, they separate 
the original sendmail application into two instances. Each 
runs in a separate security compartment with limited 

privilege. One runs in the “system outside” compartment. It 
can send emails to outside world using the credential of the 
original sender. It will not perform other functionalities of 
sendmail. The other sendmail instance runs in the “system 
inside” compartment. Its only responsibility is to write to 
users’ mailboxes. These two instances communicate through 
each other via a newly-developed, simple, and trusted 
gateway called “relay”. The relay redirects the output of the 
inside sendmail application to itself, and then sends the 
output to the outside sendmail application, with the 
credentials of the original sender.  

Because the operating system enforces mandatory access 
control, there is no implicit communication path between 
the two compartments. Thus, even if the outside sendmail 
application is compromised, it cannot affect inside 
operations. And even if it is penetrated through the defense 
boundary, its limited privilege reduces the damage it can 
induce.  

 
Figure 9, Wrapper of sendmail, from [140] 

Another simple and trusted mail application, 
tsmap/tsmapd, is developed. One instance of this 
application is deployed in the “system outside” 
compartment, to receive mail from external network. 
Another instance is deployed in the “system inside” 
compartment, receiving outgoing mails from internal users. 
The two instances also execute with minimal privileges. 

In summary, based on the mandatory access control and 
least privilege execution provided by the underlying 
operating system, with newly developed simple front-ends 
and a secure wrapper, the highly powerful yet very complex 
sendmail is reused in a secure manner to achieve the 
benefits of COTS software. This case study illustrates how 
wrappers can be used at the application level to secure 
applications. 

5.2.2 Library function-level Wrapper  
Balzer and Goldman propose a non-bypassable wrapper 
technology used to execute applications securely [8]. In this 
technology, a mediator mediates calling a usual library 
function by an application. A set of mediators comprises a 
wrapper. The wrappers can be stacked on top of each other, 
and each wrapper can be enabled and disabled 
independently.  

The implementation of the technique adopts the following 
strategies. The application binary is patched to allow the 
mediating wrappers to intercept library function calls from 
the application. Certain parts of the memory image of the 
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loaded application are write-protected so that the mediating 
mechanism cannot be bypassed by modifying memory 
tables. The wrappers are installed upon process creation, 
when the application is loaded. 

Because mediators control calling library functions from the 
application, they can either allow or reject the call, based on 
security policy specified by the user. This can enforce the 
secure execution of any application, in addition to the 
protection provided by the operating system. Mediators are 
used to construct a safe execution environment that can 
securely execute ActiveX controls downloaded and Office 
documents with macros enabled. 

In a word, mediators provide a usable mechanism that can 
control the execution of any application on Windows 
platform. They wrap function calls used by an application.  

5.2.3 System Library-level Wrapper 
A similar technology is used to implement the 
Interceptor/Enforcer that enforces access control policies in 
a coalition environment [118]. In such an environment, each 
resource of an organization can be accessed by principals 
from either within the organization or from an outside 
coalition organization. While enforcing policies can happen 
at the communication layer, Shands et al. argue that only 
the server on which the accessed resource resides has 
enough context and history information to enforce the full 
access control policy [118]. They thus choose to implement 
the Interceptor/Enforcer on the resource server. 
Implementing on the Java Web Server does not encounter 
many problems because Java Servlet provides flexible 
extension mechanisms. However, some issues must be 
resolved when implementing on Java Remote Method 
Invocation (RMI), because the reference RMI 
implementation does not provide any extensions allowing 
third-party software to augment the request handling 
process. Implementing on Microsoft DCOM and IIS is most 
challenging. They choose a simpler and less general 
approach over the mediator framework [8] (see Section 
5.2.2) because they do not need the full flexibility. Still, they 
encounter numerous issues. The DCOM/IIS system dos not 
provide a convenient extension mechanism. The provided 
mechanism, custom filter, does not work as advertised in 
documentation. The system does not provide enough 
bridging support to integrate heterogeneous languages. 
These issues result in a wrapper that is a set of patches over 
several bridges. The wrapper enforces access control 
policies, but it lacks conceptual beauty and suffers 
significant performance penalties. 

This approach demonstrates developing wrappers at certain 
level is necessary, but the effort can be hindered by the lack 
of suitable information and mechanisms from the existing 
infrastructure.  

5.2.4 System Call-level Wrapper 
Hypervisor. The Hypervisor [93, 94] is an early effort in 
providing system call-level wrappers that support more 
flexible security policies. A hypervisor is a loadable kernel 
module that can intercept systems calls and perform 
additional pre- and post-system call processing. Compared 
to non-kernel wrappers, they are non-bypassable. Since they 
are loadable modules, no kernel modification is needed. An 
application can be wrapped without any change to take 

advantages of the hypervisors. The policy enforced by the 
hypervisors is very flexible. The concept of a hypervisor can 
be applied to most mainstream modern operating systems 
that support kernel loadable modules. 

The implemented Hypervisor architecture, illustrated in 
Figure 10, contains a master hypervisor, a set of client 
hypervisors, and client hypervisor management modules. 
The master hypervisor manages other hypervisors and 
provides facilities for monitoring and configuring other 
hypervisors. A client hypervisor implements a certain policy 
by injecting pre and post system call processing around 
standard system calls. Client hypervisors can be stacked 
upon each other to implement composite policies. A 
corresponding client hypervisor management module 
allows users to communicate with and configure policies for 
a client hypervisor.  

Hypervisors support many different types of policies. They 
can be used for auditing. They can provide fine-grained 
access control. They can also enforce mandatory access 
controls.  

 
Figure 10, Hypervisor Architecture, from [93] 

Generic Software Wrapper. Generic Software Wrapper 
(GSW) provides more expressiveness, dynamism, and 
manageability than Hypervisor [40]. Its architecture is 
shown in Figure 11. It uses a C-based Wrapper Definition 
Language (WDL) to describe a wrapper as a basic state 
machine. The description specifies the system calls that the 
wrapper wraps, the patterns of events to which the wrapper 
will react, and the actions that the wrapper takes when these 
events happen. The actions can be augmenting the events, 
transforming the events, or simply denying the events. The 
Wrapper Definition Language hides the peculiarities of 
various flavors of operating systems by providing some 
common data types, so that the parameter types and return 
values of different but similar system calls of different 
systems can be described uniformly. State machine 
specifications and common data types achieve a degree of 
abstraction and enhance the portability of the technique. 

The life cycle of the wrappers is as follows. At first, the 
system contains no wrapper. Then, the administrator 
installs a wrapper and specifies the conditions under which 
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the wrapper will be activated. The wrapper will then receive 
wr_install events. When a process that satisfies the 
activation criteria is created, the wrapper is activated, and 
executes its wr_activate action. When the process exits, 
the wrapper is deactivated, and performs operations in 
wr_deactivate. Eventually, the wrapper will be 
uninstalled, and it has the opportunity to execute the 
wr_uninstall action. The life cycle and pluggable event 
processing provides flexibility in configuration. 

A kernel-resident Wrapper Support Subsystem (WSS) is 
implemented using dynamically loadable kernel modules of 
common Unix/Linux operating systems. The WSS executes 
wrapper definitions generated by the WDL compiler, 
according to criteria specified through the activation criteria 
compiler. An administrator can communicate with WSS 
through a management GUI. 

 
Figure 11, GSW Architecture, from [40] 

Because the Generic Software Wrapper can monitor and 
augment each system call, it can harden COTS software in 
various ways. It can implement different access control 
models. The model can be either based on a rule set and 
subject/object labels, such as the Bell-LaPadula model [9] 
and the Biba model [10], or based on state and history, such 
as the Chinese Wall model [17] (see Section 2.1). The 
wrapper can record audit trails, analyze them in real time, 
and implement many schemes of intrusion detection based 
on the analysis. It can also be used to enhance other security 
features, such as transparent encryption and decryption.  

The Generic Software Wrapper is not suitable for covert 
channel analysis [90]. Due to the limitation of the 
underlying Unix/Linux architecture, it cannot protect the 
system from compromised root programs. Since the 
Wrapper Support Subsystem operates in the kernel and 
utilizes knowledge about the kernel, rewriting it at the 
application-level will require much more knowledge about 
the application and impose significantly higher cost.  

The Generic Software Wrapper technology is extended to 
work within a networked enterprise environment [34]. The 
challenges in such an environment are how to securely 
manage a heterogeneous environment over a network, how 
to manage data flow with push and pull models, and how to 
easily write wrappers. Extensions are added to the existing 
wrapper definition/query language and the wrapper 
database. Host and network controllers utilizing 

appropriate storage and communication protocols are 
constructed. The Windows mediator technology [8] (see 
Section 5.2.2) is also incorporated . 

5.2.5 Discussion 
The wrapper technology can be very useful to enhance the 
security of COTS software. As demonstrated above, it can be 
utilized in multiple manners to provide different forms of 
security, such as access control, confidentiality, and 
intrusion detection. Due to the unavailability of source code 
of COTS software, and the enormous cost of understanding 
and modifying COTS software by third-party developers 
even if the source code is available, arguably the wrapper 
technology is an essential constituent of secure component-
based software engineering. However, before the wrapper 
technology can be more widely and effectively deployed, 
several key issues must be resolved: 

The level at which the wrapper is applied. In [140], a 
set of customized wrappers (a simple mail server and a 
trusted gateway between security compartments) are 
developed to wrap sendmail and execute it more securely. 
While achieving the desired security, these application level 
wrappers are custom made, and can not be reused in other 
applications. This level of investment may be justified for 
reuse of popular and powerful COTS software such as 
sendmail. Generic Software Wrappers [40] provide a 
framework that can be used to describe wrappers on system 
calls, so each system call can be augmented with additional 
semantics processing. The technique employed in [118] 
wraps functions of a subsystem of the operating system, 
utilizing special knowledge of that subsystem. Mediators [8] 
applies to non-system call functions and implement a 
framework usable to wrap any function in a dynamic link 
library. When the abstraction level moves from the 
operating system to a subsystem, to general functionality, 
and eventually to an application, the application 
dependency rises, and the applicability of a wrapper 
technology operating at that level decreases. A technology 
and framework that can be applied to the widest situations 
is more desirable. 

The information available to a wrapper. As the level 
of abstraction changes when moving between an operating 
system and an application, so is the kind of information 
available to a wrapper at each layer. Certain security 
properties can only be achieved at the application level, 
because they need application level knowledge, such as the 
mail configuration file in the sendmail application[140]. 
Others, like access control, are best enforced at where the 
access eventually happens, namely the operating system. As 
pointed out in [118], some information is not available at 
certain layers, so a wrapper technology that operates at the 
layer where the information is available is needed.  

Security properties. As discussed in [40], wrappers are 
suitable for implementing access controls [8, 40, 140], 
audit, intrusion detection [40], and transparent encryption 
and decryption. They are not well suited for covert channel 
analysis. Further research is needed on what kind of 
security properties are best provided by the wrapper 
technology, and what kind of security needs other 
technologies. A related issue is the relationship between the 
security provided by a wrapper technology and the security 
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provided by the wrapped software. Wrappers can augment 
the existing security support available from the wrapped 
software and provide complementary mechanisms and 
policies [8, 40]. A wrapper can use a different mechanism to 
enact its own policy, such as the Interceptor/Enforcer in 
[118] that does not make much use of the existing security 
features. A wrapper can also rely on the wrapped software, 
such as the wrapper’s reliance on the mandatory access 
control support of the underlying operating system [140]. 

The extension mechanism provided by the 
underlying system. The extension mechanism that the 
wrapped system provides decides how easily the wrapper 
technology can be implemented. Generic Software Wrapper 
uses the dynamically Kernel Loadable Module capability 
available in Unix/Linux systems [40], thus its 
implementation is straightforward. Mediators do not have a 
suitable extension mechanism available on the platform 
they choose, so they need to resort to binary patch to make 
the wrapping work [8]. Implementing the 
Interceptor/Enforcer encounters even bigger obstacles, and 
the solution requires more engineering effort and is less 
reusable outside the application[118]. If sendmail does not 
provide a simple configuration mechanism to redirect the 
outbound messages to the secure relay, inserting the relay 
wrapper between the separate instances of sendmail 
executing in different security compartments will be very 
difficult. In general, if the system provides extension 
mechanisms in certain key decision points, inserting a 
wrapper at those points can be more easily accomplished.   

Portability. Related to the previous issue, the wrapper 
technology may have a portability problem because of its 
dependency on system-specific extension mechanisms. 
Generic Software Wrapper relies on the Unix Kernel 
Loadable Module [40]. Mediators can only work on 
Windows [8]. Because of the system dependency, a certain 
level of system dependency is inevitable for the wrapper 
technology. However, research is still needed to find out to 
what extent a wrapper technology applicable to many 
systems can be developed.  

Performance. Even with optimization, introducing a 
wrapper can still bring significant overhead to the normal 
execution of the system. A trust-based mechanism is 
proposed to reduce such overhead [55]. For more 
trustworthy components, the wrapper performs less work, 
or is deactivated at all, so the execution can finish at almost 
the native speed. In this approach, a trust manager controls 
how the wrapper should work, with the help of a trust 
information service, which stores trust values calculated 
from negative and positive events sent by wrappers during 
components execution.  

To assure authentic trust and alleviate the problem of 
wrongful incrimination of components by malicious users or 
components, algorithms should compute trust value more 
reliably [54]. There are several strategies usable. The 
algorithm can be either more liberal or more conservative 
towards negative experiences with the user/component 
under investigation. An indirect trust based on 
recommendations takes the reputation of the recommender 
into consideration. A collective trust that is derived from 
consensus of components can also minimize the effect of a 
single malicious recommender. To further ensure the 

authenticity of the negative or positive events sent by a 
wrapper, an additional check tries to repeat the events 
logged and confirm their authenticity. A witness host, which 
receives every event that occurs in the wrapper, can also be 
set up to execute the composite system along with the 
original host. These strategies produce reliable trust-based 
wrappers that can reduce the execution overhead 
appropriately.  

5.3 Agents 
Agents are independent entities that augment security. 
Compared to the simple wrappers described in Section 5.2, 
they make more use of knowledge, perform more complex 
operations, cooperate more between each other, and possess 
less regular structure. 

5.3.1 Gateway Agent 
Bieber et al. describes an approach utilizing intelligent 
agents to achieve two goals [14]: introduce secure access 
control into a legacy application and extend access control 
to accommodate federated organizations.  

The legacy application is a workflow system where different 
stakeholders in the air transportation industry, such as 
chiefs and pilots, use agents to access flight information. 
The agents are coordinated by a cooperator.  

To introduce secure access, a layer of security agents that 
enforce a role-based access control policy is placed before 
the original workflow agents. The security agents 
authenticate the stakeholders and consult the policy before 
asking the original agents for information. Adding a layer at 
this level that utilizes the same communication pattern as 
the existing one minimizes the modification of the original 
system.  

