
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Jie Ren
Univ. of California, Irvine
jie@ics.uci.edu

Modular Security: Design and Analysis

June 2004

ISR Technical Report # UCI-ISR-04-4

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Modular Security: Design and Analysis

Jie Ren

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jie@ics.uci.edu

ISR Technical Report # UCI-ISR-04-4

June 2004

Abstract:

Software systems made of software components are becoming more and more common.
This paper surveys theories and techniques for designing and analyzing security of such
systems. The paper gives an overview of security models, introduces formal foundations
for system composition and security engineering, and investigates available techniques
for security design and analysis, focusing on each technique’s adoption of composition
mechanisms and support for security property.

 1

Modular Security: Design and Analysis

Jie Ren
Institute for Software Research

University of California
Irvine, CA 92697-3425

1-949-8242776

jie@ics.uci.edu
ISR Technical Report #UCI-ISR-04-4

June 2004
ABSTRACT
Software systems made of software components are
becoming more and more common. This paper surveys
theories and techniques for designing and analyzing security
of such systems. The paper gives an overview of security
models, introduces formal foundations for system
composition and security engineering, and investigates
available techniques for security design and analysis,
focusing on each technique’s adoption of composition
mechanisms and support for security property.

1. INTRODUCTION
The word “component” [125] has been used in computer
software for a long time, even though its original meaning
carried a different implication than its current definition.
Ever since the first software engineering conference,
methodologies using mass-produced software components
have been proposed in various forms. However, it is not
until the early 90s, with the maturation of object and
component technology, the proposal and adoption of
component standards, the proliferation of PCs, and the
ubiquity of Internet connections, did component-based
software engineering become an important paradigm in
practice [31].

Much of the previous work has been focusing on the
functionality side [74]. The core set of questions that have
already been investigated is: given the functionalities of a
set of components and the desirable composite
functionality, what components can be used and which one
should be selected? How can they be adapted, if necessary?
Is there any need for development of new components?
Another set of important questions, also enjoying fruitful
research, has been how to design a component to maximize
its reusability and how to describe and expose the various
ways to reuse a component. Significant progress has been
made in answering these questions and transferring
solutions into usable technologies.

However, before component-based software engineering
can achieve its full potential, other extra-functional

properties, such as performance, reliability, and security,
must also be addressed. We need techniques for designing a
software system to achieve the desired extra-functional
properties from its constituent components. We also desire
techniques to help us analyze such a system with respect to
these extra-functional properties.

Among these extra-functional properties, security is of
special importance. Given recent trends in technology
deployment and advance in adversary techniques, it has
become a national emergency to secure the information
infrastructure. The modern networked and component-
based software environment proposes several challenges for
engineering security. First, components may come from
different trust domains, and their security features are not
always easy to certify. Second, operating such an
environment needs interaction with several trust domains,
requiring unprecedented flexibility of software systems.
Third, given the full spectrum of possible components,
expressing a complete and consistent security policy for the
complete environment and each constituent component is
difficult. Finally, security mechanisms should allow a wide
range of granularity in software components.

This paper investigates the security property of software
systems made of components, surveying techniques that
have been proposed to design and analyze security for such
systems. The paper proposes a framework for investigation,
analyze available techniques against this framework,
compare the advantages and drawbacks of each technique,
and identify some issues meriting further exploration.

The paper is organized as follows. Section 2 briefly surveys
proposed security models that a software system can adopt.
Section 3 lists categories of components studied in this
paper, mechanisms to connect them, and challenges on
security imposed by them. Section 4 proposes a framework
under which techniques studied in literature is surveyed and
compared. Section 5 examines security design and analysis
techniques in detail, focusing on the security issues each
technique is trying to address and the composition
mechanism each technique utilizes. Section 6 makes some
discussion and outlines an agenda for future research.

2. SECURITY MODELS
Because security is a very broad subject, this section only
gives a brief overview of security models. These models are
the most common ones that are supported by the techniques
surveyed in Section 5. For other security topics, Bishop
provides a comprehensive and recent overview [15].

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

 2

The main security properties are confidentiality,
integrity, and availability [85]. Confidentiality ensures
there is no improper information disclosure. Integrity
ensures there is no improper information modification.
Availability ensures there is no improper denial of service.

The terms of security policy, security model, and
security mechanism are defined as follows. Security
policies define what rules are to be enforced and what goals
are to be achieved. A security model provides a formal
representation of security policies. Security mechanisms are
hardware devices and software functions used to implement
security policies [112].

The most basic type of security mechanism to enforce secure
access, solidly established ever since the seminal work of
Anderson [5], is a reference monitor. The reference
monitor is a trusted computing base (TCB) that is
trusted to intercept every possible access from external
subjects to the secured resources and assure that the access
does not violate any policy. Widely accepted practices
require a reference monitor to be tamper-proof, non-
bypassable, and small. A reference monitor should be
tamper-proof so that no alteration of it is possible. It should
be non-bypassable so that each access is mediated by the
reference monitor. It should be small that it can be
thoroughly verified. A more comprehensive and deeper
treatment of reference monitors can be found at [15].

Security policy composition, which occurs when multiple
sub policies coming from different sources are combined
into an integral policy, has been extensively studied [16, 60].
The study has investigated questions such as what
operations are available, how to decide whether to grant or
reject an access request, and how to resolve conflicts
between sub policies. Since the topic of policy composition
is about composition of passive policy, and the interest of
this survey lies in the composition of active software and its
security implication, the topic will not be covered further.

The focus of the rest of this section is about security models.
These models are utilized by the techniques surveyed in
Section 5. There are different types of security models. Two
common types are access control models and information
flow models.

2.1 Access Control Models
Two dominant types of access control models are
discretionary access control (DAC) models and
mandatory access control (MAC) models. In a
discretionary model, access is based on the identity of the
requestor, the accessed resource, and the permission that
the requestor has on the resource. The permission can be
granted or revoked at will by the owner of the resource.
However, in a mandatory model, the access decision is
made according to a policy by a central authority.

The Access Matrix Model is the most common discretionary
access control model. It was first proposed by Lampson [77]
and later formalized by Harrison, Ruzzo, and Ullmann [48].
In this model, a system contains a set of subjects (also called
principals) that has privileges (also called permissions) and
a set of objects on which these privileges can be exercised.
An access matrix specifies what privilege a subject has on a
particular object. The rows of the matrix correspond to the

subjects, the columns correspond to the objects, and each
cell lists the allowed privileges that the subject has over the
object. The access matrix can be implemented directly,
resulting in an authorization table. More commonly, it is
implemented as an access control list (ACL), where the
matrix is stored by column, and each object has one column
that specifies privileges each subject possesses over the
object. A less common implementation is a capability
system, where the access matrix is stored by rows, and
each subject has a row that specifies the privileges
(capabilities) that the subject has over all objects.

Figure 1, Access Control Matrix

Mandatory Access Control models are less common and
more stringent than discretionary models. They can prevent
both direct and indirect inappropriate access. The most
common types of mandatory models work in a multi-level
security (MLS) environment, which is typical in a military
setting. In this environment, each subject (on behalf of a
user) and each object is assigned a security label. The labels
have dominance relationship between each other, forming a
lattice [28]. For example, in Figure 2, the label “top secret”
dominates the label “secret”, the label “secret” dominates
the label “classified”, and the label “classified” dominates
the label “unclassified”. The label on an object specifies the
sensitiveness level of the information, and the label on the
subject identifies the clearance and trustworthiness that the
subject has. The subjects/objects with a dominating label
are at a higher level, and the subjects/objects with a
dominated label are at a lower level.

Figure 2, Dominance Lattice

The most famous MLS MAC model, which is a model for
confidentiality, is the Bell-LaPadula model [9]. The
model specifies two rules that must be satisfied by each
access to protect confidentiality: 1) no read up (originally
called simple security): a subject is allowed reading an

Top Secret

Secret

Classified

Unclassified

 3

object only if its security clearance dominates the security
level of the object. That is, the label of the subject is over the
label of the object in the lattice. Thus, a low-level subject
cannot read a high-level object. 2) no write down (originally
called *-property) : a subject is allowed writing an object
only if its security clearance is dominated by that of the
object, so a high-level subject cannot write to a low-level
object (to leak more sensitive information intentionally or
unintentionally). These rules prevent confidential
information from flowing to less trustworthy subjects.

Another important MLS MAC model is the Biba model
[10]. This is a model for integrity, and can be considered as
a mathematical dual of the Bell-LaPadula model. The model
assigns an integrity label to each subject and object, as the
confidentiality label of the Bell-LaPadula model. The Biba
model has two principles. The first is “no read down”: a
subject can only read an object whose integrity label
dominates its own so it can trust the integrity of the object.
The second is “no write up”: a subject can only write to an
object whose integrity label is dominated by its own so it
won’t violate the integrity of the object. These rules prevent
information stored in lower level and less reliable objects
from flowing to and affecting higher level and more reliable
objects.

Both the Bell-LaPadula model and the Biba model work in a
static environment, where the security labels of subjects and
objects change little, if any. The Chinese Wall model [17]
can be considered as a dynamic mandatory access control
model. In this model, objects are assigned to different
domains. Each domain represents its own interest, and its
interest potentially conflicts with those of other domains.
Initially, a subject can access any domain initially. However,
once it is granted access to a domain, it is prohibited access
of any other conflicting domains thereafter. It is essentially
limited within the wall of its own domain. The Chinese Wall
model is a model of dynamic separation of duty, and can be
mapped to the Bell-LaPadula model if dynamic security
labels are allowed in the Bell-LaPadula model [109].

Both the Bell-LaPadula model and the Biba model originate
from a military setting. They do not fit well in a commercial
environment. The Clark-Wilson model [22] summarizes
many common security rules practiced in commercial
activities. It defines four basic criteria that require
authenticating all subjects, auditing all activities, allowing
only well-formed transactions, and separating duty. The
model have are two types of data items and two types of
procedures. Data items are either constrained data items or
unconstrained data items. Procedures are either integrity
verification procedures or transaction procedures.
Constrained data items are the items whose validity is
verified by Integrity Verification Procedures. These data
items can only be changed by Transaction Procedures. The
model also requires that administrators must certify all
procedures and the system should enforce the certified
procedures. This model is not as formal as other models,
though. It is not easy to analyze and enforce.

The Role-based Access Control Model (RBAC) [113] is
a more recent development. It introduces roles as the
entities that are authorized. In real environments, a user can
perform different roles in different contexts, even though
the identity of the user remains the same. A role-based

access control model captures this concept naturally by
introducing an extra level of indirection, role, into the norm
of subject/object/privilege. Instead of authorizing a
subject’s access to an object, the authorization is expressed
as a role’s access to an object, and the subjects can be
assigned to different roles. This model eases management of
users, roles, and accesses. It allows roles to form a
hierarchy. It enforces principles such as least privilege and
separation of duty. The model supports more timing and
dynamic constraints than usual access control models.

Figure 3, Role-based Access Control, from [112]

2.2 Information Flow Models
Mandatory Access Control models can prevent overt
channels that allow inappropriate information flows, but
they are still vulnerable to covert channels where an
information flow exists in a clandestine manner utilizing
stealthy storage or timing facilities [76]. Information
Flow Models are confidentiality models that are also
called secrecy models. These models are interface models
that specify how the information should or should not flow
between principals so that there are no covert channels.
They do not suggest how this can be achieved [85].

There have been many proposals of different information
flow security properties. Most of them adopt a trace-based
viewpoint. In these models, subjects are usually called
agents. Agents are classified into two categories: low level
agents and high level agents. A trace is inputs received and
outputs generated from these agents. The focus of an
information flow security model is to prevent low level
agents from receiving any secret information from high level
agents.

The first information flow security property proposed is
Non-Interference [45], which requires low level output
should not be affected by high level input. This assures that
a low level agent cannot get information about the high level
inputs.

Other properties have also been proposed. Non-Deducibility
on Input [124] utilizes information functions to require that
low level agents cannot deduce information about high level
agents. Restrictiveness [82] requires that low level agents
cannot differentiate between possible states after certain
state transitions. Correctability [61] requires that a trace
after a perturbation (adding or removing an input) and a

 4

correction (adding or removing an output) is still a valid
trace. Non-Deducibility on Strategy [134] specifies that a
low level agent cannot tell a high level agent from a process
formed from the composition of the high level agent and a
strategy, where a strategy is a process that computes inputs
to the high level agent based on previous histories.

These models can be applied differently, depending on
whether the secrecy is intended for high-level inputs only or
both inputs and outputs, whether synchrony is required,
whether non-determinism is allowed, and whether
probability, instead of possibility, is considered.

However, the programming language community looks at
the problem of information flow security in a different
manner [111]. Instead of focusing on prevention of any
possible information flow, a less stringent but more realistic
approach is taken to track the more explicit information
flow. An example is given by Sewell and Vitek [116], where
an intentional approach for information flow security is
proposed, unlike the traditional extensional trace-based
approach. This intentional approach assigns an agent
“colors”, which designate principals that have causally
affected the agent. The colors can be considered as the type
of the agent, and a type theory calculus is used to check the
validity for information flow security.

3. COMPONENT TYPES AND
CONNECTION MECHANISMS
The word “Component” in software has a long history and is
heavily overloaded. Different authors have used this word to
designate various types of entities. This section gives a brief
overview of the types of components that will be studied in
this survey.

Components, whether they are the results of decomposition
from a component of a higher level of abstraction, or they
are the units to be composed into a composite component,
need to interact with each other, possibly to achieve a
common goal. Different types of components require
different interaction and connection mechanisms. In
addition to types of components, this section also discusses
the mechanisms connecting components together.

When designing and analyzing security of a system
consisting of its constituent parts, the modular structure
brings up new challenges not encountered in a monolithic
entity. Different types of components and different
connection mechanisms may bring different types of
security issues.

Components are classified into four types: abstract
computation, module/object/component, CBSE
(Component-based Software Engineering) Component, and
COTS (Common-Off-The-Shelf) component. This catalog of
component types, connection mechanisms, and security
challenges does not intend to be exhaustive. It lists only
representatives found in literatures and serves as the
foundation for further discussion in this paper.

3.1 Abstract Computation
In the formal methods community, a component generally
refers to some abstract computation. Correspondingly, the
connecting mechanism is generally expressed as the input
and output relationship between the computations.

For example, in the Abadi-Lamport framework [1] (see
Section 5.1.1), a component is generally an abstraction of the
underlying computation, likely described with various types
of logic. Under the setting of the trace-based information
flow security, such as MAKS [80] and Non-Interference
[45](see Section 5.1.3), a component is a computation that is
expressed as the set of input/output traces of the
computation. A component in the process algebra approach
[36, 37, 39] (see Section 5.1.3) is a process that changes its
state depending on the input.

The connection mechanism for Abadi-Lamport
specifications is the general logic conjunction, where the
specifications of two smaller computations are juxtaposed
and the composite system should satisfy both specifications.
The composition between traces takes the form of outputs of
one trace becoming inputs of another trace. The
composition in process algebra is similar, where one process
takes input from another process’s output. The two
processes share a common event.

As will be clear in Section 5.1, the composition utilized
formal computations raises two types of challenges for
security. The first is how to prove that one component will
enforce proper access control for other components. This
can be handled by the usual Abadi-Lamport framework. The
second challenge is bigger: how to ensure one component
cannot acquire information about other components. The
usual Abadi-Lamport framework cannot handle this
challenge very well, requiring new formalisms and
techniques.

3.2 Module, Object, and Component
In the more common case, a component designates a
smaller part of a larger system. In most imperative
programming languages, the component is named as either
a module, a function, or a procedure. The connection
mechanisms are function calls between these procedures. In
object-oriented programming languages, the basic
components are objects, and these objects are connected
together by sending and responding to messages between
each other.

Software architecture is a more recent approach for
developing large and complex software [119]. It views the
constituent parts of a system as components and
connectors. Components in this setting, which should not be
confused with general uses of the term in other contexts,
perform computation. Connectors are in charge of
communication between components. Components can take
many forms in this setting. It can be as small as a function
or an object, or it can be as large as a complete application.
There are also many types of connectors [89]. The dominant
types are variants of procedure calls: local or distributed,
synchronous or asynchronous. Some other common forms
of connectors are blackboard data repository and event
publication/subscription.

Modules, objects and components are the most common
constituent parts of software systems. Most design and
analysis techniques for security apply to these components.
Some security questions that have been investigated are:
where the security features should be allocated, how to
assure policy enforcement, and what form will best facilitate
the flexibility and evolution implementations.

 5

When answering these questions, one issue relevant to
software research is how to separate security from other
functional and extra-functional concerns. Some promising
techniques addressing this issue are meta-object protocols
(see Section 5.4) and the aspect technology (see Section 0).
These technologies extend the standard object-oriented
technology. They utilize the connection mechanism, object
method, in novel manners. They split objects into either
base objects and meta-objects, or base objects and aspects.
They connect the split objects through compile-time
manipulation or run-time instrumentation. These
technologies can handle security property such as access
control and data encryption in a flexible manner.

3.3 CBSE Components
Component-based Software Engineering (CBSE) [125] takes
a more specific view towards components. In this context,
the components generally adhere to a component model,
such as COM/COM+, JavaBeans, CORBA Component
Model, and .NET components. The specific component
model constrains the exposed form of a component, such as
its external interfaces, syntactic and semantic descriptions,
and deployment constraints.

The component model also provides the connection
mechanism. The dominant mechanism is procedure calls.
Two components are connected together when one
component invokes a service provided by the other. The
connection is generally facilitated by a broker supplied by
defined in the component model. The broker masks all
communication-related details, such as locating
components and marshaling data. Developments that are
more recent provide advanced brokers that support some
advanced connection services like transactional methods
and asynchronous communications.

CBSE components generally come without source code. To
develop a complete application, components that come from
different sources need to be connected together. These
issues raise challenges for security design and analysis, as
discussed in Section 3.4.

3.4 COTS Component
Like “components”, Common-Off-The-Shelf (COTS) is
another overloaded term. In this classification, it is used to
refer to software such as operating systems, databases, and
word processors. Compared to Section 3.2, these
components are not developed in-house, and source code is
generally not available. Compared to Section 3.3, these
components do not conform to any form of a component
standard, and COTS components’ granularity is generally
larger. As a result, integrating COTS components generally
requires custom-made connection mechanisms.

Like CBSE components, COTS components generally come
without source code. They may also come from different
sources. The lack of source code and the heterogeneous
origin of CBSE components and COTS components impose
new challenges that do not exist when all components come
from the same trusted origin with full source code. Lindqvist
and Johnson identifies security risks present in the life cycle
of using commercial off-the-shelf software products [78].
They divide the life cycle into the following phases:
component design, component procurement, component

integration, Internet connection of system, system use, and
system maintenance.

In the component design phase, the design can be
inadvertently flawed. Even worse, it might be intentionally
flawed by malicious designers. The component might
contain excessive functionality that is not necessary for a
usage scenario. The design of the component might be open,
or it can be widely spread, which gives adversaries precious
information. The documentation for design might be
insufficient or even incorrect.

In the component procurement phase, a procurer might
make a decision before conducting sufficient validation for
the component to be procured. During the delivery, a
validated component might come through an insecure
channel that might tamper the component.

During the component integration phase, the components
integrated might not match with each other’s product
security levels. The integrator might only have insufficient
understanding of the integration requirements.

When a software system is connected to Internet, the
external exposure is significantly increased, and easily
available intrusion information and toolsets can be used
against the connected system. The system can
unintentionally execute malicious executable content
downloaded from Internet. The Internet connection can
also be used as an outward channel for stolen information.

During normal system use, the system can be used in
unintended ways, and the user might not fully understand
the functioning of the system.

Finally, in the system maintenance phase, fixes and updates
to a system might be insecure, some side effects can happen
due to maintenance, and there can exist maintenance
backdoors that can be exploited maliciously.

To manage these security risks, Lindqvist and Johnson
suggest that users should have a well-defined and relevant
security policy[78]. Users should adopt a holistic
perspective, partition the system into smaller parts shielded
from each other, confine distrusted components, anticipate
contingencies, and actively evolve the system and remedy
defined flaws. The user organization should support secure
operations from all levels of management. End users should
also be aware of previous security breaches and learn from
past mistakes.

4. SURVEY FRAMEWORK
This section introduces a framework that will be used to
compare the techniques that have been proposed for
designing and analyzing security for systems made of
components. The focus is how each technique helps
achieving modular. How the technique responds to the
following questions is studied.

• Security Model: What kind of security model does
the technique adopt or support? Does it support
discretionary access control, mandatory access control,
or information flow security?

• Component Type: What kind of components does the
technique integrate? Is the component an abstract
computation? Is the component general software? Is

 6

the component compliant of some component models?
Is the component a large COTS component?

• Connection Mechanism: What connection
mechanism does the technique provide? What
mechanism does it rely on? What are the security
limitations of these connection mechanisms? What
kind of dynamism will the technique address?

• Approach: Is the technique a top-down approach or a
bottom-up approach? A top-down approach begins
with a system wide security requirement and develops
how security should be addressed at each level of
abstraction to achieve the system wide security goal. A
bottom-up approach will determine what security can
be achieved from the constituent components and what
changes need to be made to achieve full satisfaction if
the initial result is not satisfactory. Some techniques
can work in both manners.

• Formalism/Tools: What formalism does the
technique use? How much automation can the
formalism support? How much automation can be
conducted at run-time? What tool does the technique
employ for design and analysis?

The framework is illustrated in Figure 4.

Figure 4, Framework of Survey

5. TECHNIQUES FOR DESIGN AND
ANALYSYS OF MODULAR SECURITY
This section utilizes the framework developed in Section 4
to classify techniques proposed in literature. Since the
framework tries to cover as many facets as possible, each
technique does not always have every aspect.

Section 5.1 surveys the formal methods available for secure
composition. Along with the formal models outlined in
Section 2, they can be used as the formal foundations for
other techniques.

From Section 5.2 to Section 5.4, some simpler techniques
used to implement and compose real software are
investigated. Based on its complexity and expressiveness,
these techniques are categorized as following: wrapper,
agent, and Meta Object Protocol.

Section 5.5 surveys techniques used to specify security
requirements of components. A component in this section is
more complex than components in the previous sections.
They are deployable units, as those required by major
commercial CBSE technologies.

Section 5.6 investigates some general composition
frameworks that compose secure modular systems. Section
0 explores an especially powerful composition technology,
the aspect technology. Finally, Section 5.8 surveys
architectural techniques for security design and analysis.

5.1 Formal Foundations
5.1.1 Abadi-Lamport Composition in Alpern-
Schneider Framework
In the formal method filed, the theory of Abadi and Lamport
serves as the foundation for composition. While the theory
can deal with integrity adequately, it is insufficient for
confidentiality.

Abadi and Lamport proposes a general composition
principle and a proof rule that compose concurrent
specifications in a modular manner [1]. The composition
works within the safety/liveness framework first proposed
by Alpern and Schneider [4].

In this composition framework, a state is represented by
assignments to state variables. A trace is a set of state
transitions caused by agents. A system specification
describes all possible traces of the system. A property is a
predicate that defines a set of traces. A property can also be
viewed as the set of traces thus defined. There are two types
of properties. A safety property defines the initial state and
valid state transitions. A liveness property (also called
progress property) specifies that the state transitions
eventually occur. The specification of a system consists of
the conjunction of various safety and liveness properties.
Because systems, properties, and specifications can all be
viewed as sets of traces, a system satisfies a property if the
set of traces for the system is a subset of the traces for the
property. The environment in which the system behaves can
be specified in a similar manner, and a system’s
specification is valid only when the environment satisfies its
constraints.

Reasoning composite behaviors under this framework
comprises of two steps. The composition step uses the proof
rule to establish under what conditions the properties of the
subsystems can be connected together in the composite
environment. The refinement step finds a mapping under
which the conjunctions of subsystem properties will imply
the composite property. Informally, a composition decides
when subsystems can be composed together, and a
refinement ensures the composed system implements the
needed composite system.

The Abadi-Lamport composition/refinement rule provides a
solid foundation for the general divide-and-conquer
approach. However, because security pro0perties are not
functionalities, these properties are not preserved by
standard notions of refinement or composition. This results
in that assurance gained from formal proofs at one level of
abstraction cannot necessarily be transferred to a more
concrete level [87]. The reason, suggested in [86], is that
general functional properties are sets of traces. Security
properties, on the other hand, are sets of sets of traces, or
power sets of traces. It is believed that luckily integrity, and
hopefully availability, is mostly preserved under refinement
and composition. However, confidentially is generally not
preserved [114], because refinement into components can

 7

bring new chances of interaction and observation that are
not possible in a monolithic system. This makes the security
composition problem a hard problem.

5.1.2 Integrity
There have been many efforts that use Abadi-Lamport
theory to directly verify security. Generally the security
under consideration is integrity, and the problem will be
reduced to prove the safety and liveness of the system. Some
prominent examples found in literatures are summarized
below.

Heckman and Levitt verifies the correct enforcement of
access control policies by a set of distributed servers [49].
The verified system consists of two server processes, each
implementing one system call. Both the safety property and
the liveness property of the composite system are verified. A
Higher Order Logic theorem prover is used to assist the
proof. Of the 23000 lines of code for the proof, about 7% is
about composition proof, 24% is for the refinement of
safety, and 69% is for the refinement of liveness.

Hemenway and Fellows apply the composition theorem
with the Formal Development Methodology tools [51]. A
system consisting of a workstation, the IPC communication,
and the network communication is modeled. The
enforcement of a mandatory access control policy is verified.

Bieber uses a state machine to model the imperative
properties and adopts temporal logic to describe declarative
properties [13]. Even though he tries to handle information
flow properties, the approach still mainly verifies safety.

Composability for Security Systems (CSS) [99, 100] is
another logic-based method to reason about security of
components and their composition. It uses PVS [101] to
prove theorems, with a custom developed proof strategy. It
mainly investigates integrity of composite systems.

The features of the CSS framework are: 1) it makes agents,
which performs actions, explicit to support security
analysis; 2) composing components will invoke
environmental constraints automatically; 3) it does not
support quantifiers, simplifying proofs at cost of some
expressiveness.

The CSS framework provides two lessons for using logic in
security verification. The first is the elimination of state
translators. Previously a translator between the states of
components and the state of their composition was
employed. This complicated the property proof. CSS instead
uses a single common state that has a field for each
component state. A theorem about the configuration of the
system is also added. Both the common state and the
configuration theorem simplify the proof. Secondly, they
discover that a refinement proof is easier to perform than a
property proof. To prove a lower level specification is
secure, it is more difficult to prove the property on the
specification itself directly. It is easier to first prove the
security on a higher-level specification and then prove that
refining from the higher level specification to the lower level
specification preserves the security. This is a common
theme in logic based security design and analysis
approaches [27, 44].

The CSS framework is used to prove that a file manager
always returns a secure file handle to a process manager

[104]. The components are developed and different
approaches to compose them are investigated to compare
the tradeoffs of different architectures. The effort confirms
that first proving the properties on the components and
then proving a refinement mapping between the system and
the components is easier than directly proving the
composite property on the system. The effort also argues
that this route can reuse existing proofs in proving newer
properties.

The techniques enumerated above demonstrate the
effectiveness of the Abadi-Lamport theory. However, these
examples also illustrate how labor intensive the verification
activity can be, even for a small problem. These approaches
also require highly skilled professionals with special
expertise and training.

5.1.3 Confidentiality: Information Flow
Security
As discussed before, confidentiality cannot be sufficiently
treated in the Abadi-Lamport composition. Researchers
took a different path towards this property. They have
proposed frameworks unifying information flow security
properties and have studied composing these properties
under the frameworks.

Unifying Framework. The various information flow
security properties listed in Section 2.2 have been proposed
with different intentions. These properties operate under
different formalisms, making comparison among them
difficult. There have been many efforts to unify these
properties under a single formal framework so that the
properties can be compared, deeper insights can be gained,
and a consensus on which property is the most desirable
might be reached. A unifying framework can also provide a
more solid foundation to study the composition of these
properties under different operations.

Naturally, most unifying frameworks are based on trace and
logic because these are used for defining most of the
properties originally. Four representative frameworks are
outlined here. These efforts lay down the foundation to
study securely composing abstract computations for
confidentiality.

John McLean proposes the first such framework, Selective
Interleaving Function (SIF) [84, 86]. It views each
information flow security property as a function that takes
two traces and interleaves fragments of these traces to
generate a new trace. Different properties can be described
using corresponding functions that takes related fragments
and perform appropriate processing on the first and the
second trace. A partial ordering among the proposed
properties is established, based on the implication
relationships between their equivalent functions.