To introduce federated access that enables stakeholders 
from a different organization to access information that they 
are entitled to, a translator is placed between the two 
federated organizations. The translator is a special agent, 
operating at the same layer as original agents. It listens to 
requests for information about an external organization, 
and translates the subjects and objects involved in the 
request to a form that is understandable by the external 
organization.  

All rules about access control and access translation are 
described using a Prolog-like language. The rules are stored 
in a knowledge base. The knowledge base can be updated by 
agents without interrupting the operation of other agents. 
The agent can reason about situations that are not directly 
visible from the rules. 

The approach demonstrates that agents can be a flexible 
method to introduce powerful security features into 
applications. However, if the original communication 
pattern does not exhibit an agent-orientation flavor, the 
applicability of this approach is uncertain.  

5.3.2 Secure Access Wrapper 
Secure Access Wrapper (SAW) [24, 25] is a technique based 
on mediators that provide secure access to data but still 
retain autonomy of an organization when different 
organizations need to share information in their databases.  
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Previous approaches address this problem with a federated 
database. A federated database maintains a global schema 
that is an aggregation of schemas from member databases, 
and the federated database has a central enforcer to enforce 
the defined policy. This approach limits the autonomy 
available to each participating organization. 

Lack of autonomy will make an organization less willing to 
share its information with collaborating organizations. To 
retain more autonomy in a fully distributed environment, a 
mediator-based approach is used in SAW. The mediator 
does not try to impose a global schema on the members. 
Instead it coordinates the access between members.  

Secure Access Wrapper assumes that each organization has 
a Multi-level Secure (MLS) database and will define its own 
security lattice as the foundation for access control. The 
approach addresses two additional issues based on this 
assumption: 1) How can data be accessed by external 
organizations in a manner that is still considered secure by 
the local organization? 2) How can data be maximally 
shared between organizations without compromising 
security? 

To answer the first question, a mapping between the lattices 
of collaborating organizations is established. Extra 
dominance relationships are defined between the external 
lattice and the local lattice. When an external subject is 
accessing local information, its lattice is used to decide what 
local lattice should be used in its capacity, based on the 
cross-lattice relationship. The resulting local lattice decides 
the access level that the external subject will be granted. 
When establishing cross-lattice relationships, care should be 
taken to avoid inconsistency, ambiguity, and redundancy. 

Figure 12 illustrates the mapping with an example from the 
health care domain. The original lattices, from Clinic, 
Medline, and Hospital, are depicted by solid lines. The 
dotted lines establish the cross lattice mapping. For 
example, the “cli” from Medline is mapped to “med” in 
Clinic. When a subject of Medline with “cli” level accesses 
data of Clinic, the level it acquires in Clinic will dominate 
“unc”, but will be dominated by “sys”.  

 
Figure 12, Lattice Mapping, from [25] 

The answer to the second question comes from appropriate 
classification of attributes of a database relation. While 
assigning an attribute a higher level of classification will 

increase security, it will reduce the chance of sharing and 
may not be desirable in certain situations. The key for 
maximal sharing of information is to find the minimal 
classifications of attributes that still satisfy the classification 
constraints. Secure Access Wrapper expresses classification 
constraints in a constraint graph. After finding the upper 
bound of classifications, SAW searches for the lower bound. 
These bounds are used to assign secure levels. 

Architecturally a mediator is placed between the consumer 
of data and the data itself. The consumer and the data might 
belong to different organizations. When the consumer tries 
to access data, it identifies itself. The mediator accesses the 
data on behalf of the consumer, based on the established 
cross organization mapping and sharing relationships. The 
mediator performs further sanitization before finally 
releasing data back to the consumer. It also records audit 
trails of data access. 

The mediator performs the restriction, sharing, and 
sanitization based on rules in a rule system that is 
independent of the mediator software. The rules describe 
the security policy and primitives for enforcement. The 
mediator can also interact with a security officer if it cannot 
finish a task automatically.  

In summary, the mediator of Secure Access Wrapper is 
agent-like software that achieves autonomous secure 
sharing of information between heterogeneous 
organizations by mapping lattices and labeling attributes 
appropriately. 

5.3.3 NRL Pump 
The NRL Network Pump [65] is a device that enables secure 
communication between components that run at different 
security levels in a multilevel secure (MLS) environment. It 
can be used for fast and secure communication between 
components operating at different security levels. 

A component at a lower level needs to send data to a 
component at a high level. To increase the reliability of 
communication, an acknowledgement signal is sent back 
from the high level component to the low level component 
after a successful communication.  

The acknowledgement can be used to exercise flow control 
so the low level sender will not receive an acknowledgement 
if its continuous sending data will hit a full buffer. Using 
acknowledgements to prevent the buffer from getting full or 
staying full is very important, because the event that a 
buffer becomes or stays full can be used as a storage covert 
channel. 

However, using an acknowledgement itself creates a timing 
covert channel, because the timing when a low level 
component receives the acknowledgement can be used by a 
malicious high level component to send information 
secretively.  

To reduce the danger of such a timing covert channel but 
still provide reliable communication, the Data Pump [66] 
regulates the delivering of acknowledgements. Its 
architecture is shown in Figure 13. A pump is a 
communication device between a low level component and a 
high level component. It contains separate buffers for the 
low level component and the high level component. It uses 
separate trusted processes to communicate with the low 
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level component and the high level component. After it 
receives the acknowledgement from the high level 
component, it does not deliver the signal back to the low 
level component immediately. Instead, it inserts a random 
delay that matches the statistical average delay of 
acknowledgements before sending the acknowledgement 
back. Since statistically the delayed acknowledgements have 
the same delay as the original acknowledgements, the 
technique does not affect the reliability and throughput of 
the pump. However, the statistical noise thus introduced 
can effectively reduce the capacity of the timing channel, 
and the degree of reduction can be controlled by the 
designer in tradeoff with other design factors.  

A network version of Pump has also been developed [67]. 
The Network Pump supports multiple communication 
sessions. This makes the arrival of acknowledgements at a 
low level component even more difficult to predict, 
effectively increasing the statistical noise of the covert 
channel and achieving better security. The Network Pump 
also prevents denial of service by monitoring the 
acknowledgement rate so that no low level component can 
send faster than what can be handled by the high level 
component.  

 
Figure 13, NRL Pump, from [67] 

The NRL Pump facilitates integration of multiple MLS and 
non-MLS systems. Simply integrating several multilevel 
secure systems may not result in a satisfactory solution. A 
straightforward integration solution is connecting different 
MLS systems together and allowing communications only 
between senders and receivers of the same level. This 
solution suffers from following limitations: 1) If the systems 
do not have the same level of assurance, the total assurance 
level is the same as the weakest one among the system. 2) 
The approach cannot be used to integrate systems that have 
only one level of security. 3) Because of the high cost and 
slow pace in MLS development, the approach cannot utilize 
available non-MLS technologies and applications. An easy 
to use and flexible alternative is using the NRL Pump 
together with multilevel workstation (a workstation trusted 
to securely manipulate information from multiple levels) 
and downgrader (devices lowering the security level of 
data). These devices assure that “no higher level 
information should pass to lower level users/processes and 
lower level information should be available to higher level 
users/processes” [64]. 

5.3.4 MLS METEOR 
Kang and Frosher develop MLS METEOR, a multilevel 
security (MLS) extension to a traditional workflow 
management system (WFMS) METEOR [62, 63]. It allows 
workflows executing at different security levels to aggregate 
into a composite workflow according to a defined policy. 

In contrast to the approach integrating multiple MLS 
systems into a composite MLS system using the NRL Pump 
(see Section 5.3.3), MLS METEOR argues for using single 
level workflow system as much as possible and integrating 
multilevel components only when absolutely necessary. 
They believe that composing an MLS WFMS out of multiple 
single level WFMS is the only practical solution.  

They adopt a layered method to construct the architecture 
of the workflow management system. A task in the higher 
layer workflow is implemented as a complete workflow at a 
lower layer. The tasks in the lower layer workflow might not 
be dominated by the security level of the higher layer task. 
This situation requires repartitioning the implementing task 
into several subtasks. 

A transition from a task in one workflow to another task in 
another workflow is called an external transition. External 
transitions are the cornerstones of MLS workflows. Each 
transition crossing security levels is an external transition 
because a workflow can only contain tasks belonging to the 
same security level. 

To communicate crossing different security levels, a one way 
communication device (like the Network Pump, see Section 
5.3.3) is used, and release policy servers in the sending 
domain and receive policy servers in the receiving domain 
assures the proper security policy. These policy servers 
reside on synchronization nodes in each domain that serve 
as both the entry/exit points for information passing and 
proxies for tasks of different domains. 

A supporting environment supports designing and 
executing MLS workflows. An editor allows the designer to 
design the domains and roles of the MLS workflows, in 
addition to standard workflow artifacts such as networks, 
tasks, arcs, and data. The resulting design can be compiled 
into executable code, if actions for each task are available. 
The code executes in a standard single level workflow 
management system. The code for the synchronization 
nodes, generated by a compiler of the design environment, 
ensures proper multilevel security semantics during MLS 
workflow execution. 

In summary, this methodology intends to maximize reuse of 
existing single level software components in providing 
multilevel security capability. The key connection 
mechanism is a one-way communication device 
implementing secure information release. The structure of a 
workflow can be modified to meet the MLS security 
requirements. A supporting environment consisting of an 
integrated designer, a compiler and a run time system 
supports security design and execution. 

5.3.5 Workflow Partition 
Atluri et al. propose a novel system for securely executing 
workflows in a distributed environment where nodes 
participating in the execution do not necessarily trust each 
other [7]. Because of the performance gain and the 
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distributed nature of certain applications, a workflow 
management system executing steps of a workflow in 
different nodes is necessary and desirable. The description 
of a distributed workflow contains data and control 
dependency among the steps of the workflow. This 
dependency can be utilized by malicious workflow execution 
agents to manipulate the result to suit the purpose of those 
agents. For example, if a ticket agent of the company A 
knows the booking agent of a client will purchase ticket 
from the company B if the quote received from the company 
A is higher than a certain limit, the agent of the company A 
can propose just below the limit, and direct the flow to 
satisfy the interest of the company. 

To solve this problem, the starting agent divides the 
workflow into smaller restrictive partitions. Each smaller 
workflow partition can be executed on agents belonging to 
the same class of interest (the company A and the company 
B of the above example belong to different classes), because 
no sensitive information is contained in the smaller 
workflows. Certain neutral agents that have no conflict of 
interest with existing classes of competing agents are added. 
These neutral agents collect results of current workflow 
execution steps, direct executing remaining steps, and 
further partition the remaining steps if necessary. Since this 
is a distributed environment, the starting agent only 
bootstraps the executing process. It will not serve as a 
central monitor or coordinator. The neutral agents 
cooperate to complete the workflow. 

This approach achieves confidentiality. It prevents explicit 
information flow among potentially antagonistic agents. No 
information will be leaked to malicious agents. The 
approach accomplishes this through using neutral agents 
that save data and control execution for the competing 
agents. A drawback of the approach is that it requires 
complete knowledge about the classes of conflict of interests 
and dependency of data and control before partitioning the 
workflow and executing the resulting steps. 

5.3.6 JIF/Split 
JIF/Split [139] is a system that partitions a program into 
components such that no invalid information is passed 
between components during the program execution. This is 
a programming system that enforces information flow 
security.  

Since information flow security is a property for all possible 
program executions, it is not well suited for run-time access 
control where only information available to the current 
execution can be used to make decisions. A more static 
approach enumerating all possibilities is superior.  

The input to JIF/Split is an annotated program and a trust 
declaration. The declaration specifies what agents (hosts) 
are trusted by others so that the agents can receive 
information necessary for computation from the trusting 
hosts. JIF/Split outputs a split program, if there is a 
possible splitting. The execution of the split program 
conforms to the trust declaration and ensures secure 
information flow. Figure 14 depict the JIF/Split 
architecture. 

JIF/Split adopts the decentralized label model proposed in 
[97]. The model gives each data a confidentiality label and 
an integrity label. The confidentiality label specifies what 

principals are allowed access, and the integrity label 
expresses how much trust is placed on the validity of the 
data. Declassification on confidentiality and endorsement 
on integrity are used to loosen confidentiality and integrity 
requirements for meeting some realistic needs.  

JIF/Split analyzes the implicit data flow that comes along 
with the control flow. It tracks where a field is defined or 
used in a program and checks whether the flow is allowed by 
the trust declaration. A set of primitives is developed so 
agents can pass data and control between each other 
without revealing information to distrusted agents. The 
agent partitioning the program must be trusted by each 
participating agent. It ensures that all participating agents 
execute the same split program, and optimize data access 
without violating information flow security.  

 
Figure 14, Secure Program Partitioning, from [139] 

JIF/Split has a number of advantages. It can enforce a 
stronger security than simple access control. It enables 
partially trusted agents to cooperate for a computation. It is 
fully automated in assuring security. It supports explicit 
trust declarations. Its drawbacks are that it can only work 
when program source code is available, and the policy to 
enforce must be known prior to the splitting.  

The workflow partition technique (see Section 5.3.5) can 
work on a different format (workflow description) and 
support more dynamism because it allows dynamic 
partitioning even though it still requires complete prior 
knowledge. JIF/Split approach could be extended to a 
general binary-only dynamic situation if enough metadata is 
available for binary components.  

5.3.7 SafeBot 
Filman and Linden proposes an intelligent agent-based 
approach to attack the security problem [35]. Such an 
intelligent agent is named SafeBot. SafeBots are ubiquitous, 
communicating, and dynamically confederating agents that 
monitor and control the execution of components of 
existing applications.  

Simple SafeBots are wrappers around existing software 
components. They monitor the incoming and outgoing 
traffic of the wrapped component. A SafeBot can require 
further authentication, reject inappropriate access, detect 
suspicious activities (probably with help from other 
SafeBots), audit user and component actions, randomize 
duration of component invocation to frustrate covert timing 
channels, and thwart leaking sensitive information. 

SafeBot Agencies are more powerful agents that do not wrap 
existing software components. They authenticate users and 
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services, monitor security status, profile behaviors, facilitate 
information exchange between simple SafeBots, reason 
about trust relationships, and support human security 
officers and administrators.  

The proposed SafeBot framework consists of a language, a 
tool, and a library, shown in Figure 15. The framework aims 
at generating deployable powerful SafeBot wrappers around 
existing components and avoiding labor intensive manual 
wrapping. The three constituent parts are: 1) The OntoSec 
language. This language describes properties and 
communications of SafeBots. It is expressive, including 
security ontology that can specify goal, action, event, 
knowledge, policy, status, belief, and other concerns. It is 
directly computable within a reasonable amount of time. 
The language unifies programming with reasoning. 2) The 
Swathe compiler. The compiler automatically compiles 
OntoSec specifications into deployable SafeBot wrappers. 
To be wrapped by a SafeBot wrapper, the original 
component should be specified (with a formal specification 
facilitating the automatic generation of the SafeBot), 
sequestered (not directly invocable from intruders), and 
substitutable (so the SafeBot wrapper can substitute it). 3) 
The SecLib library. The library contains algorithms, 
mechanisms, and existing SafeBots that understand the 
OntoSec language and can be assembled into a new SafeBot. 
When the Swathe compiler generates new SafeBots based 
on an OntoSec specification, it deals with the syntactic 
issues of wrapping, leaving the real semantics to be handled 
by items in the SecLib library. SafeBots generated from 
these items can understand the environment, reason about 
threats, and plan possible actions.  