Peri et al. suggest a simple unification framework based on
the many-sorted logic [105]. They study a limited set of
proposed properties with the logic and restate the
properties using formulas of the logic.

MAKS is another concise unifying framework [80]. Its basic
building blocks are Basic Security Predicates. A predicate
can be Removal (R), Backward Strict Deletion (BSD),
Backward Strict Insertion (BSI), Backward Strict Insertion
of Admissible Events (BSIA), Forward Correctable Insertion

 8

(FCI), and Forward Correctable Deletion (FCD). These
predicates describe operations available on traces. MAKS
proves that existing properties can be constructed from
these predicates. The implication relationship between the

predicates can be used to order the corresponding security
properties. The result is illustrated in Error! Reference
source not found..

Figure 5, Information Flow Properties, from [80]

Halpern and O’Neill uses a modal logic of knowledge to
unify the various properties [47]. Their framework models
states of both the agents and the environment. The
framework extends the notion of Non-Deducibility on Input
[124] in several aspects. First, its notion of secrecy allows
asymmetric secrecy from one agent to the other, unlike the
symmetry of the original definition. Since the secrecy is
modeled as knowledge, it can be more specific on what is to
be guarded, relieving the requirement that everything is a
secret. Second, its notion of a trace (called Run in the
framework) makes time more explicit. It introduces an
allowability function based on time that can uniformly
handle complete synchrony, complete asynchrony, and any
middle points between the two extremes. Third, it also
introduces a probability measure to handle probabilistic
secrecy. This measure can be either a global measure on all
possible runs, or a locally defined one on partitions of runs.
In addition to these extensions, using model logic of
knowledge also enables the framework to model resource-
bound adversaries where revealing of secrecy is
computationally expensive.

Some unifying frameworks based on process algebras are
also suggested. Process algebras are compact, can express
composition naturally, and can handle situations where
traces on inputs and outputs are insufficient. For example,
process algebras can specify that a low level agent should
not get any information by observing a high level agent
being deadlocked. This is a possibility that is not addressed
in other formalisms.

Security Process Algebra (SPA)[36, 37, 39] is a security
extension to the process algebra Calculus of Communicating
Systems (CCS) [91]. It views various definitions of
information flow securities as requirements on the
processes, and uses equivalence relations to classify those
properties based on their implication relationships. It uses
trace equivalence and test/failure equivalence to classify
existing properties, and proposes behavior equivalence as a
stronger definition of equivalence. The behavior equivalence
is based on weak bisimulation of processes, where processes
are equivalent if they can accept the same nondeterministic
events. Based on this notion of equivalence and the
definition of Non-Deducibility on Strategy [134], SPA
proposes a new security property, Bisimulation Non-
Deducibility on Composition, where a high level agent can
compose with a general process.

Ryan and Schneider applies a different process algebra
Communicating Sequential Process (CSP) [57] to unify
information flow properties [110]. They eliminate the
difference between inputs and outputs, viewing them as just
events. They use power bisimulation to unify those
properties. Power Bisimulation is a different equivalence
than the weak bisimulation used in the Security Process
Algebra.

Composition. The composition problem has received
significant attention within the information flow security
community. The general question to be answered is: given a
component with one property and a component with
potentially different properties, when they are composed
using one composition construct, what property will the

 9

composite system satisfy [86]? A simplified version is: when
two components with one property are composed using a
particular composition construct, will the composite system
also satisfy that property? If yes, then it can be said that the
property is compositional (composable) under that
composition construct.

The notion of composition depends on the formalism
adopted. Selective Interleaving Function classifies
composition into three different constructs [86]. In a
product composition, two components are juxtaposed,
without any interaction. In a cascade composition, one
component’s output is fed as another component’s input. In
a feedback composition, in addition to the input/output
relationship established in cascade, the output of the second
component is also the input of the first component, forming
a loop between the two components.

The three composition constructs are illustrated in Figure 6,
Figure 7, and Figure 8, respectively. In these figures, σ1 and
σ2 are the components, σ is the composed system, Ini and
Outi are input and output channels.

Figure 6, Product Composition, from [86]

Figure 7, Cascade Composition, from [86]

Figure 8, Feedback Composition, from [86]

Some representative results from studying composition
under these constructs are summarized below. It is provided
in [86] that the feedback composition retains less security
properties than the product composition and the cascade
composition, because it is too restrictive on what to accept
and too generous on what to produce. MAKS only considers

product composition and cascade composition [80]. It uses
a powerful lemma to unify known composition results.
MAKS reveals why certain properties cannot hold under
composition and suggests what emergent behaviors
(behaviors that only exist in a composite system) can
emerge under composition. Zakinthinos proposes a simple
bunch-theory based framework, where a bunch is the
content of a set [136]. The framework studies both cascade
and feedback and discovers that properties eliminating
dependencies on inputs are preserved under feedback
composition. Peri et al. [105] study the composition
problem under the many-sorted logic and prove
compositional properties in cascade and feedback
composition using PVS [101].

Composition takes a different form in Security Process
Algebra [37]. It is formed by the parallel execution of
processes. These processes only synchronize on common
complementary actions when one process’s output is
another’s input. The algebra studies whether certain
properties can still hold when the restriction operator and
the hiding operator applies on the composition operator.
The Bisimulation Non-Deducibility on Composition
property has to be extended to its strong variant to be
composable. A model checking tool, compositional security
checker [38], is used to check the compositionality of
security. The power bisimulation proposed in [110] is also
composable.

Santen et al. views the compositional problem under the
refinement/composition perspective [114]. They argue that
traditional possibilitistic secrecy is too strong, requiring too
many sufficient conditions and providing too few necessary
conditions. They suggest that in a refinement setting, if a
concrete specification preserves the same probability of
discovering secrecy as an abstract specification, then it is a
secrecy-preserving implementation of the abstract
specification. Santen et al. discovers that failing to hold
security under composition comes from the new window of
observation opened up by decomposing a system into
components.

Discussion. The information flow security property
captures a natural notion of secrecy. Despite its general
appeal and two decades of research for it, the topic remains
mostly of an academic interest [108]. In real systems, high-
level agents do interact with low-level agents. Even among
researchers, there is no universally accepted consensus
about what is the best definition and formalism to
characterize the information flow security property. This
can be seen from the many proposed properties and even
more frameworks unifying them. These properties are too
remote from a real system and few real policies care about
information flow security. The composition mechanisms are
very primitive and far from real connection facilities.
Finally, information flow security models are very difficult
to build. Their canonical definitions took a form of an
inductive or a universally quantified format, which is not
constructive at all. It may be necessary to retreat to building
a traditional access control model first and performing
covert channel analysis afterwards [85, 90]. As suggested in
[108], “non-interference is little more than a rather
intriguing topic of arcane debate, at best the source of
compelling theoretical challenges on which learned but

 10

largely irrelevant papers can be written.” In spite of its
appeal and abundance of mathematically beautiful results,
information flow security might not be very relevant and
practical for real software.

5.2 Wrapper
After surveying techniques to design and analyze abstract
computations, the study now turns to techniques dealing
with concrete software components, beginning with the
simple wrapper technology.

A wrapper is a standard technology to reuse existing
software and probably extend it with more functionality.
When available software provides useful capability for an
environment but cannot be utilized in its current form, due
to factors such as incompatible interfacing mechanisms and
insufficient functionality, a wrapper is generally used to fill
the gap. A wrapper is a layer of software that receives
control from the invoking environment and performs
additional processing before transferring control to the
original software. After the original software finishes its
activity, the wrapper gets back control conducts more
processing before returning to the environment.

A wrapper can simply change the format of input or output
parameters so that the parameters can meet the
requirements of the outside environment and the wrapped
software. A wrapper can also perform more complex checks
and analyses that can be used to improve security.

The wrapper technology has many forms. Some agent
technologies in Section 5.3 can be considered intelligent or
data centric wrappers. Meta object protocols (Section 5.4)
can also be viewed as object wrappers that utilize reflective
and meta-level capabilities. This section focuses on simple
procedural wrappers. It begins with application-level
wrappers (Section 5.2.1), and then goes down to library
function-level wrappers (Section 5.2.2), system library-level
wrappers (Section 5.2.3), until it reaches system call-level
wrappers (Section 5.2.4). This section illustrates how
wrappers can be used to enhance security and survey
techniques facilitating wrapper development and
management.

5.2.1 Application-level Wrapper
Application-level wrappers are used to adapt existing
application. Zhong and Edwards develop wrappers to make
the most popular mail server, sendmail, a more secure
application [140]. To tackle security risks such as accessing
unauthorized resources, accessing resources in an
unauthorized manner, or abusing execution privileges, they
utilize the underlying mandatory access control (see Section
2.1) and least privilege execution support provided by the
operating system. The architecture of the wrapped
application is shown in Figure 9.

Sendmail needs to access some resources with special
privileges during its execution, such as reading from
configuration files, writing into user mail boxes, binding to
specific network ports, and changing the security credential
of processes. Due to its complexity in implementation and
configuration, security breaches are occasionally reported.

After careful resource and privilege analysis, they separate
the original sendmail application into two instances. Each
runs in a separate security compartment with limited

privilege. One runs in the “system outside” compartment. It
can send emails to outside world using the credential of the
original sender. It will not perform other functionalities of
sendmail. The other sendmail instance runs in the “system
inside” compartment. Its only responsibility is to write to
users’ mailboxes. These two instances communicate through
each other via a newly-developed, simple, and trusted
gateway called “relay”. The relay redirects the output of the
inside sendmail application to itself, and then sends the
output to the outside sendmail application, with the
credentials of the original sender.

Because the operating system enforces mandatory access
control, there is no implicit communication path between
the two compartments. Thus, even if the outside sendmail
application is compromised, it cannot affect inside
operations. And even if it is penetrated through the defense
boundary, its limited privilege reduces the damage it can
induce.

Figure 9, Wrapper of sendmail, from [140]

Another simple and trusted mail application,
tsmap/tsmapd, is developed. One instance of this
application is deployed in the “system outside”
compartment, to receive mail from external network.
Another instance is deployed in the “system inside”
compartment, receiving outgoing mails from internal users.
The two instances also execute with minimal privileges.

In summary, based on the mandatory access control and
least privilege execution provided by the underlying
operating system, with newly developed simple front-ends
and a secure wrapper, the highly powerful yet very complex
sendmail is reused in a secure manner to achieve the
benefits of COTS software. This case study illustrates how
wrappers can be used at the application level to secure
applications.

5.2.2 Library function-level Wrapper
Balzer and Goldman propose a non-bypassable wrapper
technology used to execute applications securely [8]. In this
technology, a mediator mediates calling a usual library
function by an application. A set of mediators comprises a
wrapper. The wrappers can be stacked on top of each other,
and each wrapper can be enabled and disabled
independently.

The implementation of the technique adopts the following
strategies. The application binary is patched to allow the
mediating wrappers to intercept library function calls from
the application. Certain parts of the memory image of the

 11

loaded application are write-protected so that the mediating
mechanism cannot be bypassed by modifying memory
tables. The wrappers are installed upon process creation,
when the application is loaded.

Because mediators control calling library functions from the
application, they can either allow or reject the call, based on
security policy specified by the user. This can enforce the
secure execution of any application, in addition to the
protection provided by the operating system. Mediators are
used to construct a safe execution environment that can
securely execute ActiveX controls downloaded and Office
documents with macros enabled.

In a word, mediators provide a usable mechanism that can
control the execution of any application on Windows
platform. They wrap function calls used by an application.

5.2.3 System Library-level Wrapper
A similar technology is used to implement the
Interceptor/Enforcer that enforces access control policies in
a coalition environment [118]. In such an environment, each
resource of an organization can be accessed by principals
from either within the organization or from an outside
coalition organization. While enforcing policies can happen
at the communication layer, Shands et al. argue that only
the server on which the accessed resource resides has
enough context and history information to enforce the full
access control policy [118]. They thus choose to implement
the Interceptor/Enforcer on the resource server.
Implementing on the Java Web Server does not encounter
many problems because Java Servlet provides flexible
extension mechanisms. However, some issues must be
resolved when implementing on Java Remote Method
Invocation (RMI), because the reference RMI
implementation does not provide any extensions allowing
third-party software to augment the request handling
process. Implementing on Microsoft DCOM and IIS is most
challenging. They choose a simpler and less general
approach over the mediator framework [8] (see Section
5.2.2) because they do not need the full flexibility. Still, they
encounter numerous issues. The DCOM/IIS system dos not
provide a convenient extension mechanism. The provided
mechanism, custom filter, does not work as advertised in
documentation. The system does not provide enough
bridging support to integrate heterogeneous languages.
These issues result in a wrapper that is a set of patches over
several bridges. The wrapper enforces access control
policies, but it lacks conceptual beauty and suffers
significant performance penalties.

This approach demonstrates developing wrappers at certain
level is necessary, but the effort can be hindered by the lack
of suitable information and mechanisms from the existing
infrastructure.

5.2.4 System Call-level Wrapper
Hypervisor. The Hypervisor [93, 94] is an early effort in
providing system call-level wrappers that support more
flexible security policies. A hypervisor is a loadable kernel
module that can intercept systems calls and perform
additional pre- and post-system call processing. Compared
to non-kernel wrappers, they are non-bypassable. Since they
are loadable modules, no kernel modification is needed. An
application can be wrapped without any change to take

advantages of the hypervisors. The policy enforced by the
hypervisors is very flexible. The concept of a hypervisor can
be applied to most mainstream modern operating systems
that support kernel loadable modules.

The implemented Hypervisor architecture, illustrated in
Figure 10, contains a master hypervisor, a set of client
hypervisors, and client hypervisor management modules.
The master hypervisor manages other hypervisors and
provides facilities for monitoring and configuring other
hypervisors. A client hypervisor implements a certain policy
by injecting pre and post system call processing around
standard system calls. Client hypervisors can be stacked
upon each other to implement composite policies. A
corresponding client hypervisor management module
allows users to communicate with and configure policies for
a client hypervisor.

Hypervisors support many different types of policies. They
can be used for auditing. They can provide fine-grained
access control. They can also enforce mandatory access
controls.

Figure 10, Hypervisor Architecture, from [93]

Generic Software Wrapper. Generic Software Wrapper
(GSW) provides more expressiveness, dynamism, and
manageability than Hypervisor [40]. Its architecture is
shown in Figure 11. It uses a C-based Wrapper Definition
Language (WDL) to describe a wrapper as a basic state
machine. The description specifies the system calls that the
wrapper wraps, the patterns of events to which the wrapper
will react, and the actions that the wrapper takes when these
events happen. The actions can be augmenting the events,
transforming the events, or simply denying the events. The
Wrapper Definition Language hides the peculiarities of
various flavors of operating systems by providing some
common data types, so that the parameter types and return
values of different but similar system calls of different
systems can be described uniformly. State machine
specifications and common data types achieve a degree of
abstraction and enhance the portability of the technique.

The life cycle of the wrappers is as follows. At first, the
system contains no wrapper. Then, the administrator
installs a wrapper and specifies the conditions under which

 12

the wrapper will be activated. The wrapper will then receive
wr_install events. When a process that satisfies the
activation criteria is created, the wrapper is activated, and
executes its wr_activate action. When the process exits,
the wrapper is deactivated, and performs operations in
wr_deactivate. Eventually, the wrapper will be
uninstalled, and it has the opportunity to execute the
wr_uninstall action. The life cycle and pluggable event
processing provides flexibility in configuration.

A kernel-resident Wrapper Support Subsystem (WSS) is
implemented using dynamically loadable kernel modules of
common Unix/Linux operating systems. The WSS executes
wrapper definitions generated by the WDL compiler,
according to criteria specified through the activation criteria
compiler. An administrator can communicate with WSS
through a management GUI.

Figure 11, GSW Architecture, from [40]

Because the Generic Software Wrapper can monitor and
augment each system call, it can harden COTS software in
various ways. It can implement different access control
models. The model can be either based on a rule set and
subject/object labels, such as the Bell-LaPadula model [9]
and the Biba model [10], or based on state and history, such
as the Chinese Wall model [17] (see Section 2.1). The
wrapper can record audit trails, analyze them in real time,
and implement many schemes of intrusion detection based
on the analysis. It can also be used to enhance other security
features, such as transparent encryption and decryption.

The Generic Software Wrapper is not suitable for covert
channel analysis [90]. Due to the limitation of the
underlying Unix/Linux architecture, it cannot protect the
system from compromised root programs. Since the
Wrapper Support Subsystem operates in the kernel and
utilizes knowledge about the kernel, rewriting it at the
application-level will require much more knowledge about
the application and impose significantly higher cost.

The Generic Software Wrapper technology is extended to
work within a networked enterprise environment [34]. The
challenges in such an environment are how to securely
manage a heterogeneous environment over a network, how
to manage data flow with push and pull models, and how to
easily write wrappers. Extensions are added to the existing
wrapper definition/query language and the wrapper
database. Host and network controllers utilizing

appropriate storage and communication protocols are
constructed. The Windows mediator technology [8] (see
Section 5.2.2) is also incorporated .

5.2.5 Discussion
The wrapper technology can be very useful to enhance the
security of COTS software. As demonstrated above, it can be
utilized in multiple manners to provide different forms of
security, such as access control, confidentiality, and
intrusion detection. Due to the unavailability of source code
of COTS software, and the enormous cost of understanding
and modifying COTS software by third-party developers
even if the source code is available, arguably the wrapper
technology is an essential constituent of secure component-
based software engineering. However, before the wrapper
technology can be more widely and effectively deployed,
several key issues must be resolved:

The level at which the wrapper is applied. In [140], a
set of customized wrappers (a simple mail server and a
trusted gateway between security compartments) are
developed to wrap sendmail and execute it more securely.
While achieving the desired security, these application level
wrappers are custom made, and can not be reused in other
applications. This level of investment may be justified for
reuse of popular and powerful COTS software such as
sendmail. Generic Software Wrappers [40] provide a
framework that can be used to describe wrappers on system
calls, so each system call can be augmented with additional
semantics processing. The technique employed in [118]
wraps functions of a subsystem of the operating system,
utilizing special knowledge of that subsystem. Mediators [8]
applies to non-system call functions and implement a
framework usable to wrap any function in a dynamic link
library. When the abstraction level moves from the
operating system to a subsystem, to general functionality,
and eventually to an application, the application
dependency rises, and the applicability of a wrapper
technology operating at that level decreases. A technology
and framework that can be applied to the widest situations
is more desirable.

The information available to a wrapper. As the level
of abstraction changes when moving between an operating
system and an application, so is the kind of information
available to a wrapper at each layer. Certain security
properties can only be achieved at the application level,
because they need application level knowledge, such as the
mail configuration file in the sendmail application[140].
Others, like access control, are best enforced at where the
access eventually happens, namely the operating system. As
pointed out in [118], some information is not available at
certain layers, so a wrapper technology that operates at the
layer where the information is available is needed.

Security properties. As discussed in [40], wrappers are
suitable for implementing access controls [8, 40, 140],
audit, intrusion detection [40], and transparent encryption
and decryption. They are not well suited for covert channel
analysis. Further research is needed on what kind of
security properties are best provided by the wrapper
technology, and what kind of security needs other
technologies. A related issue is the relationship between the
security provided by a wrapper technology and the security

 13

provided by the wrapped software. Wrappers can augment
the existing security support available from the wrapped
software and provide complementary mechanisms and
policies [8, 40]. A wrapper can use a different mechanism to
enact its own policy, such as the Interceptor/Enforcer in
[118] that does not make much use of the existing security
features. A wrapper can also rely on the wrapped software,
such as the wrapper’s reliance on the mandatory access
control support of the underlying operating system [140].

The extension mechanism provided by the
underlying system. The extension mechanism that the
wrapped system provides decides how easily the wrapper
technology can be implemented. Generic Software Wrapper
uses the dynamically Kernel Loadable Module capability
available in Unix/Linux systems [40], thus its
implementation is straightforward. Mediators do not have a
suitable extension mechanism available on the platform
they choose, so they need to resort to binary patch to make
the wrapping work [8]. Implementing the
Interceptor/Enforcer encounters even bigger obstacles, and
the solution requires more engineering effort and is less
reusable outside the application[118]. If sendmail does not
provide a simple configuration mechanism to redirect the
outbound messages to the secure relay, inserting the relay
wrapper between the separate instances of sendmail
executing in different security compartments will be very
difficult. In general, if the system provides extension
mechanisms in certain key decision points, inserting a
wrapper at those points can be more easily accomplished.

Portability. Related to the previous issue, the wrapper
technology may have a portability problem because of its
dependency on system-specific extension mechanisms.
Generic Software Wrapper relies on the Unix Kernel
Loadable Module [40]. Mediators can only work on
Windows [8]. Because of the system dependency, a certain
level of system dependency is inevitable for the wrapper
technology. However, research is still needed to find out to
what extent a wrapper technology applicable to many
systems can be developed.

Performance. Even with optimization, introducing a
wrapper can still bring significant overhead to the normal
execution of the system. A trust-based mechanism is
proposed to reduce such overhead [55]. For more
trustworthy components, the wrapper performs less work,
or is deactivated at all, so the execution can finish at almost
the native speed. In this approach, a trust manager controls
how the wrapper should work, with the help of a trust
information service, which stores trust values calculated
from negative and positive events sent by wrappers during
components execution.

To assure authentic trust and alleviate the problem of
wrongful incrimination of components by malicious users or
components, algorithms should compute trust value more
reliably [54]. There are several strategies usable. The
algorithm can be either more liberal or more conservative
towards negative experiences with the user/component
under investigation. An indirect trust based on
recommendations takes the reputation of the recommender
into consideration. A collective trust that is derived from
consensus of components can also minimize the effect of a
single malicious recommender. To further ensure the

authenticity of the negative or positive events sent by a
wrapper, an additional check tries to repeat the events
logged and confirm their authenticity. A witness host, which
receives every event that occurs in the wrapper, can also be
set up to execute the composite system along with the
original host. These strategies produce reliable trust-based
wrappers that can reduce the execution overhead
appropriately.

5.3 Agents
Agents are independent entities that augment security.
Compared to the simple wrappers described in Section 5.2,
they make more use of knowledge, perform more complex
operations, cooperate more between each other, and possess
less regular structure.

5.3.1 Gateway Agent
Bieber et al. describes an approach utilizing intelligent
agents to achieve two goals [14]: introduce secure access
control into a legacy application and extend access control
to accommodate federated organizations.

The legacy application is a workflow system where different
stakeholders in the air transportation industry, such as
chiefs and pilots, use agents to access flight information.
The agents are coordinated by a cooperator.

To introduce secure access, a layer of security agents that
enforce a role-based access control policy is placed before
the original workflow agents. The security agents
authenticate the stakeholders and consult the policy before
asking the original agents for information. Adding a layer at
this level that utilizes the same communication pattern as
the existing one minimizes the modification of the original
system.

To introduce federated access that enables stakeholders
from a different organization to access information that they
are entitled to, a translator is placed between the two
federated organizations. The translator is a special agent,
operating at the same layer as original agents. It listens to
requests for information about an external organization,
and translates the subjects and objects involved in the
request to a form that is understandable by the external
organization.

All rules about access control and access translation are
described using a Prolog-like language. The rules are stored
in a knowledge base. The knowledge base can be updated by
agents without interrupting the operation of other agents.
The agent can reason about situations that are not directly
visible from the rules.

The approach demonstrates that agents can be a flexible
method to introduce powerful security features into
applications. However, if the original communication
pattern does not exhibit an agent-orientation flavor, the
applicability of this approach is uncertain.

5.3.2 Secure Access Wrapper
Secure Access Wrapper (SAW) [24, 25] is a technique based
on mediators that provide secure access to data but still
retain autonomy of an organization when different
organizations need to share information in their databases.

 14

Previous approaches address this problem with a federated
database. A federated database maintains a global schema
that is an aggregation of schemas from member databases,
and the federated database has a central enforcer to enforce
the defined policy. This approach limits the autonomy
available to each participating organization.

Lack of autonomy will make an organization less willing to
share its information with collaborating organizations. To
retain more autonomy in a fully distributed environment, a
mediator-based approach is used in SAW. The mediator
does not try to impose a global schema on the members.
Instead it coordinates the access between members.

Secure Access Wrapper assumes that each organization has
a Multi-level Secure (MLS) database and will define its own
security lattice as the foundation for access control. The
approach addresses two additional issues based on this
assumption: 1) How can data be accessed by external
organizations in a manner that is still considered secure by
the local organization? 2) How can data be maximally
shared between organizations without compromising
security?

To answer the first question, a mapping between the lattices
of collaborating organizations is established. Extra
dominance relationships are defined between the external
lattice and the local lattice. When an external subject is
accessing local information, its lattice is used to decide what
local lattice should be used in its capacity, based on the
cross-lattice relationship. The resulting local lattice decides
the access level that the external subject will be granted.
When establishing cross-lattice relationships, care should be
taken to avoid inconsistency, ambiguity, and redundancy.

Figure 12 illustrates the mapping with an example from the
health care domain. The original lattices, from Clinic,
Medline, and Hospital, are depicted by solid lines. The
dotted lines establish the cross lattice mapping. For
example, the “cli” from Medline is mapped to “med” in
Clinic. When a subject of Medline with “cli” level accesses
data of Clinic, the level it acquires in Clinic will dominate
“unc”, but will be dominated by “sys”.

Figure 12, Lattice Mapping, from [25]

The answer to the second question comes from appropriate
classification of attributes of a database relation. While
assigning an attribute a higher level of classification will

increase security, it will reduce the chance of sharing and
may not be desirable in certain situations. The key for
maximal sharing of information is to find the minimal
classifications of attributes that still satisfy the classification
constraints. Secure Access Wrapper expresses classification
constraints in a constraint graph. After finding the upper
bound of classifications, SAW searches for the lower bound.
These bounds are used to assign secure levels.

Architecturally a mediator is placed between the consumer
of data and the data itself. The consumer and the data might
belong to different organizations. When the consumer tries
to access data, it identifies itself. The mediator accesses the
data on behalf of the consumer, based on the established
cross organization mapping and sharing relationships. The
mediator performs further sanitization before finally
releasing data back to the consumer. It also records audit
trails of data access.

The mediator performs the restriction, sharing, and
sanitization based on rules in a rule system that is
independent of the mediator software. The rules describe
the security policy and primitives for enforcement. The
mediator can also interact with a security officer if it cannot
finish a task automatically.

In summary, the mediator of Secure Access Wrapper is
agent-like software that achieves autonomous secure
sharing of information between heterogeneous
organizations by mapping lattices and labeling attributes
appropriately.

5.3.3 NRL Pump
The NRL Network Pump [65] is a device that enables secure
communication between components that run at different
security levels in a multilevel secure (MLS) environment. It
can be used for fast and secure communication between
components operating at different security levels.

A component at a lower level needs to send data to a
component at a high level. To increase the reliability of
communication, an acknowledgement signal is sent back
from the high level component to the low level component
after a successful communication.

The acknowledgement can be used to exercise flow control
so the low level sender will not receive an acknowledgement
if its continuous sending data will hit a full buffer. Using
acknowledgements to prevent the buffer from getting full or
staying full is very important, because the event that a
buffer becomes or stays full can be used as a storage covert
channel.

However, using an acknowledgement itself creates a timing
covert channel, because the timing when a low level
component receives the acknowledgement can be used by a
malicious high level component to send information
secretively.

To reduce the danger of such a timing covert channel but
still provide reliable communication, the Data Pump [66]
regulates the delivering of acknowledgements. Its
architecture is shown in Figure 13. A pump is a
communication device between a low level component and a
high level component. It contains separate buffers for the
low level component and the high level component. It uses
separate trusted processes to communicate with the low

 15

level component and the high level component. After it
receives the acknowledgement from the high level
component, it does not deliver the signal back to the low
level component immediately. Instead, it inserts a random
delay that matches the statistical average delay of
acknowledgements before sending the acknowledgement
back. Since statistically the delayed acknowledgements have
the same delay as the original acknowledgements, the
technique does not affect the reliability and throughput of
the pump. However, the statistical noise thus introduced
can effectively reduce the capacity of the timing channel,
and the degree of reduction can be controlled by the
designer in tradeoff with other design factors.

A network version of Pump has also been developed [67].
The Network Pump supports multiple communication
sessions. This makes the arrival of acknowledgements at a
low level component even more difficult to predict,
effectively increasing the statistical noise of the covert
channel and achieving better security. The Network Pump
also prevents denial of service by monitoring the
acknowledgement rate so that no low level component can
send faster than what can be handled by the high level
component.