SafeBots are important security infrastructure, so protecting 
themselves is an important goal. Possible protections 
include using cryptography in communication, running 
SafeBots in dedicated hardware, reasoning trust of SafeBots, 
and isolating rogue SafeBots. 

 
Figure 15, SafeBot Framework, from [35] 

Compared to general wrapper mechanisms (see Section 
5.2), SafeBot stands out as communicating intelligent 
wrappers. The SafeBots maintain knowledge through 
security ontology, and they reason before taking possible 
actions. Other wrapper technologies are straightforward 
wrappers that do not communicate with each other, and do 
not exploit reasoning. This could give SafeBots more power.  

However, the framework proposal has several severe 
limitations that hinder its wider applicability. First, it 
requires that the wrapped software component has a formal 
specification, is invocable by a SafeBot wrapper, but is not 
accessible by intruders. Few components can satisfy these 

stringent requirements. Second, to facilitate automatic 
generation of wrappers so that no manual wrapping is 
needed, an ontology language covering a significant part of 
security is proposed as the foundation for specifying 
behaviors and communications of SafeBots. Given the 
evolving nature of the security domain, an extensible 
language is essential, and a reasonably large core of the 
ontology must be available before the approach could 
describe any real applications. Finally, a relatively mature 
library is required before any meaningful wrapper can be 
generated, although this problem can be mitigated as the 
adoption process moves forward.  

5.3.8 Discussion 
Agent techniques provide security for modular software by 
either connecting software components together or 
partitioning a system into appropriate components.  

Gateway Agents (Section 5.3.1), Secure Access Wrappers 
(Section 5.3.2), and NRL Pumps (Section 5.3.3) are 
connection mechanisms when different organizations need 
to share data. The Gateway Agents approach can be adopted 
in more general cases. The NRL pump facilitates data 
exchange between different levels in a single MLS 
environment. Secure Access Wrappers are used when 
several MLS organizations need to share data with each 
other.  

Techniques outlined in Sections 5.3.4, 5.3.5, and 5.3.6 are 
all top-down approaches for securing a modular system by 
partitioning it appropriately. They all need prior complete 
knowledge about the system to securely partition it. They 
differ in the formalism that they work on (workflow 
description in Section 5.3.4 and Section 5.3.5, source code in 
Section 5.3.6), and what extra support they need (network 
pump in Section 5.3.4, neutral agents in Section 5.3.5, and 
data/control transfer support in Section 5.3.6). 

The SafeBot framework is the most ambitious, and 
theoretically can be applied to both situations. But 
significant obstacles in available library and suitable 
components prevent its full implementation. 

Table 1 summarizes available agent techniques. 

Table 1, Summary of Agent Techniques 

Technique Connect / Partition Additional Feature 

Gateway Agent Connect General 

Secure Access
Wrapper 

Connect Multi MLS 

NRL Pump Connect Multi level in Single
MLS 

MLS METEOR Partition Workflow, use NRL
Pump 

Workflow Partition Partition Workflow, use
neutral agent 

JIF/Split Partition Source code, use
data/control 
transfer 

SafeBot Both Ambitious 
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5.4 Meta Object Protocols 
This section surveys another wrapper like mechanism, 
meta-object protocols, which uses entities of a special type 
(meta-objects) and a wrapping mechanism (object methods 
interception) to augment base entities (objects).  

Meta Object Protocols (MOP) come from the Object-
Orientation technology. The Object-Orientation technology 
has become the dominant development paradigm in the 
past decade. Security is getting more and more attention in 
mainstream object-oriented programming languages [46]. 
However, standard security programming techniques have 
several drawbacks. Developers have to develop new security 
policies, and manually insert system calls enforcing these 
policies into proper places at the application [131]. This 
mixes the security processing with the general functionality, 
which hinders maintenance and evolution of both 
functionality and security. When components coming from 
different sources are combined together, it is difficult to 
reason about the composite security properties and to 
reconcile potentially conflicting security policies. After 
deployment, it is difficult to enact new security policies 
without major redevelopment effort. These drawbacks come 
from the intertwining of functionality and security.  

To tackle these problems, two advanced separation of 
concerns technologies have been developed. They are Meta 
Object Protocol and aspect-oriented software development. 
This section studies security enhancement techniques that 
adopt Meta Object Protocol, the simpler of the two. Aspect-
oriented security technologies, which are more powerful in 
composing concerns, are surveyed in Section 0.  

Meta Object Protocols are tightly related with reflection. 
Both concepts have a wide theory foundation. Their use in 
security engineering can be described as follows. Reflection 
[79] is a technique for introspecting the implementation in a 
controlled process. A meta-level programming abstraction is 
provided to examine and change the underlying structure 
and behavior of a system. The abstraction with its 
manipulation is called reification. The meta-level 
abstraction is causally connected to the underlying system, 
so that any change at the meta-level will be reflected back to 
the underlying system. Meta Object Protocol (MOP) [73] is 
an Object-Orientation reification, where the abstractions in 
the meta level are expressed as a set of meta-objects. The 
execution of Meta Object Protocol is summarized in Figure 
16. When one object sends a message to another object (the 
solid lines in Figure 16), the message will not reach the 
destination object directly. Instead, the connecting 
mechanism redirects the message to a meta-object that is 
associated with the destination object (dashed line 1 in 
Figure 16). After some pre processing by the meta-object, 
the message is eventually routed to the destination object 
(dashed line 2 in Figure 16). Similarly, if there is a response 
from the destination object to the original source object, 
before the response can reach back the source object 
(dashed line 4 in Figure 16), it goes back to the meta-object 
first (dashed line 3 in Figure 16), probably for some 
additional post processing. The rest of this section describes 
how this general pattern is used in security engineering.  

 
Figure 16, Meta Object Protocol, from [131] 

5.4.1 Actor 
The discussion of meta-object protocols begins with the 
Actor model. The Actor model is a general and flexible 
model of concurrent and distributed computation [2]. Each 
actor has a unique name and an associated behavior. This 
behavior describes the states of the actor and how the actor 
manipulates them. Actors communicate with each other by 
sending messages asynchronously. Each actor serially 
processes messages it receives. When processing a message, 
an actor can perform one of three actions: send messages 
asynchronously, create a new actor with a specified 
behavior, and become ready for next message. 

The Actor model is a general model, so it can be used to 
model many computation systems. It also has a formal 
semantics defining how a system of actors can evolve when 
they send messages to each other. 

To support extra-functionality, such as security, the original 
Actor model is extended with a meta layer [6]. In such a 
model, components at the base layer handle the 
functionality of the system, and components at the meta 
layer address extra-functionality, such as security, 
performance, and coordination. Additional meta layers can 
be stacked further onto existing meta layers to provide more 
extra functionality. For example, the composition of security 
can be handled in a meta-meta layer.  

In an Actor system, there are three types of events: 
“message sent” event, “actor created” event, and “next 
message requested” event, corresponding to the three 
actions that an actor can perform. Events have a causal 
relationship among them, and they are atomic. To connect 
the base layer and the meta layer, an event is sent from the 
base layer to the meta layer whenever any event happens. 
This event is a meta-message, containing relevant 
information such as the sender of the original message, the 
receiver, and the content. After an actor at the meta layer 
(named a meta actor henceforth) receives the message, it 
can process the message to achieve the desired extra-
functionality. During the meta processing, an actor at the 
meta layer can send notifications back to actors at the base 
layer, either unblocking them from the current sending 
operation, delivering the message, or returning a newly 
created actor. The process is illustrated in Figure 17.  

The Actor model with a meta layer is used to enhance the 
data secrecy of the system [3]. A pair of meta actors is 
inserted between a sending actor and a receiving actor. One 
meta actor, the Encryptor, listens to the messages from the 
sending actor. For every message the sender sends, the 
encryptor encrypts the message and delivers it to the 
original receiving base actor. The other meta actor, the 
Decryptor, listens to the “next message requested” event 
from the receiving actor. After receiving the event, the 
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Decryptor receives the encrypted message before the 
receiving actor. It then decrypts the message and delivers it 
to the receiving actor. Because of the generality and 
flexibility of the meta-layer framework, the outlined security 
can be imposed on existing actors with minimal effort.  

 
Figure 17, Meta processing of the Actor model, [3] 

Because the Actor model provides a formal semantics for 
communicating distributed systems [2], it can be used to 
model and verify secure authentication protocols. An 
approach uses the Actor model to model the behaviors of 
not only the communicating parties but also the medium 
(called routers) and adversaries as actors [3]. After 
modeling the message exchanges between the parties, 
verifying the security protocol depends on showing that the 
parties can achieve the desired end result even in the 
presence of the adversaries. Currently the verification 
procedure is still mostly manual.  

The actor model supports meta-object protocols naturally. 
However, its full implementation and application for 
security still waits for further investigation.  

5.4.2 Security Meta Object 
Security Meta Object [106, 107] is an early approach using 
meta-objects to enforce proper access controls.  

In standard Object-Orientation technology, a reference to 
an object can be considered a capability (see Section 2.1) 
that enables access to the full functionality of that object. If 
a malicious object holds a reference to a high-privilege 
object, it can invoke that object to perform a dangerous 
activity. 

A security meta-object is a meta-object that holds a 
reference to an object and enforces proper access control 
before the original object can be invoked. When a function 
call is made through the meta-object, the object checks 
whether the call is allowed. If the call can be dangerous, the 
security meta-object rejects the call and throws an 
exception. Otherwise, the call progresses as a normal 
function call. 

To make security meta-objects effective, referencing a 
privileged object must go through a meta-object. This is the 
non-bypassability property of the reference monitor [5]. 
Otherwise, a malicious user can try to get a raw reference to 
the privileged object and bypass the access control enforced 
by meta-objects. Thus, a meta-object should also monitor 

the creation of any new outgoing reference for its underlying 
object and attach itself to the new reference.  

Similarly, since an incoming reference may point to a 
malicious object, an invocation on that reference can result 
in security breach. A security meta-object solves this 
problem by reversely attaching itself to the incoming 
reference and enforcing proper check before invocations 
through the incoming reference.  

The basic security meta-object approach is extended in 
[107]. Each meta-object is assigned a role representing the 
principal for which the meta-object acts. As in the role-
based access control model [113], the role makes the access 
control policies more explicit and natural. Another 
extension is forming a domain for a principal and the 
detaching security meta-objects when they act in the home 
domain of the protected raw objects. This reduces security 
overhead. The problem of proper attachment and 
detachment of security meta-objects when entering and 
leaving domains has also been formalized and studied [107].  

The Security Meta Object approach uses meta-objects to 
control access and attach meta-objects to all possible 
references. While using a separate meta-object to enforce 
security is attractive, attaching a meta-object to every 
possible reference and preventing all inappropriate access at 
all possible paths is difficult, giving the complexity of 
control flows and data flows in a program [42]. If a single 
reference is returned without a properly attached security 
meta-object, there exists a chance of security breach. 
Probably as a result of this, the Security Meta Object 
approach has not been fully implemented in its current 
form.  

5.4.3 Types of Java Meta Object Protocol 
Since Java has quickly become a mainstream language and 
it provides built-in support for security and reflection, 
several attempts have been made to use a Meta Object 
Protocol approach in Java to implement security. 

Caromel and Vayssiere classifies Java MOP efforts into four 
categories, depending on when meta-level code is executed 
[21]: compile-time, load-time, VM-based run-time, and 
proxy-based run-time. They have studied the impact on 
security permission sets by different types of meta-level 
code. The solid lines in Figure 18 depict when meta-objects 
are in use. 

 
Figure 18, Types of Java MOP, from [20] 

In the compile-time MOP approach, the source code is 
manipulated and translated to generate new source code for 
meta level classes. These classes are compiled together with 
the original classes. As a result, new permissions for these 
classes are needed to execute the translated program.  
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In the load-time MOP approach, the meta-level code begins 
execution at class loading time. It might end at load time 
(pure load time), after modification of the byte code. The 
meta-level code can also span into run time, where meta-
objects created at load time are used to implement run-time 
meta-object behavior. The load time approach operates on 
bytecode, instead of source code. As a result, it cannot 
change the classes already loaded through the non-MOP 
class loader. Permissions for bytecode manipulation are 
required in addition to the normal operation permissions.  

The VM-based run-time MOP approach uses a non-
standard Java Virtual Machine to execute a program. The 
virtual machine can be either a modification of an original 
one or an extension to a standard VM with native library. 
The VM-based approach does not impose additional 
permissions, because all meta-objects are in the trusted 
computing base, along with the virtual machine. The virtual 
machine must be properly designed, implemented, and 
verified. Otherwise, malicious Java code may breach the 
architecture. This approach was only taken by early MOP 
efforts.  

The proxy-based run-time MOP approach operates within 
an environment of a standard virtual machine. It is not as 
powerful as the VM-based approach because some events 
are not visible or controllable to it, but it can coexist with 
the standard environment and benefit from the engineering 
efforts invested on that environment. The approach uses a 
meta-object as a proxy of a base object. The meta-object 
exposes the same interface as the base object, intercept 
method calls for the base object, and perform additional 
processing around these method calls. The meta-objects 
require additional permissions to execute. 

5.4.4 A Proxy-based Run-Time MOP 
Because proxy-based run-time MOP achieves balance 
between expressive power and coexistence with accepted 
standards, some recent MOP efforts have taken this route. 
In [20], a simple proxy-based MOP was developed for Java. 
The approach aims at minimizing change of existing code 
when using meta-objects.  

The MOP system intercepts two types of events during run-
time: method invocations and instance creations. A meta-
level object is created when a special instance creation 
function is invoked. The created meta-level object handles 
future method invocations.  

The MOP system associates a base class with its meta class. 
The base class implements a marker interface and stores the 
meta class name as a static class member. When an instance 
of the base class is instantiated, the marker interface of the 
class notifies the MOP system for meta processing. The 
MOP system then retrieves the meta class name and creates 
a meta-object for the base object. 

Each meta class implements an interface MetaObject. The 
interface contains one method MethodCall. This method 
implements the standard meta processing for the base class. 
The MOP system provides necessary information to this 
method. The meta classes can be organized into their own 
hierarchy independent of the base class hierarchy.  

To meet the type compatibility requirements of the base 
class, a stub class is created for each base class during run 

time. The stub class inherits from the base class. Each 
inherited method of the stub class packages available 
information and invokes the MethodCall on the meta class. 
Transparently creating the stub class enables both meta 
processing and independent development of base classes 
and meta classes. This helps relieve one of the inheritance 
problems identified in [129], where the meta class has to 
replicate all implemented interfaces of the base class but 
still cannot support casting the meta class to super classes of 
the base class. Another problem identified in [129], the meta 
constraint problem, where a derived base class might be 
bound to a meta class significantly different than the meta 
class bound to the super base class, still remains a 
challenge.  