Figure 13, NRL Pump, from [67]

The NRL Pump facilitates integration of multiple MLS and
non-MLS systems. Simply integrating several multilevel
secure systems may not result in a satisfactory solution. A
straightforward integration solution is connecting different
MLS systems together and allowing communications only
between senders and receivers of the same level. This
solution suffers from following limitations: 1) If the systems
do not have the same level of assurance, the total assurance
level is the same as the weakest one among the system. 2)
The approach cannot be used to integrate systems that have
only one level of security. 3) Because of the high cost and
slow pace in MLS development, the approach cannot utilize
available non-MLS technologies and applications. An easy
to use and flexible alternative is using the NRL Pump
together with multilevel workstation (a workstation trusted
to securely manipulate information from multiple levels)
and downgrader (devices lowering the security level of
data). These devices assure that “no higher level
information should pass to lower level users/processes and
lower level information should be available to higher level
users/processes” [64].

5.3.4 MLS METEOR
Kang and Frosher develop MLS METEOR, a multilevel
security (MLS) extension to a traditional workflow
management system (WFMS) METEOR [62, 63]. It allows
workflows executing at different security levels to aggregate
into a composite workflow according to a defined policy.

In contrast to the approach integrating multiple MLS
systems into a composite MLS system using the NRL Pump
(see Section 5.3.3), MLS METEOR argues for using single
level workflow system as much as possible and integrating
multilevel components only when absolutely necessary.
They believe that composing an MLS WFMS out of multiple
single level WFMS is the only practical solution.

They adopt a layered method to construct the architecture
of the workflow management system. A task in the higher
layer workflow is implemented as a complete workflow at a
lower layer. The tasks in the lower layer workflow might not
be dominated by the security level of the higher layer task.
This situation requires repartitioning the implementing task
into several subtasks.

A transition from a task in one workflow to another task in
another workflow is called an external transition. External
transitions are the cornerstones of MLS workflows. Each
transition crossing security levels is an external transition
because a workflow can only contain tasks belonging to the
same security level.

To communicate crossing different security levels, a one way
communication device (like the Network Pump, see Section
5.3.3) is used, and release policy servers in the sending
domain and receive policy servers in the receiving domain
assures the proper security policy. These policy servers
reside on synchronization nodes in each domain that serve
as both the entry/exit points for information passing and
proxies for tasks of different domains.

A supporting environment supports designing and
executing MLS workflows. An editor allows the designer to
design the domains and roles of the MLS workflows, in
addition to standard workflow artifacts such as networks,
tasks, arcs, and data. The resulting design can be compiled
into executable code, if actions for each task are available.
The code executes in a standard single level workflow
management system. The code for the synchronization
nodes, generated by a compiler of the design environment,
ensures proper multilevel security semantics during MLS
workflow execution.

In summary, this methodology intends to maximize reuse of
existing single level software components in providing
multilevel security capability. The key connection
mechanism is a one-way communication device
implementing secure information release. The structure of a
workflow can be modified to meet the MLS security
requirements. A supporting environment consisting of an
integrated designer, a compiler and a run time system
supports security design and execution.

5.3.5 Workflow Partition
Atluri et al. propose a novel system for securely executing
workflows in a distributed environment where nodes
participating in the execution do not necessarily trust each
other [7]. Because of the performance gain and the

 16

distributed nature of certain applications, a workflow
management system executing steps of a workflow in
different nodes is necessary and desirable. The description
of a distributed workflow contains data and control
dependency among the steps of the workflow. This
dependency can be utilized by malicious workflow execution
agents to manipulate the result to suit the purpose of those
agents. For example, if a ticket agent of the company A
knows the booking agent of a client will purchase ticket
from the company B if the quote received from the company
A is higher than a certain limit, the agent of the company A
can propose just below the limit, and direct the flow to
satisfy the interest of the company.

To solve this problem, the starting agent divides the
workflow into smaller restrictive partitions. Each smaller
workflow partition can be executed on agents belonging to
the same class of interest (the company A and the company
B of the above example belong to different classes), because
no sensitive information is contained in the smaller
workflows. Certain neutral agents that have no conflict of
interest with existing classes of competing agents are added.
These neutral agents collect results of current workflow
execution steps, direct executing remaining steps, and
further partition the remaining steps if necessary. Since this
is a distributed environment, the starting agent only
bootstraps the executing process. It will not serve as a
central monitor or coordinator. The neutral agents
cooperate to complete the workflow.

This approach achieves confidentiality. It prevents explicit
information flow among potentially antagonistic agents. No
information will be leaked to malicious agents. The
approach accomplishes this through using neutral agents
that save data and control execution for the competing
agents. A drawback of the approach is that it requires
complete knowledge about the classes of conflict of interests
and dependency of data and control before partitioning the
workflow and executing the resulting steps.

5.3.6 JIF/Split
JIF/Split [139] is a system that partitions a program into
components such that no invalid information is passed
between components during the program execution. This is
a programming system that enforces information flow
security.

Since information flow security is a property for all possible
program executions, it is not well suited for run-time access
control where only information available to the current
execution can be used to make decisions. A more static
approach enumerating all possibilities is superior.

The input to JIF/Split is an annotated program and a trust
declaration. The declaration specifies what agents (hosts)
are trusted by others so that the agents can receive
information necessary for computation from the trusting
hosts. JIF/Split outputs a split program, if there is a
possible splitting. The execution of the split program
conforms to the trust declaration and ensures secure
information flow. Figure 14 depict the JIF/Split
architecture.

JIF/Split adopts the decentralized label model proposed in
[97]. The model gives each data a confidentiality label and
an integrity label. The confidentiality label specifies what

principals are allowed access, and the integrity label
expresses how much trust is placed on the validity of the
data. Declassification on confidentiality and endorsement
on integrity are used to loosen confidentiality and integrity
requirements for meeting some realistic needs.

JIF/Split analyzes the implicit data flow that comes along
with the control flow. It tracks where a field is defined or
used in a program and checks whether the flow is allowed by
the trust declaration. A set of primitives is developed so
agents can pass data and control between each other
without revealing information to distrusted agents. The
agent partitioning the program must be trusted by each
participating agent. It ensures that all participating agents
execute the same split program, and optimize data access
without violating information flow security.

Figure 14, Secure Program Partitioning, from [139]

JIF/Split has a number of advantages. It can enforce a
stronger security than simple access control. It enables
partially trusted agents to cooperate for a computation. It is
fully automated in assuring security. It supports explicit
trust declarations. Its drawbacks are that it can only work
when program source code is available, and the policy to
enforce must be known prior to the splitting.

The workflow partition technique (see Section 5.3.5) can
work on a different format (workflow description) and
support more dynamism because it allows dynamic
partitioning even though it still requires complete prior
knowledge. JIF/Split approach could be extended to a
general binary-only dynamic situation if enough metadata is
available for binary components.

5.3.7 SafeBot
Filman and Linden proposes an intelligent agent-based
approach to attack the security problem [35]. Such an
intelligent agent is named SafeBot. SafeBots are ubiquitous,
communicating, and dynamically confederating agents that
monitor and control the execution of components of
existing applications.

Simple SafeBots are wrappers around existing software
components. They monitor the incoming and outgoing
traffic of the wrapped component. A SafeBot can require
further authentication, reject inappropriate access, detect
suspicious activities (probably with help from other
SafeBots), audit user and component actions, randomize
duration of component invocation to frustrate covert timing
channels, and thwart leaking sensitive information.

SafeBot Agencies are more powerful agents that do not wrap
existing software components. They authenticate users and

 17

services, monitor security status, profile behaviors, facilitate
information exchange between simple SafeBots, reason
about trust relationships, and support human security
officers and administrators.

The proposed SafeBot framework consists of a language, a
tool, and a library, shown in Figure 15. The framework aims
at generating deployable powerful SafeBot wrappers around
existing components and avoiding labor intensive manual
wrapping. The three constituent parts are: 1) The OntoSec
language. This language describes properties and
communications of SafeBots. It is expressive, including
security ontology that can specify goal, action, event,
knowledge, policy, status, belief, and other concerns. It is
directly computable within a reasonable amount of time.
The language unifies programming with reasoning. 2) The
Swathe compiler. The compiler automatically compiles
OntoSec specifications into deployable SafeBot wrappers.
To be wrapped by a SafeBot wrapper, the original
component should be specified (with a formal specification
facilitating the automatic generation of the SafeBot),
sequestered (not directly invocable from intruders), and
substitutable (so the SafeBot wrapper can substitute it). 3)
The SecLib library. The library contains algorithms,
mechanisms, and existing SafeBots that understand the
OntoSec language and can be assembled into a new SafeBot.
When the Swathe compiler generates new SafeBots based
on an OntoSec specification, it deals with the syntactic
issues of wrapping, leaving the real semantics to be handled
by items in the SecLib library. SafeBots generated from
these items can understand the environment, reason about
threats, and plan possible actions.

SafeBots are important security infrastructure, so protecting
themselves is an important goal. Possible protections
include using cryptography in communication, running
SafeBots in dedicated hardware, reasoning trust of SafeBots,
and isolating rogue SafeBots.

Figure 15, SafeBot Framework, from [35]

Compared to general wrapper mechanisms (see Section
5.2), SafeBot stands out as communicating intelligent
wrappers. The SafeBots maintain knowledge through
security ontology, and they reason before taking possible
actions. Other wrapper technologies are straightforward
wrappers that do not communicate with each other, and do
not exploit reasoning. This could give SafeBots more power.

However, the framework proposal has several severe
limitations that hinder its wider applicability. First, it
requires that the wrapped software component has a formal
specification, is invocable by a SafeBot wrapper, but is not
accessible by intruders. Few components can satisfy these

stringent requirements. Second, to facilitate automatic
generation of wrappers so that no manual wrapping is
needed, an ontology language covering a significant part of
security is proposed as the foundation for specifying
behaviors and communications of SafeBots. Given the
evolving nature of the security domain, an extensible
language is essential, and a reasonably large core of the
ontology must be available before the approach could
describe any real applications. Finally, a relatively mature
library is required before any meaningful wrapper can be
generated, although this problem can be mitigated as the
adoption process moves forward.

5.3.8 Discussion
Agent techniques provide security for modular software by
either connecting software components together or
partitioning a system into appropriate components.

Gateway Agents (Section 5.3.1), Secure Access Wrappers
(Section 5.3.2), and NRL Pumps (Section 5.3.3) are
connection mechanisms when different organizations need
to share data. The Gateway Agents approach can be adopted
in more general cases. The NRL pump facilitates data
exchange between different levels in a single MLS
environment. Secure Access Wrappers are used when
several MLS organizations need to share data with each
other.

Techniques outlined in Sections 5.3.4, 5.3.5, and 5.3.6 are
all top-down approaches for securing a modular system by
partitioning it appropriately. They all need prior complete
knowledge about the system to securely partition it. They
differ in the formalism that they work on (workflow
description in Section 5.3.4 and Section 5.3.5, source code in
Section 5.3.6), and what extra support they need (network
pump in Section 5.3.4, neutral agents in Section 5.3.5, and
data/control transfer support in Section 5.3.6).

The SafeBot framework is the most ambitious, and
theoretically can be applied to both situations. But
significant obstacles in available library and suitable
components prevent its full implementation.

Table 1 summarizes available agent techniques.

Table 1, Summary of Agent Techniques

Technique Connect / Partition Additional Feature

Gateway Agent Connect General

Secure Access
Wrapper

Connect Multi MLS

NRL Pump Connect Multi level in Single
MLS

MLS METEOR Partition Workflow, use NRL
Pump

Workflow Partition Partition Workflow, use
neutral agent

JIF/Split Partition Source code, use
data/control
transfer

SafeBot Both Ambitious

 18

5.4 Meta Object Protocols
This section surveys another wrapper like mechanism,
meta-object protocols, which uses entities of a special type
(meta-objects) and a wrapping mechanism (object methods
interception) to augment base entities (objects).

Meta Object Protocols (MOP) come from the Object-
Orientation technology. The Object-Orientation technology
has become the dominant development paradigm in the
past decade. Security is getting more and more attention in
mainstream object-oriented programming languages [46].
However, standard security programming techniques have
several drawbacks. Developers have to develop new security
policies, and manually insert system calls enforcing these
policies into proper places at the application [131]. This
mixes the security processing with the general functionality,
which hinders maintenance and evolution of both
functionality and security. When components coming from
different sources are combined together, it is difficult to
reason about the composite security properties and to
reconcile potentially conflicting security policies. After
deployment, it is difficult to enact new security policies
without major redevelopment effort. These drawbacks come
from the intertwining of functionality and security.

To tackle these problems, two advanced separation of
concerns technologies have been developed. They are Meta
Object Protocol and aspect-oriented software development.
This section studies security enhancement techniques that
adopt Meta Object Protocol, the simpler of the two. Aspect-
oriented security technologies, which are more powerful in
composing concerns, are surveyed in Section 0.

Meta Object Protocols are tightly related with reflection.
Both concepts have a wide theory foundation. Their use in
security engineering can be described as follows. Reflection
[79] is a technique for introspecting the implementation in a
controlled process. A meta-level programming abstraction is
provided to examine and change the underlying structure
and behavior of a system. The abstraction with its
manipulation is called reification. The meta-level
abstraction is causally connected to the underlying system,
so that any change at the meta-level will be reflected back to
the underlying system. Meta Object Protocol (MOP) [73] is
an Object-Orientation reification, where the abstractions in
the meta level are expressed as a set of meta-objects. The
execution of Meta Object Protocol is summarized in Figure
16. When one object sends a message to another object (the
solid lines in Figure 16), the message will not reach the
destination object directly. Instead, the connecting
mechanism redirects the message to a meta-object that is
associated with the destination object (dashed line 1 in
Figure 16). After some pre processing by the meta-object,
the message is eventually routed to the destination object
(dashed line 2 in Figure 16). Similarly, if there is a response
from the destination object to the original source object,
before the response can reach back the source object
(dashed line 4 in Figure 16), it goes back to the meta-object
first (dashed line 3 in Figure 16), probably for some
additional post processing. The rest of this section describes
how this general pattern is used in security engineering.

Figure 16, Meta Object Protocol, from [131]

5.4.1 Actor
The discussion of meta-object protocols begins with the
Actor model. The Actor model is a general and flexible
model of concurrent and distributed computation [2]. Each
actor has a unique name and an associated behavior. This
behavior describes the states of the actor and how the actor
manipulates them. Actors communicate with each other by
sending messages asynchronously. Each actor serially
processes messages it receives. When processing a message,
an actor can perform one of three actions: send messages
asynchronously, create a new actor with a specified
behavior, and become ready for next message.