To avoid introducing any further requirements for security 
permission by the meta processing, two techniques are 
used. First, before entering the meta processing, the current 
security context is captured. After the meta processing, the 
captured security context is restored before returning to 
normal processing. Second, the complete meta object 
protocol subsystem is granted full permission, essentially 
being put into the trusted computing base.  

This approach provides a practical solution to add security 
capability onto base functionality. However, some problems 
should be further investigated. As pointed out in Section 
5.4.2, to prevent security breach, each possible reference to 
a base object should be made through the meta-object. This 
approach does not address this problem, relying completely 
on calling the special instance creation function. This 
approach also grants full permissions to the meta object 
protocol subsystem, enlarging the trusted computing base. 
Further investigation on granting less privilege to the 
subsystem is worthwhile. Finally, the binding between a 
base object and a meta-object is achieved through 
programmatic declaration of the base class, which is 
different from binding through a separate file. More 
experimental results are needed for what will be a best 
binding mechanism.  

5.4.5 Kava 
Kava is a load-time MOP for Java [129, 131]. It uses a 
bytecode toolkit to rewrite the bytecode during class loading 
time. It uses behavior reflection to inspect the bytecode 
without resorting to source code. Kava does not blindly 
rewrite bytecode. It only injects meta-objects when they are 
necessary for implementing the policy, minimizing the 
performance impact. Kava also rewrites the bytecode in a 
type-safe manner, limiting potential problems brought by 
binary code operation.  

Kava provides more capability than the simple MOP 
described in Section 5.4.5 [20]. In addition to method 
invocation and instance construction, Kava also provides 
control over field access and exception handling. For 
method invocations, Kava differentiates between two cases. 
The first case is called method execution, where the 
execution of a method of a base class is augmented. All calls 
on the method are automatically handled through the meta-
object. The second case is called method invocation, where 
all invocations of a method are augmented to go through the 
meta-object. In this case, only invocations on classes already 
loaded can be augmented, but the classes themselves cannot 
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be augmented. The two cases are named callee-side 
translation and caller-side translation in [21], respectively. 

Instead of specifying the binding between base objects and 
meta-objects in the source code, as adopted in the simple 
MOP [20], Kava uses a separate specification file declaring 
the binding. The specification file also supports meta-
objects parameter to further enhance flexibility. A separate 
binding file taking effect at binding time increases 
flexibility, because a developer can develop new security 
features and bind them with the base functionality without 
touching the original source program. A separate file is also 
necessary in the case of bytecode rewriting, because no 
source code is available to inject meta-objects.  

Kava’s architecture is shown in Figure 19. The shaded parts 
are provided by Kava. The figure clearly illustrates Kava’s 
use of byte code rewriting during class loading time and its 
utilization of a separate binding file. 

A novel feature in Kava is that it implements stronger non-
bypassability. Its secure class loader employs standard Java 
security mechanism, monitors other class loaders and 
brings classes loaded by those loaders under Kava’s control. 
For an application-level class loader, Kava monitors its 
activity and uses bytecode rewriting of method execution to 
inject Kava’s control. For a system class loader, Kava cannot 
rewrite the byte code for method execution, but it can 
rewrite places of method invocation to enable Kava’s 
control. Also, since Kava adds hooks to bytecode directly, 
the separate proxy problem identified in [106] (see also 
Section 5.4.4), where a base object might be accessed 
without the provision of a meta-object, can be greatly 
reduced. Bytecode rewriting effectively merges the two 
objects into one binary entity [129]. 

 
Figure 19, Kava, from [131] 

Kava can support many types of security policies. It can 
support the standard access control policy, where the access 

to a resource is granted or rejected based on principals. It 
can support a resource-consumption access control policy, 
where the access to a resource is granted to a principal, but 
only to the extent that the resource is used within the a 
specified limit, such as the amount of bytes that is written 
over a network connection [131].  

Kava can also support a complex integrity model like the 
Clark-Wilson model [127] (see Section 2.1). The constrained 
data items and unconstrained data items are modeled as 
Kava fields, and the transformation procedures and 
integration validation procedures are modeled as Kava 
methods. Principals are authenticated in the usual manner. 
Kava monitors field access on data items and allows only 
trusted transformation procedures to perform these 
accesses. Validation procedures are invoked after 
modification methods. Audit logs are written after any 
access methods. Since the Clark-Wilson model is an abstract 
model that embodies abstract concepts and operations, it is 
appropriate to use a meta-level mechanism to enforce the 
rules stipulated by the model.  

In summary, Kava is a powerful and flexible MOP 
implementation. It coexists harmoniously with current Java 
infrastructure and applications. It can implement several 
types of security models. Moreover, its enforcement of 
security policies can be composed with base functionality 
flexibly.  

5.4.6 Discussions 
Meta Object Protocols can separate the security concern 
from the general functionality. As a result, these two aspects 
can be developed independently by domain experts each 
with the required expertise and appropriate techniques. 
Combining security and functionality can be performed at 
the deployment and customized to the special needs of the 
site. The evolution of functionality, security, and their 
integration is easier than the case when they are 
intertwined.  

The Meta Object Protocol approach can be used to 
implement various kinds of security policies, as 
demonstrated in [127, 131]. Some arguments hold that it is 
superior to a standard container-based approach where only 
access control policies can be enforced [130]. What 
differentiates these two approaches more is probably not 
what policies they can enforce [115], but how flexible the 
enforcement can be. Meta Object Protocol shows promise in 
this aspect, but this should be investigated further under a 
comprehensive perspective with more experiments.  

The Meta Object Protocol approach does have some 
disadvantages. The performance of a reflective based system 
can be unsatisfactory [131]. A reflective based approach can 
make reasoning about the system behaviors more difficult, 
because the possibility opened by a dynamic reflective 
execution is not analyzable by static techniques. However, 
this problem can be mitigated if the use of reflection by the 
base program is limited to a certain extent. A more serious 
problem is the challenge on comprehensive security bought 
by the extra MOP subsystem. Since the subsystem is quite 
powerful, abusing it can lead to severe damage. Current 
approaches put the subsystem into the trusted computing 
base [5] and make the subsystem part of the reference 
monitor. This can only be justified and trusted only after 
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careful design, implementation, and strict verification of the 
subsystem [128] [132]. 

While many commercial platforms have not supported easy 
extensions to utilize the Meta Object Protocol approach, it is 
expected that, with the evolution of the technologies, MOP 
will be incorporated into these platforms to achieve 
“reflection at large” [133].  

From the viewpoint of separating of concerns, the Meta 
Object Protocol approach still has limitations. Compared to 
aspect technologies discussed in Section 0, this approach 
uses the same language for implementing both the base 
objects and the meta-objects, where an aspect technology 
can use a more declarative language than the base language, 
and support security more effectively. The binding 
mechanism provided by this approach is generally less 
powerful and flexible than the weaving language 
implemented by aspect technologies. The two approaches 
can be combined, where meta object protocols can provide 
the necessary infrastructure to support a powerful aspect 
weaving [128].  

5.5 Component Specifications 
This section investigates techniques that support explicit 
component security specification. During composition, 
these specified components should be combined 
consistently, resolving potential conflicts and accomplishing 
system wide security.  

5.5.1 Computer Security Contract 
Computer Security Contract (CSC) addresses how to 
disclose the security property of a component to others [68, 
69]. It tries to answer the following questions: how to 
characterize the security properties of a component, how to 
access these properties at runtime, how to characterize the 
composite security properties when a system is composed 
out of several components statically or dynamically, and 
whether the composite properties are also available at run 
time.  

Computer Security Contract explicitly specifies security 
properties of component interfaces. The interface specifies 
ensured and required security properties of a component 
using logic. When the components are composed together, a 
composite logical description is deduced to capture the 
ensured and required properties of the composite 
component. These properties can be accessed at run time. 
An interface with reasoning capability and knowledge 
storage is named Active Interface.  

The basic form of the logic is an atom describing three 
items: the security operation, the security credential used in 
the operation, and the data operated by the operation. For 
example, an encryption operation takes a key as the 
credential and a stream of data for encryption. 

The CSC framework operates in an event-based 
environment. When a component needs a service, it 
broadcasts a request, and becomes the focal component. A 
candidate component is the component responding to this 
request. If the two components can successfully negotiate 
and find a way to satisfy the required security properties of 
each, then a binding is established between the two 
components, forming a composition. The composite 
contract is the composition of the contracts of the two 

components, with the required property of the candidate 
component as the composite required property, and the 
ensured property of the focal component as the composite 
ensured property. After a successful negotiation, both the 
focal and candidate component reconfigure them to behave 
as specified by the contract. 

To enable the run time access of security properties 
described by composite contracts, each component has an 
interface called the Active Interface. The interface consists 
of an identifier verifiable through a digital certificate, a 
traditional functional interface describing the available 
functions, a read-only public security knowledge database 
providing the ensured and required security property of the 
component, and a read-write protected computer security 
contract base containing all the active contracts that the 
component is currently bound to as a focal component. The 
contract base will expand and shrink, as the component 
engages in different compositions. However, each candidate 
component bound to a focal component cannot see the 
contract of other candidate components, providing a 
protection among the components. The structure of the 
active interface is shown in Figure 20.  

 
Figure 20, Active Interface, from [69] 

The logic-based contract is expressed with a Prolog-like 
form of logic programming [70]. A contract has a set of rules 
each of which has a header and a body. The header is a 
predicate that can be derived if all predicates in the body are 
satisfied. An ensured property is a rule containing only a 
header. A required property is a rule containing only a body. 
A compositional contract is the result derived from the rules 
of the components. Logic programming allows more 
powerful automation and reasoning. A rule can use 
predicates from the authentication logic proposed in [18]. 
The authentication logic reasons about the authentication 
and belief relationships among components and provides a 
well-established foundation to from a compositional 
security property from component contracts.  

In summary, the Computer Security Contract approach 
extends the traditional functional interface of a component 
with an extra-functional interface about required and 
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ensured security properties. A logic approach is used to 
describe these properties. Logic reasoning is utilized in 
negotiating a composition of components and determining 
the composite security properties. A run-time structure 
provides storage and access of these properties. 

While this approach is promising, some issues need to be 
resolved. First, a more expressive and efficient expression 
mechanism is needed. The current basic atom describing 
security operations, credentials and data does not capture 
most entities involved in security design and analysis. How 
to improve its expressive power yet retain its computation 
efficiency is still an open research question. Second, the 
current composition mechanism is still very simple, 
mirroring a functional call between a caller and a callee. 
Existing logics on functional composition can be applied to 
this composition mechanism. Other composition 
mechanisms, possibly involving more than two entities, 
need to be incorporated [71]. Third, the current contract 
base is stored at the focal component and requires 
modifying the component, so it depends highly on one party 
of the component. Whether this is the only or the best 
choice is arguable. When a general component container is 
used, it might be a better place to serve as the composite 
contract base (see Section 5.7.1). Other forms of 
composition might choose different places to store security 
contracts.  

5.5.2 cTLA Contract 
Hermann proposes a more elaborate component 
specification to describe and verify security properties of 
component-based systems [53]. Instead of the simple first 
order predicate logic used in the Computer Security 
Contract, a compositional extension to the Temporal Logic 
of Actions (TLA)[75], cTLA, is used to specify the behavior 
contract of components and their compositions.  

The cTLA is a linear time temporal logic describing the 
safety and liveness properties of systems (see Section 5.1.1). 
The contract written in cTLA models each component as a 
process and delineates the state transitions of the process 
for the component, forming a state machine. The state 
machine can be used to enforce security properties, allowing 
valid state transitions and prohibiting invalid ones, as 
described in [115]. 

The composition feature of cTLA is based on concurrent 
execution of processes. cTLA enables composition from 
implementation-oriented processes, constraint-oriented 
processes, and processes combining both. The composition 
feature of cTLA supports the property of superposition, 
where a property of a process is also a property of the 
embedding system.  

The superposition of composition greatly simplifies the 
verification of compositional systems. The verification can 
utilize a pre-developed framework containing theorems 
about shared global settings and the properties of 
constituent components. To prove a more concrete system 
holds the same property as a more abstract system, a 
correspondence between a process in the latter and a 
component in the former should be established, most 
probably in the form of a refinement mapping.  

A Role-based Access Control policy is modeled as cTLA 
processes. The validity of the access control policy of an e-

commerce procurement application is verified using the 
refinement mapping technology suggested above. That 
experience suggests that a refinement mapping is relatively 
easy to find, and much of the verification work can be 
automated with tools.  

Compared to the Compositional Security Contract [69] (see 
Section 5.5.1), cTLA does not focus on what a compositional 
contract will be when composing components, and how a 
run-time system can support reasoning, storage, and 
utilization of this contract. Composition Security Contract is 
a bottom-up approach. cTLA is another instance of those 
top-down logic-based refinement verification methodologies 
[32, 123]. Despite the initial positive experience, the 
approach faces the same challenges, namely finding the 
suitable security properties for the methodology and 
effectively conducting the proof with more automation and 
less dependence on experts. 

5.5.3 Discussion 
The techniques proposed in this section are only a sample of 
possible alternatives. They stand out by their explicit use of 
logic-based component specification, while other implicit 
forms utilizing other description mechanisms are discussed 
in following sections. Using logic facilitates automatic 
reasoning and proving during composition and refinement. 
One issue beyond simple composition is the emergent 
property problem. Emergent properties are those properties 
that only come from composing components. Undesirable 
emergent properties might be the result of 
underspecification of the components or implicit 
assumptions made by the components. Specifications of 
components should be complete so no undesirable 
properties will emerge during composition [56, 137]. 
Desirable emergent properties are also challenging. An open 
research question is whether a set of secure components can 
be composed to achieve more security that what is available 
through a single component [29] and how this can be 
accomplished.  

A problem with the component specification approach is 
how trustworthy the specification is, because there might be 
no proof that the real behavior of the component is the same 
as that specified in its specification. One possible mitigation 
is using certification [43]. Some trusted third party can 
certify the conformance between the specification of a 
component and its underlying behavior and issue a 
certificate difficult to forge to the component. The certificate 
can easily be verified during composition. This is not a 
complete solution, but it can be part of the foundations to 
support secure composition of components.  

5.6 Composition Framework 
A composition framework provides base components and 
composition mechanisms for composing secure application 
modularly. Compared to other techniques, a framework 
provides an explicit repository of components and 
connection mechanisms. This section surveys some general 
composition frameworks proposed in literature.  

5.6.1 Infrastructure for Composability at 
Runtime of Internet Services 
Infrastructure for Composability at Runtime of Internet 
Services (ICARIS) [23] is an environment that permits 
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dynamic composition of services to form composite services. 
Three strategies are outlined for constructing new services. 
The first one composes the composite service as a virtual 
interface for its constituent service. The second strategy 
constructs a new container containing the constituent 
services. The last strategy extracts related components and 
re-assembles them into a composite service.  