The Actor model is a general model, so it can be used to
model many computation systems. It also has a formal
semantics defining how a system of actors can evolve when
they send messages to each other.

To support extra-functionality, such as security, the original
Actor model is extended with a meta layer [6]. In such a
model, components at the base layer handle the
functionality of the system, and components at the meta
layer address extra-functionality, such as security,
performance, and coordination. Additional meta layers can
be stacked further onto existing meta layers to provide more
extra functionality. For example, the composition of security
can be handled in a meta-meta layer.

In an Actor system, there are three types of events:
“message sent” event, “actor created” event, and “next
message requested” event, corresponding to the three
actions that an actor can perform. Events have a causal
relationship among them, and they are atomic. To connect
the base layer and the meta layer, an event is sent from the
base layer to the meta layer whenever any event happens.
This event is a meta-message, containing relevant
information such as the sender of the original message, the
receiver, and the content. After an actor at the meta layer
(named a meta actor henceforth) receives the message, it
can process the message to achieve the desired extra-
functionality. During the meta processing, an actor at the
meta layer can send notifications back to actors at the base
layer, either unblocking them from the current sending
operation, delivering the message, or returning a newly
created actor. The process is illustrated in Figure 17.

The Actor model with a meta layer is used to enhance the
data secrecy of the system [3]. A pair of meta actors is
inserted between a sending actor and a receiving actor. One
meta actor, the Encryptor, listens to the messages from the
sending actor. For every message the sender sends, the
encryptor encrypts the message and delivers it to the
original receiving base actor. The other meta actor, the
Decryptor, listens to the “next message requested” event
from the receiving actor. After receiving the event, the

 19

Decryptor receives the encrypted message before the
receiving actor. It then decrypts the message and delivers it
to the receiving actor. Because of the generality and
flexibility of the meta-layer framework, the outlined security
can be imposed on existing actors with minimal effort.

Figure 17, Meta processing of the Actor model, [3]

Because the Actor model provides a formal semantics for
communicating distributed systems [2], it can be used to
model and verify secure authentication protocols. An
approach uses the Actor model to model the behaviors of
not only the communicating parties but also the medium
(called routers) and adversaries as actors [3]. After
modeling the message exchanges between the parties,
verifying the security protocol depends on showing that the
parties can achieve the desired end result even in the
presence of the adversaries. Currently the verification
procedure is still mostly manual.

The actor model supports meta-object protocols naturally.
However, its full implementation and application for
security still waits for further investigation.

5.4.2 Security Meta Object
Security Meta Object [106, 107] is an early approach using
meta-objects to enforce proper access controls.

In standard Object-Orientation technology, a reference to
an object can be considered a capability (see Section 2.1)
that enables access to the full functionality of that object. If
a malicious object holds a reference to a high-privilege
object, it can invoke that object to perform a dangerous
activity.

A security meta-object is a meta-object that holds a
reference to an object and enforces proper access control
before the original object can be invoked. When a function
call is made through the meta-object, the object checks
whether the call is allowed. If the call can be dangerous, the
security meta-object rejects the call and throws an
exception. Otherwise, the call progresses as a normal
function call.

To make security meta-objects effective, referencing a
privileged object must go through a meta-object. This is the
non-bypassability property of the reference monitor [5].
Otherwise, a malicious user can try to get a raw reference to
the privileged object and bypass the access control enforced
by meta-objects. Thus, a meta-object should also monitor

the creation of any new outgoing reference for its underlying
object and attach itself to the new reference.

Similarly, since an incoming reference may point to a
malicious object, an invocation on that reference can result
in security breach. A security meta-object solves this
problem by reversely attaching itself to the incoming
reference and enforcing proper check before invocations
through the incoming reference.

The basic security meta-object approach is extended in
[107]. Each meta-object is assigned a role representing the
principal for which the meta-object acts. As in the role-
based access control model [113], the role makes the access
control policies more explicit and natural. Another
extension is forming a domain for a principal and the
detaching security meta-objects when they act in the home
domain of the protected raw objects. This reduces security
overhead. The problem of proper attachment and
detachment of security meta-objects when entering and
leaving domains has also been formalized and studied [107].

The Security Meta Object approach uses meta-objects to
control access and attach meta-objects to all possible
references. While using a separate meta-object to enforce
security is attractive, attaching a meta-object to every
possible reference and preventing all inappropriate access at
all possible paths is difficult, giving the complexity of
control flows and data flows in a program [42]. If a single
reference is returned without a properly attached security
meta-object, there exists a chance of security breach.
Probably as a result of this, the Security Meta Object
approach has not been fully implemented in its current
form.

5.4.3 Types of Java Meta Object Protocol
Since Java has quickly become a mainstream language and
it provides built-in support for security and reflection,
several attempts have been made to use a Meta Object
Protocol approach in Java to implement security.

Caromel and Vayssiere classifies Java MOP efforts into four
categories, depending on when meta-level code is executed
[21]: compile-time, load-time, VM-based run-time, and
proxy-based run-time. They have studied the impact on
security permission sets by different types of meta-level
code. The solid lines in Figure 18 depict when meta-objects
are in use.

Figure 18, Types of Java MOP, from [20]

In the compile-time MOP approach, the source code is
manipulated and translated to generate new source code for
meta level classes. These classes are compiled together with
the original classes. As a result, new permissions for these
classes are needed to execute the translated program.

 20

In the load-time MOP approach, the meta-level code begins
execution at class loading time. It might end at load time
(pure load time), after modification of the byte code. The
meta-level code can also span into run time, where meta-
objects created at load time are used to implement run-time
meta-object behavior. The load time approach operates on
bytecode, instead of source code. As a result, it cannot
change the classes already loaded through the non-MOP
class loader. Permissions for bytecode manipulation are
required in addition to the normal operation permissions.

The VM-based run-time MOP approach uses a non-
standard Java Virtual Machine to execute a program. The
virtual machine can be either a modification of an original
one or an extension to a standard VM with native library.
The VM-based approach does not impose additional
permissions, because all meta-objects are in the trusted
computing base, along with the virtual machine. The virtual
machine must be properly designed, implemented, and
verified. Otherwise, malicious Java code may breach the
architecture. This approach was only taken by early MOP
efforts.

The proxy-based run-time MOP approach operates within
an environment of a standard virtual machine. It is not as
powerful as the VM-based approach because some events
are not visible or controllable to it, but it can coexist with
the standard environment and benefit from the engineering
efforts invested on that environment. The approach uses a
meta-object as a proxy of a base object. The meta-object
exposes the same interface as the base object, intercept
method calls for the base object, and perform additional
processing around these method calls. The meta-objects
require additional permissions to execute.

5.4.4 A Proxy-based Run-Time MOP
Because proxy-based run-time MOP achieves balance
between expressive power and coexistence with accepted
standards, some recent MOP efforts have taken this route.
In [20], a simple proxy-based MOP was developed for Java.
The approach aims at minimizing change of existing code
when using meta-objects.

The MOP system intercepts two types of events during run-
time: method invocations and instance creations. A meta-
level object is created when a special instance creation
function is invoked. The created meta-level object handles
future method invocations.

The MOP system associates a base class with its meta class.
The base class implements a marker interface and stores the
meta class name as a static class member. When an instance
of the base class is instantiated, the marker interface of the
class notifies the MOP system for meta processing. The
MOP system then retrieves the meta class name and creates
a meta-object for the base object.

Each meta class implements an interface MetaObject. The
interface contains one method MethodCall. This method
implements the standard meta processing for the base class.
The MOP system provides necessary information to this
method. The meta classes can be organized into their own
hierarchy independent of the base class hierarchy.

To meet the type compatibility requirements of the base
class, a stub class is created for each base class during run

time. The stub class inherits from the base class. Each
inherited method of the stub class packages available
information and invokes the MethodCall on the meta class.
Transparently creating the stub class enables both meta
processing and independent development of base classes
and meta classes. This helps relieve one of the inheritance
problems identified in [129], where the meta class has to
replicate all implemented interfaces of the base class but
still cannot support casting the meta class to super classes of
the base class. Another problem identified in [129], the meta
constraint problem, where a derived base class might be
bound to a meta class significantly different than the meta
class bound to the super base class, still remains a
challenge.

To avoid introducing any further requirements for security
permission by the meta processing, two techniques are
used. First, before entering the meta processing, the current
security context is captured. After the meta processing, the
captured security context is restored before returning to
normal processing. Second, the complete meta object
protocol subsystem is granted full permission, essentially
being put into the trusted computing base.

This approach provides a practical solution to add security
capability onto base functionality. However, some problems
should be further investigated. As pointed out in Section
5.4.2, to prevent security breach, each possible reference to
a base object should be made through the meta-object. This
approach does not address this problem, relying completely
on calling the special instance creation function. This
approach also grants full permissions to the meta object
protocol subsystem, enlarging the trusted computing base.
Further investigation on granting less privilege to the
subsystem is worthwhile. Finally, the binding between a
base object and a meta-object is achieved through
programmatic declaration of the base class, which is
different from binding through a separate file. More
experimental results are needed for what will be a best
binding mechanism.

5.4.5 Kava
Kava is a load-time MOP for Java [129, 131]. It uses a
bytecode toolkit to rewrite the bytecode during class loading
time. It uses behavior reflection to inspect the bytecode
without resorting to source code. Kava does not blindly
rewrite bytecode. It only injects meta-objects when they are
necessary for implementing the policy, minimizing the
performance impact. Kava also rewrites the bytecode in a
type-safe manner, limiting potential problems brought by
binary code operation.

Kava provides more capability than the simple MOP
described in Section 5.4.5 [20]. In addition to method
invocation and instance construction, Kava also provides
control over field access and exception handling. For
method invocations, Kava differentiates between two cases.
The first case is called method execution, where the
execution of a method of a base class is augmented. All calls
on the method are automatically handled through the meta-
object. The second case is called method invocation, where
all invocations of a method are augmented to go through the
meta-object. In this case, only invocations on classes already
loaded can be augmented, but the classes themselves cannot

 21

be augmented. The two cases are named callee-side
translation and caller-side translation in [21], respectively.

Instead of specifying the binding between base objects and
meta-objects in the source code, as adopted in the simple
MOP [20], Kava uses a separate specification file declaring
the binding. The specification file also supports meta-
objects parameter to further enhance flexibility. A separate
binding file taking effect at binding time increases
flexibility, because a developer can develop new security
features and bind them with the base functionality without
touching the original source program. A separate file is also
necessary in the case of bytecode rewriting, because no
source code is available to inject meta-objects.

Kava’s architecture is shown in Figure 19. The shaded parts
are provided by Kava. The figure clearly illustrates Kava’s
use of byte code rewriting during class loading time and its
utilization of a separate binding file.

A novel feature in Kava is that it implements stronger non-
bypassability. Its secure class loader employs standard Java
security mechanism, monitors other class loaders and
brings classes loaded by those loaders under Kava’s control.
For an application-level class loader, Kava monitors its
activity and uses bytecode rewriting of method execution to
inject Kava’s control. For a system class loader, Kava cannot
rewrite the byte code for method execution, but it can
rewrite places of method invocation to enable Kava’s
control. Also, since Kava adds hooks to bytecode directly,
the separate proxy problem identified in [106] (see also
Section 5.4.4), where a base object might be accessed
without the provision of a meta-object, can be greatly
reduced. Bytecode rewriting effectively merges the two
objects into one binary entity [129].

Figure 19, Kava, from [131]

Kava can support many types of security policies. It can
support the standard access control policy, where the access

to a resource is granted or rejected based on principals. It
can support a resource-consumption access control policy,
where the access to a resource is granted to a principal, but
only to the extent that the resource is used within the a
specified limit, such as the amount of bytes that is written
over a network connection [131].

Kava can also support a complex integrity model like the
Clark-Wilson model [127] (see Section 2.1). The constrained
data items and unconstrained data items are modeled as
Kava fields, and the transformation procedures and
integration validation procedures are modeled as Kava
methods. Principals are authenticated in the usual manner.
Kava monitors field access on data items and allows only
trusted transformation procedures to perform these
accesses. Validation procedures are invoked after
modification methods. Audit logs are written after any
access methods. Since the Clark-Wilson model is an abstract
model that embodies abstract concepts and operations, it is
appropriate to use a meta-level mechanism to enforce the
rules stipulated by the model.

In summary, Kava is a powerful and flexible MOP
implementation. It coexists harmoniously with current Java
infrastructure and applications. It can implement several
types of security models. Moreover, its enforcement of
security policies can be composed with base functionality
flexibly.

5.4.6 Discussions
Meta Object Protocols can separate the security concern
from the general functionality. As a result, these two aspects
can be developed independently by domain experts each
with the required expertise and appropriate techniques.
Combining security and functionality can be performed at
the deployment and customized to the special needs of the
site. The evolution of functionality, security, and their
integration is easier than the case when they are
intertwined.

The Meta Object Protocol approach can be used to
implement various kinds of security policies, as
demonstrated in [127, 131]. Some arguments hold that it is
superior to a standard container-based approach where only
access control policies can be enforced [130]. What
differentiates these two approaches more is probably not
what policies they can enforce [115], but how flexible the
enforcement can be. Meta Object Protocol shows promise in
this aspect, but this should be investigated further under a
comprehensive perspective with more experiments.

The Meta Object Protocol approach does have some
disadvantages. The performance of a reflective based system
can be unsatisfactory [131]. A reflective based approach can
make reasoning about the system behaviors more difficult,
because the possibility opened by a dynamic reflective
execution is not analyzable by static techniques. However,
this problem can be mitigated if the use of reflection by the
base program is limited to a certain extent. A more serious
problem is the challenge on comprehensive security bought
by the extra MOP subsystem. Since the subsystem is quite
powerful, abusing it can lead to severe damage. Current
approaches put the subsystem into the trusted computing
base [5] and make the subsystem part of the reference
monitor. This can only be justified and trusted only after

 22

careful design, implementation, and strict verification of the
subsystem [128] [132].

While many commercial platforms have not supported easy
extensions to utilize the Meta Object Protocol approach, it is
expected that, with the evolution of the technologies, MOP
will be incorporated into these platforms to achieve
“reflection at large” [133].

From the viewpoint of separating of concerns, the Meta
Object Protocol approach still has limitations. Compared to
aspect technologies discussed in Section 0, this approach
uses the same language for implementing both the base
objects and the meta-objects, where an aspect technology
can use a more declarative language than the base language,
and support security more effectively. The binding
mechanism provided by this approach is generally less
powerful and flexible than the weaving language
implemented by aspect technologies. The two approaches
can be combined, where meta object protocols can provide
the necessary infrastructure to support a powerful aspect
weaving [128].