The framework is used to augment a client and server so 
that they can communicate securely using the cryptography 
technology [23]. After deciding the composite system needs 
a symmetric encryption of the application data and an 
asymmetric encryption of the symmetric encryption key, 
those components are selected, composed and deployed to 
the client and the server. The composition should be careful 
about the correct order, because the corresponding 
decryption components should used in a reverse order on 
the server than that of the encryption components on the 
client.  

Composing components dynamically and securely poses 
greater challenges than doing it statically [14]. The ICARIS 
approach does not provide convincing answers to many 
challenges. It is not clear how the components are 
described, how new requirements are introduced, how the 
composition is negotiated and decided to meet the 
requirements, and how the correct order can be persevered 
automatically.  

5.6.2 Composable Replaceable Security Service 
Composable Replaceable Security Service (CRSS) [32] is a 
framework to support fault-tolerant and composable 
security services.  

The CRSS framework classifies services into high-level 
services and low-level services. The high-level services 
include a connection service (adding confidentiality and 
integrity to a connection between two applications), a 
transaction/exchange service (providing security 
enhancement to data in a single transaction), a retrieval and 
storage service (allowing secure retrieval and storage of 
named objects), a remote execution service (executing 
mobile code), and an authentication service (associating 
active entities with their identities, authorizations, 
certificates, and credentials).  

Low-level services include a cryptographic service, a 
database service (a highly secure repository for critical 
data), a key/credential/certificate service, a 
trust/authorization service, and an audit service. 

The CRSS framework has four components: a provider 
registry, a provider manager, a provider switch, and a 
survivability manager. The provider registry keeps 
information about each available security service provider. 
The provider manager selects providers to fulfill requests 
from applications. The manager can choose different 
providers as long as they all provide the same service. The 
provider switch facilitates transparent execution of remote 
providers. If a service can only be accomplished by a 
provider not locally available, the manager asks the switch 
to launch the execution and returns the result back when 
the execution is complete. Finally, a survivability manager 
enhances survivability by using several potentially different 
implementations of the same service.  

The composition of services in the CRSS framework is 
rudimentary. It is limited to selecting compatible service 
providers when fulfilling an application request. Even the 
straightforward issue of composing high-level services from 
available low-level services is not addressed by the current 
CRSS framework. 

5.6.3 Intrusion Detection Inter-component 
Adaptation Negotiation  
Intrusion Detection Inter-component Adaptation 
Negotiation (IDIAN) [33] is a system to support dynamic 
communication of intrusion detection components. The 
dynamic communication can be used to introduce new 
components or new capability of old components into the 
comprehensive intrusion detection system, and it can also 
be used to balance load among available components.  

The intrusion detection components operate under the 
Common Intrusion Detection Framework, which contains 
monitors to monitor events, analyzers to analyze 
information, responsers to respond to actual intrusions, and 
a database to store information. These comp0nents 
communicate with each other by passing General Intrusion 
Detection Objects, which describe events that occurred in 
the system, such as possible attacks. Filters can be applied 
on these objects to decide which objects a component will 
receive.  

The components form a producer and consumer agreement 
between them after participating in a negotiation protocol. 
The protocol specifies how a component advertises its 
capability, how a component proposes, how a component 
counter-proposes, how a component rejects or cancels a 
proposal, and how a component accepts a proposal and 
seals the agreement. The protocol is specified in a formal 
language. A component can behave as both a consumer and 
a producer when it engages in multiple agreements. 

In summary, this approach sketches how multiple secure 
components coordinate to provide even more security, 
participating in a common, formally specified protocol and 
exchanging information through a well-defined format. Due 
to its limited objective in application domain, it does not 
support composition using dynamic protocols and non-
intrusion detection related information.  

5.6.4 Partitionable Services Framework 
Partitionable Services Framework (PSF) [58] is a framework 
that supports dynamic assembly and deployment of 
components to adapt to heterogeneous environments where 
each administrative domain maintains its own security 
policies.  

The PSF framework has four elements: a declarative 
specification of the application and its environment, a 
monitoring module, a planning module, and a deployment 
infrastructure. The monitoring module provides dynamic 
information. Using this information and specification for 
the components, the application and the environment, the 
planning module produces a sequence of component 
deployment plans. The infrastructure implements these 
deployment plans. 

A view is an object that either implements a subset of the 
functionality of the original object, or works with a subset of 
the data of the original object. A view provides greater 
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flexibility under application and network constraints, and it 
enables a finer level granularity in access control.  

The access control model in PSF is a decentralized Role 
Based Access Control model. The model encodes properties 
of applications and resources into credentials. To make an 
access control decision, the model seeks an answer to a 
question of whether X has the role of Y. The decentralized 
nature of the model lies in that the model permits use of 
names local to each autonomous domain and depends on 
role mapping delegations to translate local names. 

A view is the atom of operation and access control. It is 
generated from component specifications and credentials 
available at the generation time, so it can fit the dynamic 
security constraints presented. These credentials enable the 
views to operate across various autonomous domains.  

One important part of the monitoring module is the 
SwitchBoard. The SwitchBoard establishes a secure, 
authenticated, and continuously authorized and monitored 
connection between two components. During its operation, 
when the SwitchBoard detects a change in credentials of two 
components, it can take actions, such as asking new 
credentials, to keep the secure connection alive.  

In summary, PSF uses a credential-based formalism to 
express security properties, generates views dynamically 
from component specifications to accommodate constraints 
presented at component composition time, and provides a 
monitoring mechanism to support the continuous secure 
interoperation between components.  

5.6.5 Discussion 
Table 2 summarizes current composition frameworks. 

Table 2, Summary of Composition Frameworks 

Technique Component Composition Other feature 

ICARIS General Virtual 
Interface, New
Container, Re-
Assembly 

 

CRSS Low-level 
services, High-
level services 

Selection of
service 
providers 

Remote 
provider, 
Survivability 

IDIAN Intrusion 
Detection 
Components 

Events 
exchange, 
Producer-
Consumer 
negotiation 

Formally 
described 
negotiation 
protocol 

PSF View with
declarative 
specification 

Dynamic 
composition 

Monitoring 
module for
secure session 

The notion of composition framework is appealing. This 
approach constructs a secure application from a collection 
of available components, using appropriate composition 
mechanisms, to achieve desired security with assurance. 
However, the state of art in composing securely is far behind 
what has been accomplished in general functional 
composition. There is no consensus in what secure 
components are or should be. Current composition 
mechanisms utilized are insufficient, either lacking dynamic 
features or failing to address special security requirements. 

Finally, there is no mechanism assuring the result of 
composition. 

5.7 Aspect 
Aspect technology can be considered as a special 
composition framework to compose secure and modular 
applications.  

Aspect-Oriented Programming (AOP), exemplified by 
AspectJ, is an extension to Object-Oriented Programming 
(OOP) to address the cross cutting concern problem more 
effectively [72]. It cleanly captures each of these 
crosscutting concerns in one self-contained aspect. Each 
aspect contains two types of information. One is called 
advice, which defines how the crosscutting concern should 
be implemented. The other is called pointcuts, which are 
places where the advice should be applied to the OOP base 
code. A special tool, the weaver, is used to combine (weave) 
the aspect and the base code together. The system resulted 
from this weaving process will contain appropriate links 
inserted in the base code. These links are defined by the 
pointcuts of the aspect, and they reference the advices of the 
aspect.  

Because AOP separates concerns explicitly and models them 
directly, it has received much interest since its inception and 
has been extended to other phases of software development. 
This section surveys how the security aspect is addressed by 
various aspect technologies. Section 5.7.1 discusses an 
alternative AOP system, A-TOS/JAC. How aspect 
technologies can be applied to security issues in traditional 
procedural language environments and middleware settings 
are discussed in Section 5.7.2 and Section 5.7.3, 
respectively. Section 5.7.4 turns to advanced composition 
techniques provided by Lasagne. Section 5.7.5 discusses 
Component Virtual Machine. Section 5.7.6 investigates 
whether the aspect technology can be applied to early 
security design stage.  

5.7.1 A-TOS/JAC 
A-TOS [102] is an aspect-oriented reflexive middleware for 
distributed environment. Its core concept is an aspect 
component implementing global transversal properties 
including security. Aspect components are used to achieve 
separation of concerns in a distributed environment.  

Aspect components utilize two approaches to achieve 
separation of concerns, meta-objects and meta-classes. 
Meta objects provide adaptability and distribution. At run-
time when objects exchange messages, meta-objects can 
intercept the message and perform additional processing 
before and after message delivery. The order of the extra 
processing can be flexibly specified.  

Meta classes enable powerful reflexive features. The class 
definitions are readable and writable, so wrapping classes 
that provide extra-functionality, such as security, can be 
inserted into the original classes at run time.  

Each aspect component class specifies what it does and how 
it should be applied to the base classes. Under A-TOS, 
security can be handled by invoking appropriate operations 
before regular functions are performed.  

These ideas have been evolved into Java Aspect 
Components (JAC) [103]. This approach can be considered 
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as using Meta Object Protocol (Section 5.4) to implement 
aspect technology (see Section 5.4.6).  

A-TOS/JAC demonstrates that the aspect technology can 
solve some simple security problems by collecting functions 
handling security concerns into a single aspect and invoking 
these functions with the standard aspect-oriented 
programming facility.  

5.7.2 Aspect-Oriented Security Framework 
The Aspect-Oriented Security Framework (AOSF) [117] is a 
source code translation framework that applies aspect 
technology to address the security concern. Its current 
implementation works on programs written in C. 

Aspects in this framework are considered as code 
transformation templates, specifying where, why, and how 
the code should be translated. The aspects are defined in an 
aspect language, which is a superset of the application 
language. The framework works along with the normal build 
process. The application and associated aspects are pre-
processed. The weaver then weaves the pre-processed code 
together into woven pre-processed code. Finally, the woven 
code is compiled and linked into a complete application. 

The framework has been initially used to solve 
implementation security issues, such as buffer overruns and 
time-of-check-versus-time-of-use bugs. Aspects in these 
situations are simple one-to-one syntactic transformations, 
needing only local context information. Architectural 
security issues such as communication channels and event 
ordering will require aspects embodying more logic, context, 
and customization. 

In summary, AOSF provides a simple approach that uses the 
notion of aspect to solve some common security 
implementation problems. Its applicability to more complex 
situations has not been proven yet. 

5.7.3 DADO 
DADO [135] standards for Distributed Adaptlets for 
Distributed Objects. It extends support of cross cutting 
concerns to a distributed, heterogeneous environment. Most 
aspect technologies are based on a single language, and they 
operate on a single computer. DADO is a middleware 
supporting aspect technology. It uses a language to model 
the concerns in the system, but the implementations of the 
model can be achieved through different languages, and 
they can reside on different computers.  

DADO extends CORBA, the accepted distributed object-
oriented architecture standard. In DADO, a client and a 
server form a pair of adaptlets. An adaptlet is described 
using an extended interface definition language (IDL). In 
additional to standard method declarations, the interface of 
an adaptlet can have two more kinds of methods. The first 
kind of methods is called advice. An advice method 
implements concerns such as security. It is executed every 
time some other base methods are executed, subject to a 
binding specification. The second kind of methods is called 
request. A request is an asynchronous message sent by a 
client or a server during the execution of an advice method. 
The client and the server in an adaptlet can use the keyword 
“that” to refer to the other side of the pair, similar to the use 
of the keyword “this” in standard object-oriented 
programming.  

DADO extends the AspectJ [72] pointcut language to 
express pointcuts in a client or server adaptlet. A compiler 
compiles an adaptlet IDL description, which specifies all 
IDL level events needing adaptlet processing and the 
information needed for the processing. To trigger the 
appropriate processing logic when certain events happen, 
DADO provides a variety of strategies. These strategies 
maintain the language independence of middleware. Both 
source code instrumentation and binary-only 
instrumentation are used so that the trigger process is 
transparent to the application and security development. 
DADO packages needed information into the per-invocation 
service context, and sends returned information back along 
with the standard CORBA message flow.  

DADO supports a limited form of dynamic service discovery 
and composition. It encodes available services in a server 
reference. When a client retrieves the reference, it decodes 
and discovers the available services from the server. The 
server pointcuts are assumed mostly static. When the 
available services change, an exception is thrown to the 
client, and the client is expected to retrieve a new reference.  

DADO stresses type-safety and uses strong typing in 
compilation and marshalling. This is not a problem in a 
single language environment and it is sometimes ignored by 
other component composition work. 

DADO can be used to support security concerns. Like other 
aspect technologies, the basic mechanism is the injection of 
proper security method calls along the message flow of base 
functionality. Due to classifying methods into advice and 
request, the communication pattern is richer and clearer. 
For example, to support the authentication of a client, the 
client can execute the contactAuthentic advice before it 
contacts the server, and the server can execute the check 
advice before it allows the client to proceed. During the 
execution of contactAuthentic, the client can issue a 
register request to the server, so the following check by 
the server allows the client to proceed.  

DADO adopts standard aspect technology in a distributed 
and heterogeneous environment. As an extension to 
CORBA, DADO uses generated stubs/skeletons to support 
heterogeneity. This CORBA influence is novel. It makes 
DADO suitable for situations where traditional single 
language-based aspect technologies are insufficient. 
However, DADO is also limited by its CORBA origin. First, it 
is heavily dependent on client/server architecture. Its basic 
entity, adaptlet, is a pair of client and server. This limits its 
use in other situations where the roles of a client and a 
server can change or the roles do not exist at all. Second, its 
composition mechanism is static. Its current form relies on 
compiling IDL descriptions. Relying on IDLs imposes 
challenges for providing the flexibility similar to Meta 
Object Protocols (Section 5.4) and dynamic context-
sensitive compositions (Section 5.7.4).  

5.7.4 Lasagne 
When combining functional components together with 
other non-functional aspects, the combination should be 
modular so that only necessary components and aspects 
specific to the requirements are integrated. All components 
and aspects thus integrated should interact in a consistent 
manner, exposing no potentially incompatible behavior. The 
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integration should also be dynamic and adaptive to evolving 
situations.  

Composition techniques based on simple class wrappers 
have two limitations. First, they suffer the identify 
management problem, where the wrapper has to maintain 
proper reference and encapsulation over the wrapped object 
(see Section 5.4.2). Second, the wrapping is static. Only 
wrappers can access wrapped classes, and they cannot adapt 
the access to dynamic context by freely integrating with 
other wrappers.  

Lasagne is an integration solution that separates the 
functionality of wrappers from how the wrappers are 
combined and used [126]. It has four basic concepts. First, 
Lasagne uses a component identity to unite and hide the 
component instance and the wrapper around it. Second, it 
introduces the concept of extension, which is the context or 
service where components are composed. Third, it 
introduces a composition policy external to the components 
and extensions. The composition policy specifies how the 
components and extensions should be composed together in 
a collaboration. Finally, an interceptor can intercept 
message exchanges, inspect contextual properties, and 
dynamically modify compositions to achieve system wide 
consistency.  