5.5 Component Specifications
This section investigates techniques that support explicit
component security specification. During composition,
these specified components should be combined
consistently, resolving potential conflicts and accomplishing
system wide security.

5.5.1 Computer Security Contract
Computer Security Contract (CSC) addresses how to
disclose the security property of a component to others [68,
69]. It tries to answer the following questions: how to
characterize the security properties of a component, how to
access these properties at runtime, how to characterize the
composite security properties when a system is composed
out of several components statically or dynamically, and
whether the composite properties are also available at run
time.

Computer Security Contract explicitly specifies security
properties of component interfaces. The interface specifies
ensured and required security properties of a component
using logic. When the components are composed together, a
composite logical description is deduced to capture the
ensured and required properties of the composite
component. These properties can be accessed at run time.
An interface with reasoning capability and knowledge
storage is named Active Interface.

The basic form of the logic is an atom describing three
items: the security operation, the security credential used in
the operation, and the data operated by the operation. For
example, an encryption operation takes a key as the
credential and a stream of data for encryption.

The CSC framework operates in an event-based
environment. When a component needs a service, it
broadcasts a request, and becomes the focal component. A
candidate component is the component responding to this
request. If the two components can successfully negotiate
and find a way to satisfy the required security properties of
each, then a binding is established between the two
components, forming a composition. The composite
contract is the composition of the contracts of the two

components, with the required property of the candidate
component as the composite required property, and the
ensured property of the focal component as the composite
ensured property. After a successful negotiation, both the
focal and candidate component reconfigure them to behave
as specified by the contract.

To enable the run time access of security properties
described by composite contracts, each component has an
interface called the Active Interface. The interface consists
of an identifier verifiable through a digital certificate, a
traditional functional interface describing the available
functions, a read-only public security knowledge database
providing the ensured and required security property of the
component, and a read-write protected computer security
contract base containing all the active contracts that the
component is currently bound to as a focal component. The
contract base will expand and shrink, as the component
engages in different compositions. However, each candidate
component bound to a focal component cannot see the
contract of other candidate components, providing a
protection among the components. The structure of the
active interface is shown in Figure 20.

Figure 20, Active Interface, from [69]

The logic-based contract is expressed with a Prolog-like
form of logic programming [70]. A contract has a set of rules
each of which has a header and a body. The header is a
predicate that can be derived if all predicates in the body are
satisfied. An ensured property is a rule containing only a
header. A required property is a rule containing only a body.
A compositional contract is the result derived from the rules
of the components. Logic programming allows more
powerful automation and reasoning. A rule can use
predicates from the authentication logic proposed in [18].
The authentication logic reasons about the authentication
and belief relationships among components and provides a
well-established foundation to from a compositional
security property from component contracts.

In summary, the Computer Security Contract approach
extends the traditional functional interface of a component
with an extra-functional interface about required and

 23

ensured security properties. A logic approach is used to
describe these properties. Logic reasoning is utilized in
negotiating a composition of components and determining
the composite security properties. A run-time structure
provides storage and access of these properties.

While this approach is promising, some issues need to be
resolved. First, a more expressive and efficient expression
mechanism is needed. The current basic atom describing
security operations, credentials and data does not capture
most entities involved in security design and analysis. How
to improve its expressive power yet retain its computation
efficiency is still an open research question. Second, the
current composition mechanism is still very simple,
mirroring a functional call between a caller and a callee.
Existing logics on functional composition can be applied to
this composition mechanism. Other composition
mechanisms, possibly involving more than two entities,
need to be incorporated [71]. Third, the current contract
base is stored at the focal component and requires
modifying the component, so it depends highly on one party
of the component. Whether this is the only or the best
choice is arguable. When a general component container is
used, it might be a better place to serve as the composite
contract base (see Section 5.7.1). Other forms of
composition might choose different places to store security
contracts.

5.5.2 cTLA Contract
Hermann proposes a more elaborate component
specification to describe and verify security properties of
component-based systems [53]. Instead of the simple first
order predicate logic used in the Computer Security
Contract, a compositional extension to the Temporal Logic
of Actions (TLA)[75], cTLA, is used to specify the behavior
contract of components and their compositions.

The cTLA is a linear time temporal logic describing the
safety and liveness properties of systems (see Section 5.1.1).
The contract written in cTLA models each component as a
process and delineates the state transitions of the process
for the component, forming a state machine. The state
machine can be used to enforce security properties, allowing
valid state transitions and prohibiting invalid ones, as
described in [115].

The composition feature of cTLA is based on concurrent
execution of processes. cTLA enables composition from
implementation-oriented processes, constraint-oriented
processes, and processes combining both. The composition
feature of cTLA supports the property of superposition,
where a property of a process is also a property of the
embedding system.

The superposition of composition greatly simplifies the
verification of compositional systems. The verification can
utilize a pre-developed framework containing theorems
about shared global settings and the properties of
constituent components. To prove a more concrete system
holds the same property as a more abstract system, a
correspondence between a process in the latter and a
component in the former should be established, most
probably in the form of a refinement mapping.

A Role-based Access Control policy is modeled as cTLA
processes. The validity of the access control policy of an e-

commerce procurement application is verified using the
refinement mapping technology suggested above. That
experience suggests that a refinement mapping is relatively
easy to find, and much of the verification work can be
automated with tools.

Compared to the Compositional Security Contract [69] (see
Section 5.5.1), cTLA does not focus on what a compositional
contract will be when composing components, and how a
run-time system can support reasoning, storage, and
utilization of this contract. Composition Security Contract is
a bottom-up approach. cTLA is another instance of those
top-down logic-based refinement verification methodologies
[32, 123]. Despite the initial positive experience, the
approach faces the same challenges, namely finding the
suitable security properties for the methodology and
effectively conducting the proof with more automation and
less dependence on experts.

5.5.3 Discussion
The techniques proposed in this section are only a sample of
possible alternatives. They stand out by their explicit use of
logic-based component specification, while other implicit
forms utilizing other description mechanisms are discussed
in following sections. Using logic facilitates automatic
reasoning and proving during composition and refinement.
One issue beyond simple composition is the emergent
property problem. Emergent properties are those properties
that only come from composing components. Undesirable
emergent properties might be the result of
underspecification of the components or implicit
assumptions made by the components. Specifications of
components should be complete so no undesirable
properties will emerge during composition [56, 137].
Desirable emergent properties are also challenging. An open
research question is whether a set of secure components can
be composed to achieve more security that what is available
through a single component [29] and how this can be
accomplished.

A problem with the component specification approach is
how trustworthy the specification is, because there might be
no proof that the real behavior of the component is the same
as that specified in its specification. One possible mitigation
is using certification [43]. Some trusted third party can
certify the conformance between the specification of a
component and its underlying behavior and issue a
certificate difficult to forge to the component. The certificate
can easily be verified during composition. This is not a
complete solution, but it can be part of the foundations to
support secure composition of components.

5.6 Composition Framework
A composition framework provides base components and
composition mechanisms for composing secure application
modularly. Compared to other techniques, a framework
provides an explicit repository of components and
connection mechanisms. This section surveys some general
composition frameworks proposed in literature.

5.6.1 Infrastructure for Composability at
Runtime of Internet Services
Infrastructure for Composability at Runtime of Internet
Services (ICARIS) [23] is an environment that permits

 24

dynamic composition of services to form composite services.
Three strategies are outlined for constructing new services.
The first one composes the composite service as a virtual
interface for its constituent service. The second strategy
constructs a new container containing the constituent
services. The last strategy extracts related components and
re-assembles them into a composite service.

The framework is used to augment a client and server so
that they can communicate securely using the cryptography
technology [23]. After deciding the composite system needs
a symmetric encryption of the application data and an
asymmetric encryption of the symmetric encryption key,
those components are selected, composed and deployed to
the client and the server. The composition should be careful
about the correct order, because the corresponding
decryption components should used in a reverse order on
the server than that of the encryption components on the
client.

Composing components dynamically and securely poses
greater challenges than doing it statically [14]. The ICARIS
approach does not provide convincing answers to many
challenges. It is not clear how the components are
described, how new requirements are introduced, how the
composition is negotiated and decided to meet the
requirements, and how the correct order can be persevered
automatically.

5.6.2 Composable Replaceable Security Service
Composable Replaceable Security Service (CRSS) [32] is a
framework to support fault-tolerant and composable
security services.

The CRSS framework classifies services into high-level
services and low-level services. The high-level services
include a connection service (adding confidentiality and
integrity to a connection between two applications), a
transaction/exchange service (providing security
enhancement to data in a single transaction), a retrieval and
storage service (allowing secure retrieval and storage of
named objects), a remote execution service (executing
mobile code), and an authentication service (associating
active entities with their identities, authorizations,
certificates, and credentials).

Low-level services include a cryptographic service, a
database service (a highly secure repository for critical
data), a key/credential/certificate service, a
trust/authorization service, and an audit service.

The CRSS framework has four components: a provider
registry, a provider manager, a provider switch, and a
survivability manager. The provider registry keeps
information about each available security service provider.
The provider manager selects providers to fulfill requests
from applications. The manager can choose different
providers as long as they all provide the same service. The
provider switch facilitates transparent execution of remote
providers. If a service can only be accomplished by a
provider not locally available, the manager asks the switch
to launch the execution and returns the result back when
the execution is complete. Finally, a survivability manager
enhances survivability by using several potentially different
implementations of the same service.

The composition of services in the CRSS framework is
rudimentary. It is limited to selecting compatible service
providers when fulfilling an application request. Even the
straightforward issue of composing high-level services from
available low-level services is not addressed by the current
CRSS framework.

5.6.3 Intrusion Detection Inter-component
Adaptation Negotiation
Intrusion Detection Inter-component Adaptation
Negotiation (IDIAN) [33] is a system to support dynamic
communication of intrusion detection components. The
dynamic communication can be used to introduce new
components or new capability of old components into the
comprehensive intrusion detection system, and it can also
be used to balance load among available components.

The intrusion detection components operate under the
Common Intrusion Detection Framework, which contains
monitors to monitor events, analyzers to analyze
information, responsers to respond to actual intrusions, and
a database to store information. These comp0nents
communicate with each other by passing General Intrusion
Detection Objects, which describe events that occurred in
the system, such as possible attacks. Filters can be applied
on these objects to decide which objects a component will
receive.

The components form a producer and consumer agreement
between them after participating in a negotiation protocol.
The protocol specifies how a component advertises its
capability, how a component proposes, how a component
counter-proposes, how a component rejects or cancels a
proposal, and how a component accepts a proposal and
seals the agreement. The protocol is specified in a formal
language. A component can behave as both a consumer and
a producer when it engages in multiple agreements.

In summary, this approach sketches how multiple secure
components coordinate to provide even more security,
participating in a common, formally specified protocol and
exchanging information through a well-defined format. Due
to its limited objective in application domain, it does not
support composition using dynamic protocols and non-
intrusion detection related information.

5.6.4 Partitionable Services Framework
Partitionable Services Framework (PSF) [58] is a framework
that supports dynamic assembly and deployment of
components to adapt to heterogeneous environments where
each administrative domain maintains its own security
policies.

The PSF framework has four elements: a declarative
specification of the application and its environment, a
monitoring module, a planning module, and a deployment
infrastructure. The monitoring module provides dynamic
information. Using this information and specification for
the components, the application and the environment, the
planning module produces a sequence of component
deployment plans. The infrastructure implements these
deployment plans.

A view is an object that either implements a subset of the
functionality of the original object, or works with a subset of
the data of the original object. A view provides greater

 25

flexibility under application and network constraints, and it
enables a finer level granularity in access control.

The access control model in PSF is a decentralized Role
Based Access Control model. The model encodes properties
of applications and resources into credentials. To make an
access control decision, the model seeks an answer to a
question of whether X has the role of Y. The decentralized
nature of the model lies in that the model permits use of
names local to each autonomous domain and depends on
role mapping delegations to translate local names.

A view is the atom of operation and access control. It is
generated from component specifications and credentials
available at the generation time, so it can fit the dynamic
security constraints presented. These credentials enable the
views to operate across various autonomous domains.

One important part of the monitoring module is the
SwitchBoard. The SwitchBoard establishes a secure,
authenticated, and continuously authorized and monitored
connection between two components. During its operation,
when the SwitchBoard detects a change in credentials of two
components, it can take actions, such as asking new
credentials, to keep the secure connection alive.

In summary, PSF uses a credential-based formalism to
express security properties, generates views dynamically
from component specifications to accommodate constraints
presented at component composition time, and provides a
monitoring mechanism to support the continuous secure
interoperation between components.

5.6.5 Discussion
Table 2 summarizes current composition frameworks.

Table 2, Summary of Composition Frameworks

Technique Component Composition Other feature

ICARIS General Virtual
Interface, New
Container, Re-
Assembly

CRSS Low-level
services, High-
level services

Selection of
service
providers

Remote
provider,
Survivability

IDIAN Intrusion
Detection
Components

Events
exchange,
Producer-
Consumer
negotiation

Formally
described
negotiation
protocol

PSF View with
declarative
specification

Dynamic
composition

Monitoring
module for
secure session

The notion of composition framework is appealing. This
approach constructs a secure application from a collection
of available components, using appropriate composition
mechanisms, to achieve desired security with assurance.
However, the state of art in composing securely is far behind
what has been accomplished in general functional
composition. There is no consensus in what secure
components are or should be. Current composition
mechanisms utilized are insufficient, either lacking dynamic
features or failing to address special security requirements.

Finally, there is no mechanism assuring the result of
composition.

5.7 Aspect
Aspect technology can be considered as a special
composition framework to compose secure and modular
applications.

Aspect-Oriented Programming (AOP), exemplified by
AspectJ, is an extension to Object-Oriented Programming
(OOP) to address the cross cutting concern problem more
effectively [72]. It cleanly captures each of these
crosscutting concerns in one self-contained aspect. Each
aspect contains two types of information. One is called
advice, which defines how the crosscutting concern should
be implemented. The other is called pointcuts, which are
places where the advice should be applied to the OOP base
code. A special tool, the weaver, is used to combine (weave)
the aspect and the base code together. The system resulted
from this weaving process will contain appropriate links
inserted in the base code. These links are defined by the
pointcuts of the aspect, and they reference the advices of the
aspect.