A wrapper, illustrated below in Figure 21, can be a decorator 
wrapper performing additional pre and post processing or a 
role wrapper extending the original interface. Each 
component provides a generic dispatch mechanism called 
variation points to support dynamic composition of 
wrappers. During deployment, an extension can specify how 
different wrappers are to be weaved together by delineating 
the method invocation sequence for the wrappers. At run 
time, the interceptor dynamically decides the combination 
of extensions based on requirements and contexts.  

 
Figure 21, Wrapper in Lasagne, from [126] 

Lasagne supports applying a consistent policy to a 
collaboration where several components are composed 
together.  This can be used to enforce a dynamic security 
policy tailored for the collaboration. In [59], a dynamic 
monitor is created for each task to enforce unique policies 
coming from potentially conflicting sources. The context-
specific dynamic composition, along with the merging of 
component identities, is illustrated in Figure 22, in 
comparison against traditional static composition.  

In summary, Lasagne merges wrappers into united 
components, separates composition from encapsulation, 
and supports context-specific composition. It uses a 

powerful dispatching mechanism to support flexible 
composition. 

5.7.5 Component Virtual Machine 
Component Virtual Machine (CVM)[30] is another novel 
approach that treats security as a general aspect of software 
and leverages Meta Object Protocol in its solution. It tries to 
overcome limitations of current security technologies based 
on containers and aspects.  

A component container provides infrastructure for 
component-based application, such as location, resolution, 
invocation, and transaction. The current generation of 
component containers, like those available in CORBA, 
COM+, .NET, and Enterprise JavaBeans, imposes several 
limitations on components developed for them: 1) The 
component designer choose the specific targeting 
environment, making it very difficult, if not impossible, for a 
component user to retarget a component to a different 
environment. 2) Components have to implement callback 
functions defined by the environment. 3) Partly because of 
the above two issues, component users do not have enough 
flexibility in changing components. 4) Most importantly, the 
security features of the environment are predefined, and 
component users cannot define new security services.  

 
Figure 22, Composition of Lasagne, from [126] 

Current aspect-oriented programming techniques do not 
provide flexibility. They operate on methods of source code. 
The focus is the transformation of code, not the 
interpretation of code. Decisions about the location and the 
content of those transformations are mostly made at 
compile time, leaving little flexibility for later time 
customization.  

To tack these problems, Duclos et al. propose Component 
Virtual Machine (CVM), an approach combining the 
component container technology with aspect-oriented 
programming. The architecture is shown in Figure 23. They 
still adopt a container based on Enterprise JavaBeans, but 
eliminate the rigidity of services as much as possible. The 
container intercepts invocations on components so that all 
invocations are regulated by the container. Thus the 
container provides a virtual machine for components, from 
which the components receive services needed for their 
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functionality. The AOP approach they adopt operates on the 
component level, instead of the method level used in 
traditional AOP. The actions of each aspect also affects the 
execution environment (the virtual machine), in addition to 
the component itself.  

The Component Virtual Machine utilizes Meta Object 
Protocol (see Section 5.4). It provides mechanisms through 
which the component user can define new policies for 
component execution, so adding extra functionality to the 
base capability of the component is easy and flexible. 

 
Figure 23, Component Virtual Machine, from [30] 

Two languages, an Aspect Description Language and an 
Aspect User Language, are defined. The former allows the 
component designer to describe new aspects, specifying 
where the aspect should be applied, what actions should be 
executed when the aspect applies, and how these aspects 
can be generated and weaved. The latter permits the 
component user to express how the aspect should be applied 
and supply the context and information needed in applying 
the aspect. While as many callbacks as possible are 
implemented outside components, components still have to 
implement most of the callbacks because only the 
component designer has the full knowledge to correctly 
accomplish this task. Figure 24 describes the meta models 
for components and aspects. 

 
Figure 24, Meta Models of CVM, from [30] 

An access controller can be applied as an aspect on a 
component so each invocation on the component will only 
succeed when the invoker presents satisfactory credentials. 

An aspect as well as its generation is defined with the Aspect 
Definition Language. Applying the aspect before each 
invocation of the component is described using the Aspect 
User Language. The Component Virtual Machine generates 
the necessary code and inserts it at appropriate places to 
enforce the access control policy.  

Component Virtual Machine is a combination of Meta 
Object Protocol, the aspect technology, and container 
approaches. It shows great promise in handling security 
concern modularly and flexibly. While its intention to 
eliminate callbacks might not be fully fulfilled, its adoption 
of a deployment mechanism (the container/virtual 
machine) and use of aspect definitions by end users can 
improve the flexibility in security. More experiments are 
needed to evaluate its capability.  

5.7.6 Feature Solution  
Feature-Solution [26] graph is a graph that links 
requirements (features) to possible solutions. It captures 
design knowledge. The graph can be used in a design 
process named top-down composition. When following the 
general top-down decomposition approach to decompose 
the system from the most abstract level down to the most 
concrete level, at certain points where the decomposition 
can be achieved by reusing existing designs, those designs 
are integrated, so the system is at least partially composed 
out of available solutions, like the bottom-up composition 
approach.  

When reusing existing solutions to satisfy a feature 
requirement, the solutions should provide variation points 
accommodating customizations for the new feature. In 
certain cases, more than one variation points are touched to 
accommodate a single feature, like security. For example, to 
add encrypted communication between a client and a 
server, not only is the client modified to include an 
encryption but the server is also modified to include a 
compatible decryption. This design approach is named 
Aspect-Oriented Programming at the Architectural Level, 
and is claimed usable as an effective approach to tackle the 
problem of adding cross cutting aspects like security into 
applications.  

This approach raises interesting questions that should be 
answered before its claim can be fulfilled. First, larger and 
deeper knowledge about design should be captured in 
Feature-Solution graphs before its treatment of cross-
cutting aspects can be evaluated with more assurance. 
Second, the issue of automation support should be explored. 
The current approach includes a significant portion of 
manual work. Finally, how well the approach suits security 
and what kind of security can be effectively treated remains 
to be seen.  

5.7.7 Discussion 
Separation of concerns is an important theme of software 
engineering. The aspect technology provides a natural 
mechanism to automate reasoning and constructing 
concerns and their separation. It shows promise for 
modular and secure software, as demonstrated by 
applications in previous sections. However, the current 
approaches are still limited to some simple situations such 
as access control and encryption/decryption. How the 
aspect technology can be extended to solve large-scale 
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problems in a systematic fashion still remains a research 
question.  

JAC (Section 5.7.1) provides an option for Aspect-Oriented 
Programming other than AspectJ. AOSF (Section 5.7.1) 
retrospectively applies the notion of aspect to traditional 
procedural languages which are still used for a large fraction 
of secure software development. DADO (Section 5.7.3) 
extends aspects from a single programming language to a 
heterogeneous environment using middleware technologies. 
All these efforts expand the applicability of aspect 
technology. 

Lasagne (Section 5.7.3) proposes a different mechanism that 
combines separate concerns dynamically to suite context-
specific needs. Component Virtual Machine (Section 5.7.5) 
uses a container to provide support for concerns. Both 
techniques open new possibility to introduce additional 
concerns into the base functionality.  

The Feature Solution (Section 5.7.6) approach is still very 
rudimentary. How concerns can be expressed more 
explicitly during the analysis and design stages and how 
they can be effectively enforced in the implementation and 
deployment stages is still open for further research.  

5.8 Architectural Approaches 
Software architecture has been proposed as an effective 
method to design and analyze large and complex software 
systems. Most of the previous work has focused on 
functionality. This section will examine its support for 
security. Some questions specific to an architectural 
approach are: Does the technique employ a formal 
architecture model? If there is a formal architecture model, 
are connections between components buried in an ad hoc 
manner, or are the connections abstracted as first class 
connectors? If connectors are used, how do they facilitate 
the expression and enforcement of security? 

This section begins by examining security extensions of 
standard object-orientated techniques (Section 5.8.1). It 
then turns to approaches without an explicit notion of 
connectors (Section 5.8.2, 5.8.3, and 5.8.4). The next 
discussion is about architectural models supporting explicit 
connectors (Section 5.8.5 and 5.8.6). The issue of 
architecture evolution is discussed in Section 5.8.7.  

5.8.1 Object-Oriented Labeling 
Like modeling software architecture with standard object-
oriented notations [88], some design techniques extend 
object-orientated methodologies to support security. 
Herrmann introduces a methodology to analyze information 
flow security [52]. The theoretical foundation of the 
methodology is a decentralized labeling model. The meta-
model used in the methodology is the Common Criteria [19]. 
To facilitate the adoption of the methodology, a tool based 
on graph rewrite system is also developed.  

A label in the decentralized labeling model [97] identifies a 
set of principals. One of them is the owner; the others are 
readers who are granted reading access by the owner. An 
“act for” relationship can be defined between principals so 
one principal can have the same reading privilege as the 
other principal. Operators are defined over labels to 
generate more restrictive or less restrictive labels. Each 
component, interface, method, and field of an object-

oriented design model is assigned a label. A label serves as 
an access control policy to define what kind of access is 
granted to which principal. The decentralized labeling 
model facilitates static analysis of information flow security 
for a model so labeled. 

The Common Criteria [19] defines a set of classes for 
concepts in a security evaluation process. An asset is a 
resource needing protection. It has vulnerabilities, so it is 
exposed to threats. Risks are associated with these threats. 
Countermeasures can be deployed to fight the threats. 
However, countermeasures may contain vulnerabilities 
themselves, so more countermeasures are needed. For each 
asset, vulnerability, risk, threat, and countermeasure, a 
number is assigned to reflect its relative value, severity, or 
effectiveness. 

A graph rewrite system is a set of rules used in transforming 
graphs. Each rule specifies a pre-pattern that identifies the 
graph before transformation, a post-pattern that specifies 
the graph after transformation, an application function that 
must be met by the attributes of the original graph, and an 
effect function that the attributes in the transformed graph 
will exhibit.  

Guided by the meta model of the Common Criteria, the 
object-oriented labeling methodology assigns a numeric 
value to each data item described in the object-oriented 
model. It also labels each component, interface, method, 
and field to reflect the current access control policy. Using 
graph rewrite rules, the full access control relationship is 
computed, so is the asset value of each data structure and 
data storage component. If some of the more precious assets 
might be exposed to malicious principals, a threat is 
identified, and the corresponding risks are assessed. If the 
risks are within the acceptable range, then the object-
oriented model is satisfactorily secure. Otherwise, either the 
label needs relabeling, or countermeasures should be 
deployed to attack the threats. The effectiveness of the new 
countermeasure needs to be reevaluated. Since 
countermeasures might bring in new vulnerabilities, this 
process will iterate until the risks fall into a range acceptable 
to the security assessor.  

This methodology integrates formal information flow 
analysis into mainstream object-oriented design techniques, 
resulting in a usable approach that can enhance the security 
of design. Its use of a graph rewrite system can easily 
integrate more knowledge about security analysis into the 
design process, if the knowledge can be embodied in a graph 
rewriting rule. 

The assessment on security is reached through a subjective 
evaluation process, thus the assurance provided by the 
methodology is at best qualified. Currently the methodology 
can only utilize one kind of formalism (object structure) and 
evaluate designs statically. Integrating multiple kinds of 
formalism (object behaviors) and expanding the evaluation 
into a dynamic environment is worth pursing. 

A similar approach is MOMT [81], a methodology that adds 
multilevel security to the original Object Modeling 
Technique . The basic extension is to add a security label to 
attributes and operations of objects and classes in the static 
model, and add a security label to the events produced in 
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the dynamic model. The MOMT methodology is not widely 
used, possibly due to its incompleteness. 

5.8.2 ASTER 
Bidan and Issamy proposes one of the first techniques to 
address security issues using an architecture description 
language supporting connectors [12]. Based on security 
requirements of components to be composed, the approach 
uses the specification matching technique [138] and 
composes a customized connector out of base connectors 
and system-provided connectors to connect the components 
and meet those requirements.  

In canonical software architecture paradigm, a connector 
handles communication issues between components. The 
quality of service of communication, such as security, can be 
handled via newly formed connectors composed of existing 
application-level connectors and system connectors [121]. 
This connector composition approach has the following 
benefits: 1) separation of concerns: computation, 
communication, and QoS of communication are handled by 
different constituent parts of the architecture; 2) limited 
impact on the existing architecture; 3) assurance of 
enforceability by the underlying system. 

The proposed approach addresses three types of security 
properties: encryption, authentication, and access control. 
An encryption specification of a component specifies the 
parameters of the encryption, such as the algorithm used, 
the key size, and the session length. A component might use 
a set of encryption algorithms and have different levels of 
trust for each algorithm, with the highest trust on the most 
secure encryption. Based on the specifications, if two 
components can each find an algorithm sufficiently trusted 
and the algorithms are compatible (probably using the same 
algorithm and accepting keys of the same size), the 
components are bound together, and the connector will be 
the most secure connector that can be established between 
the two components. 

A similar process is applied to match the authentication 
requirements of the components. Each component specifies 
the authentication protocols that it can use and the level of 
trust of each protocol. The most trusted protocol that can be 
mutually applied will authenticate the components.  

A different specification is used to specify access control 
policies [11]. For each component, the specification 
stipulates the types of subjects (classifications) and the 
types of access these subjects will be granted (access rules). 
When composing two components together, the composite 
classifications can be the union, intersection, or product 
from the classifications of the components. The composite 
access rules can be the logical conjunction or logical 
disjunction of the access rules of the components. Two types 
of match are defined to compare access control policies: a 
plug-in match if one policy subsumes the other and an exact 
match if they are equal.  

The ASTER configuration-based environment is extended to 
compose components having security specifications. The 
environment is based on a module interconnection 
language, and it can be used for run-time composition of 
components. 

This approach is among the first to specify security 
requirements for components and form composition based 
on the requirements (see also Section 5.5). The approach is 
supported by a configuration-based design environment. 
The approach has the following limitations: 1) The security 
specification is not very expressive. It is limited to certain 
aspects of certain properties, such as algorithms of 
encryption and protocols of authentication. 2) The match of 
the specifications is primitive. It is mostly a selection 
process based on parameters of the specifications. 3) Even 
though the approach argues for composition of connectors, 
it is still oriented towards module interconnection, lacking 
an explicit notion of connector that stores and enforces the 
composite security property. 4) The approach does not 
directly address how composition can be applied to 
composite systems.   

5.8.3 System Architecture Model 
System Architecture Model (SAM) is a methodology that 
can be used to model and analyze security of system 
architectures [27]. The methodology models security as a 
global constraint on the system architecture. It then 
propagates the constraint down to the components, and 
verifies that the components satisfy the constraint 
collectively. The methodology then applies the same process 
to model and analyze each component individually.  

The System Architecture Model (SAM) integrates a model-
oriented formalism, Petri net, and a property-oriented 
formalism, Temporal Logic. Its lower level (proposition 
level) utilizes Place-Transition nets and Real-Time 
Computation Tree Logic, so the model can be automatically 
analyzed. At the higher level (first order level), it adopts 
Predicate/Transition nets and First Order Temporal Logic, 
because they are more expressive. The security modeling 
and analysis is based on the higher level notions. Petri nets 
describe components and connectors, and Temporal Logic 
specifies architectural constraints. 

The methodology consists of the following steps [27]: 

1) Construct a top-level secure system architecture model.  

2) Specify system wide architectural security constraint 
patterns. These patterns are expressed in temporal logic, 
and they involve only ports of the components. 

3) Decompose the system wide security constraint patterns 
to constraint patterns on components.  

4) Verify the consistency between the system wide 
constraint patterns and the component-level constraint 
patterns. The verification generally is not decidable. 
However, since the component constraints are derived from 
the system wide constraints and the architecture connects 
components together, a smaller Petri net can be designed to 
replace each component, using conversion guidelines 
delineated by the methodology. The resulting larger and 
executable Petri net can be used to verify the consistency 
between constraint patterns at two levels.  

5) Incrementally design and verify components. Apply the 
about four steps for each component. 

The overall methodology is illustrated in Figure 25, which 
shows the environmental constraints and component 
constraints at the high level, and how constraints on one 
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component are inherited as the composition constraint in 
the low level. 

The SAM methodology is applied to model the Resource 
Access Decision Facility of CORBA. It is verified that the 
architecture satisfies the security constraints: the access 
control decision is always in accordance with the current 
policy.  

This methodology can model the security of a system 
architecture in a systematic and formal manner. It can 
assure that a system composed from components satisfies 
the security requirements. It claims to be one of the first 
such efforts that model architectural security in a 
composable and verifiable fashion.  

The methodology achieves scalability through the classical 
divide-and-conquer mechanism. Once the constraints on 
each component are verified to preserve the architectural 
constraints, each component can be designed and analyzed 
separately. As long as a component conforms to its part of 
the full contract, the global property will not be affected. 

 
Figure 25, System Architecture Model, from [27] 

The SAM methodology is a top-down approach. It starts 
with the security requirement of a system, and assigns 
responsibility to each component, so their composition can 
be verified for satisfying the requirements. The methodology 
could not be applied in a bottom-up manner, where the 
composite security from composing components needs to be 
reasoned from the security of those components. 

The methodology also models security as a form of 
correctness. It treats security as a property that can be 
expressed by first order temporal logic. While this can cover 
a large set of problems, the approach cannot address 
problems in the covert channel domain. This methodology 
is an architectural level integrity verification methodology 
for safety composition and refinement (see Section 5.1.1 and 
5.1.2). 

In step 3 of the methodology, how to decompose the global 
constraints into each component is not always 

straightforward. With a given architecture, there can be 
several alternatives to allocate constraints. How to decide 
the trade offs of the allocations is worth exploration. More 
challengingly, when the architecture is still under design 
and it can still be changed to accommodate different 
security property, performing such an allocation and trade-
off analysis becomes even more difficult. 

Since the System Architecture Model is based on Petri nets, 
its notion of connector is different than a canonical one. The 
“connector” is actually the transitions between places, not 
the usual notion of communications between computations. 
Therefore, the methodology does not have a step to 
incrementally design and verify “connectors”. While the 
temporal logic-based formalism is applicable to other 
software architecture description languages, extrapolating 
the Petri net specific mechanism might not be very 
straightforward. 

5.8.4 Colored Petri Net 
A special type of Petri Nets, Colored Petri Nets, is also used 
to analyze security [41]. A Colored Petri Net associates a 
type (its “color”) with each place of a Petri Net. It also uses 
guards to specify conditions for firing a transition. 
Expressions can also be attached to transitions to describe 
further actions.  

A software architecture containing components and 
connectors is mapped into places and transitions of Petri 
Nets. More information is captured through colors of places 
and guards and expressions on transitions. A Colored Petri 
Net is executable, so a simulator can be used to simulate the 
architecture and collect execution information.  

An example given in [41] is a simple model for security of a 
network. The network is modeled as a transition. The 
weakness of cryptography, the importance of information, 
and the ease of wiretapping are modeled as expressions on 
the transition and used as parameters to calculate a value 
designating security on the network. 

Other quantitative approaches construct a queuing model or 
a Markov Chain Model and have to use different models for 
different systems and different types of quality. Compared 
to those models, the Colored Petri Net approach can handle 
different types of quality of different systems in a uniform 
manner. However, this approach is not suitable for general 
security analysis. As pointed out in [41], the approach is best 
suited for qualities with the following properties: 1) The 
quality can be calculated using numerical factors 2) the 
numerical factors can be assigned to components and 
connectors, and 3) the calculation can be performed along 
the execution of the architecture. Reliability is a good 
example of such qualities. Security, on the other hand, does 
not belong to this category.  

5.8.5 Connector Transformation 
Given the importance of connectors in architectural 
development [89], constructing them effectively is of great 
importance. Handcrafting each connector can be very 
expensive. Existing connectors do not always provide all 
required qualities. Like composing general application using 
existing components, connector composition is becoming 
indispensable to software development. Spitznagel and 
Garlan proposes a set of operators that can be used to 
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transform an existing connector into a new connector that 
provides required security property [120].  

The motivating problem of the approach is to add security 
property to a generic communication mechanism. In the 
example given in [120], it is to add Kerberos authentication 
support to Java Remote Method Invocation. One possible 
solution is to ask the developer to modify the original 
application that uses the communication mechanism. This 
solution is very expensive, and the result is not 
maintainable. A second possibility is to modify the 
generator generating stubs for the communication 
mechanisms so it provides the security capability at 
appropriate locations. This method requires expertise of the 
communication and security mechanisms, and it cannot 
scale to other properties because a new property will require 
further modification of the modified mechanism.  

The authors propose a solution employing a set of 
transformations on the original connector to produce a new 
connector that can meet both the communication and 
security requirements. A tool can be developed to automate 
the process. This transformational method lowers 
requirements on the knowledge about the original 
mechanism. The general transformational method could be 
applied again on the resulted connector when the 
mechanism needs to provide other qualities.  

The transformation method is outlined in Figure 26, where l 
designates communication libraries, generated stubs, etc., 
below the application level, s represents low level 
infrastructure services, t stores data and tables for 
information like locations of communicating parties, p is a 
policy specifying the proper use of these parts, and w 
collects the formal specification describing the connector’s 
proper behavior. 
 

 
Figure 26, Connector Transformation, from [120] 

They argue that the transformations on connectors should 
balance between formalism and practice, and the 
transformations should be useful, general and analyzable. 
They propose the following transformations for secure 

communication: data transformation that changes the 
format of data exchanged, splice that combines two binary 
connectors into one new binary connector, adding a role 
that enables adding a new party to the interaction, session 
that makes a stateful connection stateless or vice versa, and 
aggregate that puts a set of connectors under the control of 
one controller.  

The Kerberos support is successfully added to Java RMI 
after these transformations. The engineering effort involved 
is reasonable, but the advantages gained are significant.  

They admit that their current technology only handles 
different types of transformations applied on a single type of 
connector, because a transformation requires knowledge of 
the specific connector. Finding a set of general 
transformations applicable to many types of connectors is a 
great challenge. The current formalism used in describing 
the transformations is still limited to the specific connector 
type. 

Transformational construction of connectors can be an 
effective way of providing extra functionality in connectors. 
However, finding a set of transformations useful, general, 
and analyzable remains a big challenge.  

Connector transformation can be considered as one method 
to introduce more aspects onto the base communication 
capability. The aforementioned aspect methodologies (see 
Section 0) provide a general framework that can handle 
many different aspects, but not much support specific for 
security is provided. The connector transformation 
methodology utilizes a set of transformations useful in 
supporting security. Which methodology is more powerful 
and more secure, and whether a combination of both is 
possible, remain open research issues. 

5.8.6 SADL 
Architecture Proof. Secure Software Architecture [96] is 
one of the few approaches that directly deal with security at 
the architectural level. Based on the correct refinement 
approach presented in [95], the Secure Software 
Architecture approach presents three unique features: it 
supports not only horizontal decomposition of architectures 
but also vertical decomposition between different layers of 
abstractions, it maintains a correctness retaining mapping 
between different layers, and it utilizes a canonical 
architecture description language that supporting property 
refinement. The approach is illustrated in Figure 27.  

They use the approach to prove the Bell-LaPadula [9] 
security of a secure extension to the X/Open Distributed 
Transaction Processing standard (SDTP). They argue that 
proving the security property at an architectural level on a 
standard has the advantage that any compliant products will 
possess the same security assurance without further proof. 
They develop different security extensions to the original 
architecture and prove that each extension preserves the 
required security.  

In the SDTP proof, the DTP standard partitions a 
distributed transaction processing system into three 
components: the application component that is the initiator 
of the transaction, the resource manager that manages 
resources of the transaction, and the transaction manager 
that coordinates the transaction. Three possible 
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architectures that enforce Bell-LaPadula security are: 1) Put 
all three components into a single security level. 2) Put the 
application and the resource manager at different levels, 
connect them through a MLS filter that enforces security, 
and use a full MLS transaction manager. 3) Use a full MLS 
application component, a full MLS resource manager, and a 
full MLS transaction manager. They prove that each 
architectural variation can preserve the required security. 

 
Figure 27, Secure Software Architecture, from [44] 

The reasoning power of the architecture definition language 
SADL is based on logic. During the refinement process, the 
mapping established between the higher level abstraction 
and the lower level abstraction must be both a theory 
interpretation and a faithful interpretation. That is, a true 
property at the higher level abstraction is also true at the 
lower level, and a false property at the higher level is also 
false at the lower level. In other words, the lower level 
architecture implements the higher level architecture 
exactly. This is based on a completeness assumption that 
assumes all true statements at each level of abstraction can 
be derived from the specifications of that level. As will be 
clear later, this is a rather stringent requirement.  

After establishing the mappings between the proposed 
secure architectures, they manually prove that these 
mappings actually preserve the security properties.  

Implementation. The effectiveness of the architectural 
refinement methodology is demonstrated by implementing 
the secure distributed transaction processing (SDTP) 
architecture proposed above [44]. The demonstration 
reveals important properties of the methodology. 

The most important objective of the implementation case 
study is to determine whether applying transformations 
using only faithful interpretations is sufficient to derive the 
implementation level description from the most abstract 
descriptions. The non-definitive conclusion from the case 
study is that it is very difficult or even impossible. A less 
stringent kind of transformations always preserving security 
is showed to suffice for the derivation, but it requires very 
strong preconditions, which severely affects the applicability 
of such transformations. Eventually they have to introduce 
transformations that do not always preserve security, and 
they will check to assure that such transformations retain 
security in each case. To prove that the transformations still 
preserve security, they utilize the same transformations 

used in architectural descriptions to prove the security 
perseverance of these transformations. They call this notion 
as “proof-carrying architecture” because of the carrying 
along of transformations from architecture. Combining 
transformations that always preserve security and 
transformations that can be checked to preserve security 
together, they accomplish the goal of deriving a low-level 
secure architecture from an abstract description.  

The study also demonstrates that rearchitecting can be an 
effective method to introduce security. Security is not an 
inherent property of the original architecture standard. It is 
an add-on feature after the architecture is established. The 
methodology shows how to introduce and verify security on 
a legacy architecture. 

Transformations are a common software production 
technique. While they cannot achieve everything through a 
limited set of transformations, they verify the validity of 
transformations that they believe are generally useful. 

Also, they can derive the final implementation from the 
lowest “implementation-level” descriptions 
straightforwardly, due to the formality of facilities from the 
selected programming language. The argument for the 
programming language dependence is that this is necessary 
to assure no significant gap exists between the lowest level 
description and the code, and the confidence gained in the 
transformations and checking is not lost in the final step of 
software construction. 

Discussion. This experience suggests that employing 
mathematically sound transformations only, such as faithful 
interpretations or security preserving transformations, is 
too difficult for practical applications of the methodology. 
However, loosening the stringent requirements on 
transformations and checking security after transformations 
with the connection embodied in architectural descriptions 
is very effective in verifying the security of the architecture. 
This is also demonstrated in [27], where verifying the 
consistency between architectural constraints and 
component constraints is facilitated by the fact that the 
latter is derived from the former.  

A common obstacle against a transformation and proof-
based approach is that it requires significant expertise and 
is highly labor intensive (see also Section 5.1.2). An 
automated tool simplifying the application of the 
methodology is possible, with the insights gained from the 
effectiveness of rearchitecting, the available stock of general 
and verified transformations, and the easiness of producing 
code from low level descriptions,.  

They plan to use light weight formal approach, design a lot, 
specify some, and prove just a little [122]. This is more 
practical than a formal method that requires great efforts 
from methodology experts. 

5.8.7 Law-Governed Architecture 
Law-Governed Architecture [92] is a methodology arguing 
for not only the description of an architecture model but 
also its enforcement. The benefits of an enforced 
architecture model are two folds. First, it can bridge the gap 
between a descriptive architecture and the system, enabling 
reliable reasoning about the system. Second, due to its 
carefully circumscribed flexibility, developers can enforce 
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invariants of evolution when the system evolves during its 
lifetime. 

The focus of the Law-Governed Architecture approach is the 
evolution of a system in its operational context. An evolving 
system models three aspects of the system. The first is the 
system itself. The second is the explicit rules (called laws) 
that govern the structure of the system, the evolution of the 
structure, and the evolution of the laws. The third is the 
environment in which a system lives and the laws are 
enforced.  

The laws can be classified into two categories. The system 
sub-laws govern the structure and behavior of the system. 
The evolution sub-laws regulate the development and 
evolution of the system and the laws themselves. Based on a 
set of initial laws, a system can evolve into other forms. 
During the evolution, certain rules are enforced, and these 
rules are called evolution invariants. Strong invariants are 
those invariants that not even the developer or the manger 
can change.  

Different types of systems, different kinds of laws, and 
different enforcement techniques can be used in Law-
Governed Architecture. The laws can be enforced statically 
and centrally, through a persistent object base describing all 
program modules, rules of evolution, meta rules about rules 
creation and modification, and builders who conduct 
development and evolution. Or the laws can be enforced 
dynamically and distributedly, by intercepting message 
exchanges between architectural components. 

The Law-Governed Architecture can be applied to enforce 
secure operation and evolution of a system. For example, a 
set of rules can be defined to require that one component 
cannot access data in another component. Rules can be 
refined into more detailed rules. Or they can also be relaxed 
to allow more permissive accesses. However, the strong 
invariants should never be violated.  

In sum, Law-Governed Architecture not only models the 
architecture of a system but also specifies and enforces its 
evolution, through a set of reflexive rules. The rules can 
specify the security properties of the system, among other 
aspects. 

The limitation of the Law-Governed Architecture 
methodology lies in the expressiveness and enforcement of 
the laws. The laws must be enforceable, and the 
enforcement should be reasonably efficient. This limits laws 

that can be imposed. The methodology suggests that there 
still are many useful laws within the limit. This issue 
remains an open research problem 

5.8.8 Discussion 
This section discusses several software architecture-related 
solutions for the modular secure software problem.  

The simple extension of standard object-oriented notions 
with security information (Section 5.8.1) can be very useful, 
when such a model comes into existence at a later stage of 
design. They can serve as a prelude to the secure program 
partition method (Section 5.3.6), whose information flow 
security requirements on programs can derive from the 
secure object-orientated design models.  

However, security should be addressed as early as possible. 
This naturally leads to an architecture-based approach. 
Simple extensions to module interconnection models 
(Section 5.8.2) do not provide a formalism rich enough to 
express and reason about architectural security concerns. 
Even models with a formal underpinning (Section 5.8.2) can 
mix the artificial requirements of the formalism and the 
underlying semantics of the real communication and hinder 
the ability to reason about security in certain cases. 

An architecture model that features connectors (Section 
5.8.5 and 5.8.6) can facilitate the analysis and design of 
security, because the security issue can be expressed clearly 
at an early stage, and reasoning about, composing and 
implementing security can be allocated into relevant 
connectors.  

An architecture model can also guide the proper evolution 
of a system (Section 5.8.7). The model can serve as a basis to 
prevent the system from degenerating into insecure 
variants. This remains a big challenge for researchers.  

6. CONCLUSION 
The surveyed technologies are summarized in Table 3, using 
the framework developed in Section 4. Shades are used to 
separate categories of techniques from each other.  

A rather coarse rating (fair, good and excellent) is given to 
each technique, based on subjective judgment of its 
expressiveness, applicability, flexibility, maturity, and 
potential for solving the modular security problem. 

 

Table 3, Summary of Surveyed Techniques 

Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating 

Integrity 
Verification, like
CSS [99, 100] 

Access Control Logic Formula Refinement Top-down 

 

Logic + PVS Good 
(Applicable, 
proof 
intensive) 

Trace-based 
Information 
Flow, like SIF
[84, 86], [80],
[47]  

Information 
Flow Security 

Trace Product, Cascade,
Feedback 

Bottom-up Trace Good 
(Theoretically 
appealing, 
few 
applications) 

Process Algebra-
based 
Information 

Information 
Flow Security 

Process Parallel execution Bottom-up Process Algebra +
Model Checking  

Good 
(Theoretically 
appealing, 
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Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating 

Flow, like SPA
[36, 37, 39],
[110] 

few 
applications) 

Application-level
Wrapper, like
[140] 

Access Control Application Wrapped application Top-down  Fair  

(Ad hoc) 

Library 
function-level 
Wrapper, [8] 

Access Control Function Call Function call
interception 

Bottom-up Mediator Excellent 

(Practical 
solution) 

System Call-level
Wrapper, 
Hypervisor [93,
94] and GSW
[40] 

Access Control System Call System call interception,
Kernel Loadable Module 

Bottom-up Wrapper Definition
Language 

Excellent 

(Practical 
solution) 

Gateway Agent
[14] 

Access Control  Gateway Agent Bottom-up Prolog-like 
knowledge base 

Fair 

(Ad hoc) 

SAW [24, 25] Mandatory 
Access Control 

Database Secure Access Wrapper Top-down Lattice mapping and
labeling graph 

Excellent 

(Practical 
solution) 

MLS METEOR
[62, 63] 

Mandatory 
Access Control 

Single-level 
Workflow 

Pump [65], Policy
servers 

Top-down Design Environment Good 

Workflow 
Partition [7] 

Information 
Flow Security 

Conflict-free 
Workflow 

Neutral Agent Top-down Workflow trust
relationships 

Good 

JIF/Split [97] Information 
Flow Security 

Conflict-free 
subprogram 

 Top-down Hosts trust
relationships 

Good 

SafeBot [35]  Wrapper Agent Knowledge base Bottom-up Ontology language,
compiler, and
library 

Fair 

(Over 
Ambitious) 

Actor [6] Access Control Actor Meta level events Top-down, 

Bottom-up 

 Good 

(Has 
potential) 

Security Meta
Object [106, 107]

Access Control Object Security Meta Objects Top-down 

Bottom-up 

 Fair  

(Limited) 

Simple MOP
[107] 

Access Control Object Compile time tagging +
Stub class  

Top-down 

Bottom-up 

Tagged Java source Good 

(Practical) 

Kava [129, 131] Access Control,
Clark-Wilson  

Object Bytecode rewriting  Top-down 

Bottom-up 

Kava Class Loader,
Binding 
specification 

Excellent 

(Practical, 
Flexible) 

Computer 
Security 
Contract [68,
69] 

Access Control Component Contract Negotiation Bottom-up Logic, Active
Interface 

Good 

(Has 
potential) 

cTLA Contract
[53] 

Access Control Logic Formula  Top-down Temporal Logic Good 

(Has 
potential) 

ICARIS [23]    Bottom-up  Fair 

(Limited) 

CRSS [32]  Low-level service Select low-level services
for high-level service 

Bottom-up  Fair 

(Limited) 
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Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating 

IDIAN [33] Intrusion 
Detection 

Intrusion 
Detection 
Component 

Events, Negotiation Bottom-up Formally specified
components and
negotiation protocol 

Good 

(Domain is
limited) 

PSF [58] Role-based 
Access Control 

Views generated
from object 

Dynamic composition,
monitored connection 

Top-down 
Bottom-up 

Logic-support 
credential 

Good 

 

A-TOS/JAC 
[102] [103] 

Access Control Base + Aspect Meta Object, Meta Class Top-down, 
Bottom-up 

 Excellent 

(Practical) 

AOSF [117]  Base + Aspect Weave Top-down Weaver Fair 

(Limited) 

DADO [135] Access Control Adaptlet Extended CORBA Top-down 

Bottom-up 

Extended IDL;
service and request 

Excellent 

(Applies to
middleware) 

Lasagne [126] Access Control Wrapped 
Component 

Dynamic, context-
specific composition;
Dispatching 

Top-down  Excellent 

(Powerful 
composition) 

CVM [30] Access Control Deployable 
Component 

Container-based 
interception; dynamic
composition 

Bottom-up Aspect Description
Language and
Aspect User
Language 

Excellent 

(Very 
Flexible) 

Object-Oriented 
Labeling [52] 

Information 
Flow Security 

Object  Top-down Decentralized 
Labeling; Graph
Rewrite 

Good 

ASTER [12] Access Control Component Component selection Bottom-up Logic  Fair 

(Limited) 

SAM [27]  Access Control Petri net  Petri-net composition Top-down Petri net and
Temporal Logic 

Excellent 

(Practical 
approach) 

Connector 
Transformation 
[120] 

Secure 
Communication

Regular 
component 

Transformed secure
connector 

Top-down Transformations Excellent 

(Has 
potential) 

SADL [96] Mandatory 
Access Control 

Component Security-preserving 
Transformation 

Top-down Logic, PVS Good 

(Powerful, 
but proof
intensive) 

The following observations are drawn from the survey: 

Foundations. Security is an extra-functional property. It is 
not always preserved by standard notion of refinement or 
composition. This implies that the assurance gained by 
formal proofs of a higher abstraction level cannot be 
necessarily transferred down to a lower abstraction level. 
This presents a big challenge to applying traditional 
abstraction and reasoning mechanisms for security design 
and analysis [87]. 

A refinement and composition approach can help establish 
certain security properties so that the cost of compromising 
them is higher than an adversary can afford [83]. To assure 
these properties, development methods that can yield such 
systems are preferred. Refinement methods can lead to 
more secure systems than developing a system first and 
then analyzing its security. Trusted components and 
methods of reasoning about the security of the composite 

system should be developed to complement the refinement 
effort. The composition logic should resemble the 
refinement logic.  

Security Model Support. The most common form of 
security addressed by surveyed technologies is integrity, 
taking the form of access control. Its enforcement typically 
relies on inserting checks at appropriate places. Another 
security issue that is similarly enforced is encryption and 
decryption. Exemplar enforcing techniques are wrappers 
(Section 5.2), meta-object protocols (Section 5.4), and 
aspects (Section 5.8).  

Confidentiality, in the form of information flow security, 
along with its composition has been researched extensively 
in an abstract manner, but few applications addressing 
information flow security have adopted those research 
results. It might be worthwhile to investigate the 
applicability of the various models and techniques proposed 
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in the literature for an environment where modern 
component technologies are deployed. However, this is a 
very difficult problem, due to the enormous gap existing 
between the theoretical models and the reality. 

Availability has received much less attention from 
researchers. It deservers further investigation, and might be 
well suited for architectural level analysis.  

Connector-oriented Architecture. There exists a 
dichotomy between abstract formal models about security 
and real practical systems to which the models are supposed 
to apply. A bridge should be found to cover the gap between 
the two worlds[98, 122]. The bridge should be formal 
enough to support modeling and analysis, but it should also 
be reasonably easy to relate to real systems. Software 
architecture can be a well-suited bridge, due to its ease of 
analysis and link to final implementation.  

Architecture can be used to specify where security 
functionality is allocated and what security mechanisms are 
used to achieve it. An explicit architecture enables the 
designer to identify security critical areas: places where 
attacks have happened, places where security functionalities 
are deployed, and places whose compromise can lead to 
severe security problems. Then, high assurance but high 
cost engineering methods, such as formal analysis, can be 
directed to these areas. A balance has to be achieved 
between security architecture analysis and functionality and 
availability of existing components, which usually take 
precedence over security requirements [98].  

In an architecture-based approach, connectors, as the loci 
for communication, are appropriate to enforce extra 
functionality when components are connected together. 
Efforts have been made to construct secure connectors 
[120]. Recursively applying a compositional approach for 
the construction of secure connectors seems quite natural. 
However, current theories on connector compositions [121], 
like most other composition theories, address security 
insufficiently, and are still not easy to use. Some work, like 
[50], addresses security, but the notion of composition, 
compared to similar notions used in most other formal 
works, tends to be rather abstract and primitive. Theories, 
techniques, and tools that can support design and analysis 
of secure connectors are very much needed.  

Description and Enactment mechanisms. Describing 
security properties of each component (see Section 5.5) still 
remains a research problem. Current proposals based on 
logic [68, 69] have not fully demonstrated their power yet. 
Other forms wait for exploration. 

There have been many different types of enactment 
mechanisms that support augmenting systems with 
security. Simple wrappers (see Section 5.2) are a suitable 
choice to handle low-level security, because there is little 
information available at this abstraction level. Flexible 
extension mechanisms provided by the original 
infrastructure can greatly facilitate the development of 
wrapper support. Agents (see Section 5.3) can serve as high-
level security enablers, when each situation will probably 
ask for a unique solution.  

The aspect technology (see Section 0) can be used as a 
powerful mechanism to enact security. Its generality and 
expressiveness lies between wrappers and agents. Its 

support of modularity and flexibility is very desirable. Due 
to its newness, many more experiments should be 
conducted to demonstrate its applicability to the security 
aspect. The Meta Object Protocol (see Section 5.4), in 
addition to being an enactment mechanism, can also be 
used as an implementation facility for the aspect 
technology.  

General composition frameworks (see Section 5.6) have not 
demonstrated much success so far. While the notion is 
appealing, the content of the frameworks is not rich enough, 
and the frameworks have not proven that their coverage can 
meet most security needs. Research on composition 
mechanisms, especially those on dynamic composition, can 
be beneficial for other enactment mechanisms. 

Software engineering research generally favors flexibility 
and generality. Whether this will come at the cost of 
security, due to the complexity and difficulty incurred in 
design and analysis, should be carefully evaluated. A 
delicate and calculated balance in tradeoffs must be 
maintained.  

Research Methodology and Plan. The problem of 
security design and analysis in modular software has been 
studied from different perspectives. While some have 
produced many useful results, others are still in an 
immature age. This survey holds the opinion that a 
comprehensive methodology to solve the modular security 
problem is necessary. Here the components of the 
methodology and the future research plan are outlined.  

In summary, the methodology will be architecture-centered 
and connector-oriented. It can support both top-down 
refinement and bottom-up composition. It will employ 
lightweight formal methods to a reasonable extent, not 
relying on knowledge and labor intensive proofs. It will 
integrate practical security models beyond simple access 
control. An architecture model will guide the development 
of comprehensive security. The component specifications 
will be extended to support flexible security requirements. 
Their compositions will be handled by connectors, which 
impose flexible security modularly and non-intrusively, 
applying injection and composition technologies such as 
wrappers, meta-object protocols, and aspects. Usable 
automatic tools will be developed to support the practice of 
this methodology. 

The details of the methodology are as follows. The 
methodology will support both top down refinement and 
bottom up composition. It can be used to design a secure 
system and its constituent parts, as well as assess the 
security of an assembly composed from existing 
components. 

The methodology is architecture centered and connector 
oriented. It is based on a connector-centric architectural 
model. It employs formal methods for description and 
analysis, but uses them only to a reasonable extent, not 
relying on knowledge and labor intensive proof.  

An architecture model guides the development of 
comprehensive security. An architecture model provides a 
complete picture, which is essential in ensuring each 
component has received proper attention for security 
assessment. An architecture model enables the designer to 
allocate security enforcement into appropriate places. The 
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combination of software architecture and software security 
will provide novel insights in attaining secure software.  

Future research will begin with using an architecture-based 
model for expressing, reasoning about, and enforcing access 
control. Access control is the dominant security 
enforcement mechanism. A solution that can assure its 
fulfillment at an early stage of software development will 
facilitate the overall security of the system.  

Supporting practical security models other than access 
control will also be investigated. More specifically, trust and 
availability might be appropriate issues that can be handled 
at the software architecture level.  

Component specifications will be extended to support 
security requirements flexibly. Logic or process algebra will 
be investigated as unifying description mechanisms that can 
describe several security properties. The possibility of 
automatic reasoning and analysis based on these 
descriptions will be explored at both the design time and 
run-time settings. 

Component
[Component

Descriptions (5.5)]

Connectors
[MOP (5.4), Aspect

(5.7)]

Architecture Descriptions
[Architectural Methods (5.8),

Composition Framework (5.6), Formal
Methods (5.1)]

Security Models (2)

 
Figure 28, Research Plan 

The composition of the components will be handled by 
connectors, which impose flexible security modularly and 
non-intrusively. The reasoning and analysis aforementioned 
might take place at connectors. A connector can apply 
injection and composition technologies to introduce security 
onto base communication capabilities. The aspect 
technology, combined with meta-object protocols, can be a 
promising mechanism. More experiments using them for 
connector implementation will be conducted. 

The methodology will be supported by an architecture 
description language. The language enables security design 
and analysis for systems made of components and 
connectors. The design-time and run-time support for the 
language will be developed. Automatic tools to support the 
practices and activities of this methodology will be 
developed.  

Case studies will be performed to evaluate the effectiveness 
of the methodology. Significant examples will be developed 
to demonstrate the applicability of the methodology. 
Representative applications from research literature might 
be rearchitected using the proposed methodology to assess 
improvements brought about by the methodology.  

The relationship between the constituent parts of the 
proposed methodology and the techniques surveyed in this 
paper is depicted in Figure 28 (the numbers are the 
numbering of the sections surveying the techniques). 
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