Because AOP separates concerns explicitly and models them
directly, it has received much interest since its inception and
has been extended to other phases of software development.
This section surveys how the security aspect is addressed by
various aspect technologies. Section 5.7.1 discusses an
alternative AOP system, A-TOS/JAC. How aspect
technologies can be applied to security issues in traditional
procedural language environments and middleware settings
are discussed in Section 5.7.2 and Section 5.7.3,
respectively. Section 5.7.4 turns to advanced composition
techniques provided by Lasagne. Section 5.7.5 discusses
Component Virtual Machine. Section 5.7.6 investigates
whether the aspect technology can be applied to early
security design stage.

5.7.1 A-TOS/JAC
A-TOS [102] is an aspect-oriented reflexive middleware for
distributed environment. Its core concept is an aspect
component implementing global transversal properties
including security. Aspect components are used to achieve
separation of concerns in a distributed environment.

Aspect components utilize two approaches to achieve
separation of concerns, meta-objects and meta-classes.
Meta objects provide adaptability and distribution. At run-
time when objects exchange messages, meta-objects can
intercept the message and perform additional processing
before and after message delivery. The order of the extra
processing can be flexibly specified.

Meta classes enable powerful reflexive features. The class
definitions are readable and writable, so wrapping classes
that provide extra-functionality, such as security, can be
inserted into the original classes at run time.

Each aspect component class specifies what it does and how
it should be applied to the base classes. Under A-TOS,
security can be handled by invoking appropriate operations
before regular functions are performed.

These ideas have been evolved into Java Aspect
Components (JAC) [103]. This approach can be considered

 26

as using Meta Object Protocol (Section 5.4) to implement
aspect technology (see Section 5.4.6).

A-TOS/JAC demonstrates that the aspect technology can
solve some simple security problems by collecting functions
handling security concerns into a single aspect and invoking
these functions with the standard aspect-oriented
programming facility.

5.7.2 Aspect-Oriented Security Framework
The Aspect-Oriented Security Framework (AOSF) [117] is a
source code translation framework that applies aspect
technology to address the security concern. Its current
implementation works on programs written in C.

Aspects in this framework are considered as code
transformation templates, specifying where, why, and how
the code should be translated. The aspects are defined in an
aspect language, which is a superset of the application
language. The framework works along with the normal build
process. The application and associated aspects are pre-
processed. The weaver then weaves the pre-processed code
together into woven pre-processed code. Finally, the woven
code is compiled and linked into a complete application.

The framework has been initially used to solve
implementation security issues, such as buffer overruns and
time-of-check-versus-time-of-use bugs. Aspects in these
situations are simple one-to-one syntactic transformations,
needing only local context information. Architectural
security issues such as communication channels and event
ordering will require aspects embodying more logic, context,
and customization.

In summary, AOSF provides a simple approach that uses the
notion of aspect to solve some common security
implementation problems. Its applicability to more complex
situations has not been proven yet.

5.7.3 DADO
DADO [135] standards for Distributed Adaptlets for
Distributed Objects. It extends support of cross cutting
concerns to a distributed, heterogeneous environment. Most
aspect technologies are based on a single language, and they
operate on a single computer. DADO is a middleware
supporting aspect technology. It uses a language to model
the concerns in the system, but the implementations of the
model can be achieved through different languages, and
they can reside on different computers.

DADO extends CORBA, the accepted distributed object-
oriented architecture standard. In DADO, a client and a
server form a pair of adaptlets. An adaptlet is described
using an extended interface definition language (IDL). In
additional to standard method declarations, the interface of
an adaptlet can have two more kinds of methods. The first
kind of methods is called advice. An advice method
implements concerns such as security. It is executed every
time some other base methods are executed, subject to a
binding specification. The second kind of methods is called
request. A request is an asynchronous message sent by a
client or a server during the execution of an advice method.
The client and the server in an adaptlet can use the keyword
“that” to refer to the other side of the pair, similar to the use
of the keyword “this” in standard object-oriented
programming.

DADO extends the AspectJ [72] pointcut language to
express pointcuts in a client or server adaptlet. A compiler
compiles an adaptlet IDL description, which specifies all
IDL level events needing adaptlet processing and the
information needed for the processing. To trigger the
appropriate processing logic when certain events happen,
DADO provides a variety of strategies. These strategies
maintain the language independence of middleware. Both
source code instrumentation and binary-only
instrumentation are used so that the trigger process is
transparent to the application and security development.
DADO packages needed information into the per-invocation
service context, and sends returned information back along
with the standard CORBA message flow.

DADO supports a limited form of dynamic service discovery
and composition. It encodes available services in a server
reference. When a client retrieves the reference, it decodes
and discovers the available services from the server. The
server pointcuts are assumed mostly static. When the
available services change, an exception is thrown to the
client, and the client is expected to retrieve a new reference.

DADO stresses type-safety and uses strong typing in
compilation and marshalling. This is not a problem in a
single language environment and it is sometimes ignored by
other component composition work.

DADO can be used to support security concerns. Like other
aspect technologies, the basic mechanism is the injection of
proper security method calls along the message flow of base
functionality. Due to classifying methods into advice and
request, the communication pattern is richer and clearer.
For example, to support the authentication of a client, the
client can execute the contactAuthentic advice before it
contacts the server, and the server can execute the check
advice before it allows the client to proceed. During the
execution of contactAuthentic, the client can issue a
register request to the server, so the following check by
the server allows the client to proceed.

DADO adopts standard aspect technology in a distributed
and heterogeneous environment. As an extension to
CORBA, DADO uses generated stubs/skeletons to support
heterogeneity. This CORBA influence is novel. It makes
DADO suitable for situations where traditional single
language-based aspect technologies are insufficient.
However, DADO is also limited by its CORBA origin. First, it
is heavily dependent on client/server architecture. Its basic
entity, adaptlet, is a pair of client and server. This limits its
use in other situations where the roles of a client and a
server can change or the roles do not exist at all. Second, its
composition mechanism is static. Its current form relies on
compiling IDL descriptions. Relying on IDLs imposes
challenges for providing the flexibility similar to Meta
Object Protocols (Section 5.4) and dynamic context-
sensitive compositions (Section 5.7.4).

5.7.4 Lasagne
When combining functional components together with
other non-functional aspects, the combination should be
modular so that only necessary components and aspects
specific to the requirements are integrated. All components
and aspects thus integrated should interact in a consistent
manner, exposing no potentially incompatible behavior. The

 27

integration should also be dynamic and adaptive to evolving
situations.

Composition techniques based on simple class wrappers
have two limitations. First, they suffer the identify
management problem, where the wrapper has to maintain
proper reference and encapsulation over the wrapped object
(see Section 5.4.2). Second, the wrapping is static. Only
wrappers can access wrapped classes, and they cannot adapt
the access to dynamic context by freely integrating with
other wrappers.

Lasagne is an integration solution that separates the
functionality of wrappers from how the wrappers are
combined and used [126]. It has four basic concepts. First,
Lasagne uses a component identity to unite and hide the
component instance and the wrapper around it. Second, it
introduces the concept of extension, which is the context or
service where components are composed. Third, it
introduces a composition policy external to the components
and extensions. The composition policy specifies how the
components and extensions should be composed together in
a collaboration. Finally, an interceptor can intercept
message exchanges, inspect contextual properties, and
dynamically modify compositions to achieve system wide
consistency.

A wrapper, illustrated below in Figure 21, can be a decorator
wrapper performing additional pre and post processing or a
role wrapper extending the original interface. Each
component provides a generic dispatch mechanism called
variation points to support dynamic composition of
wrappers. During deployment, an extension can specify how
different wrappers are to be weaved together by delineating
the method invocation sequence for the wrappers. At run
time, the interceptor dynamically decides the combination
of extensions based on requirements and contexts.

Figure 21, Wrapper in Lasagne, from [126]

Lasagne supports applying a consistent policy to a
collaboration where several components are composed
together. This can be used to enforce a dynamic security
policy tailored for the collaboration. In [59], a dynamic
monitor is created for each task to enforce unique policies
coming from potentially conflicting sources. The context-
specific dynamic composition, along with the merging of
component identities, is illustrated in Figure 22, in
comparison against traditional static composition.

In summary, Lasagne merges wrappers into united
components, separates composition from encapsulation,
and supports context-specific composition. It uses a

powerful dispatching mechanism to support flexible
composition.

5.7.5 Component Virtual Machine
Component Virtual Machine (CVM)[30] is another novel
approach that treats security as a general aspect of software
and leverages Meta Object Protocol in its solution. It tries to
overcome limitations of current security technologies based
on containers and aspects.

A component container provides infrastructure for
component-based application, such as location, resolution,
invocation, and transaction. The current generation of
component containers, like those available in CORBA,
COM+, .NET, and Enterprise JavaBeans, imposes several
limitations on components developed for them: 1) The
component designer choose the specific targeting
environment, making it very difficult, if not impossible, for a
component user to retarget a component to a different
environment. 2) Components have to implement callback
functions defined by the environment. 3) Partly because of
the above two issues, component users do not have enough
flexibility in changing components. 4) Most importantly, the
security features of the environment are predefined, and
component users cannot define new security services.

Figure 22, Composition of Lasagne, from [126]

Current aspect-oriented programming techniques do not
provide flexibility. They operate on methods of source code.
The focus is the transformation of code, not the
interpretation of code. Decisions about the location and the
content of those transformations are mostly made at
compile time, leaving little flexibility for later time
customization.

To tack these problems, Duclos et al. propose Component
Virtual Machine (CVM), an approach combining the
component container technology with aspect-oriented
programming. The architecture is shown in Figure 23. They
still adopt a container based on Enterprise JavaBeans, but
eliminate the rigidity of services as much as possible. The
container intercepts invocations on components so that all
invocations are regulated by the container. Thus the
container provides a virtual machine for components, from
which the components receive services needed for their

 28

functionality. The AOP approach they adopt operates on the
component level, instead of the method level used in
traditional AOP. The actions of each aspect also affects the
execution environment (the virtual machine), in addition to
the component itself.

The Component Virtual Machine utilizes Meta Object
Protocol (see Section 5.4). It provides mechanisms through
which the component user can define new policies for
component execution, so adding extra functionality to the
base capability of the component is easy and flexible.

Figure 23, Component Virtual Machine, from [30]

Two languages, an Aspect Description Language and an
Aspect User Language, are defined. The former allows the
component designer to describe new aspects, specifying
where the aspect should be applied, what actions should be
executed when the aspect applies, and how these aspects
can be generated and weaved. The latter permits the
component user to express how the aspect should be applied
and supply the context and information needed in applying
the aspect. While as many callbacks as possible are
implemented outside components, components still have to
implement most of the callbacks because only the
component designer has the full knowledge to correctly
accomplish this task. Figure 24 describes the meta models
for components and aspects.

Figure 24, Meta Models of CVM, from [30]

An access controller can be applied as an aspect on a
component so each invocation on the component will only
succeed when the invoker presents satisfactory credentials.

An aspect as well as its generation is defined with the Aspect
Definition Language. Applying the aspect before each
invocation of the component is described using the Aspect
User Language. The Component Virtual Machine generates
the necessary code and inserts it at appropriate places to
enforce the access control policy.

Component Virtual Machine is a combination of Meta
Object Protocol, the aspect technology, and container
approaches. It shows great promise in handling security
concern modularly and flexibly. While its intention to
eliminate callbacks might not be fully fulfilled, its adoption
of a deployment mechanism (the container/virtual
machine) and use of aspect definitions by end users can
improve the flexibility in security. More experiments are
needed to evaluate its capability.

5.7.6 Feature Solution
Feature-Solution [26] graph is a graph that links
requirements (features) to possible solutions. It captures
design knowledge. The graph can be used in a design
process named top-down composition. When following the
general top-down decomposition approach to decompose
the system from the most abstract level down to the most
concrete level, at certain points where the decomposition
can be achieved by reusing existing designs, those designs
are integrated, so the system is at least partially composed
out of available solutions, like the bottom-up composition
approach.

When reusing existing solutions to satisfy a feature
requirement, the solutions should provide variation points
accommodating customizations for the new feature. In
certain cases, more than one variation points are touched to
accommodate a single feature, like security. For example, to
add encrypted communication between a client and a
server, not only is the client modified to include an
encryption but the server is also modified to include a
compatible decryption. This design approach is named
Aspect-Oriented Programming at the Architectural Level,
and is claimed usable as an effective approach to tackle the
problem of adding cross cutting aspects like security into
applications.

This approach raises interesting questions that should be
answered before its claim can be fulfilled. First, larger and
deeper knowledge about design should be captured in
Feature-Solution graphs before its treatment of cross-
cutting aspects can be evaluated with more assurance.
Second, the issue of automation support should be explored.
The current approach includes a significant portion of
manual work. Finally, how well the approach suits security
and what kind of security can be effectively treated remains
to be seen.

5.7.7 Discussion
Separation of concerns is an important theme of software
engineering. The aspect technology provides a natural
mechanism to automate reasoning and constructing
concerns and their separation. It shows promise for
modular and secure software, as demonstrated by
applications in previous sections. However, the current
approaches are still limited to some simple situations such
as access control and encryption/decryption. How the
aspect technology can be extended to solve large-scale

 29

problems in a systematic fashion still remains a research
question.

JAC (Section 5.7.1) provides an option for Aspect-Oriented
Programming other than AspectJ. AOSF (Section 5.7.1)
retrospectively applies the notion of aspect to traditional
procedural languages which are still used for a large fraction
of secure software development. DADO (Section 5.7.3)
extends aspects from a single programming language to a
heterogeneous environment using middleware technologies.
All these efforts expand the applicability of aspect
technology.

Lasagne (Section 5.7.3) proposes a different mechanism that
combines separate concerns dynamically to suite context-
specific needs. Component Virtual Machine (Section 5.7.5)
uses a container to provide support for concerns. Both
techniques open new possibility to introduce additional
concerns into the base functionality.

The Feature Solution (Section 5.7.6) approach is still very
rudimentary. How concerns can be expressed more
explicitly during the analysis and design stages and how
they can be effectively enforced in the implementation and
deployment stages is still open for further research.

5.8 Architectural Approaches
Software architecture has been proposed as an effective
method to design and analyze large and complex software
systems. Most of the previous work has focused on
functionality. This section will examine its support for
security. Some questions specific to an architectural
approach are: Does the technique employ a formal
architecture model? If there is a formal architecture model,
are connections between components buried in an ad hoc
manner, or are the connections abstracted as first class
connectors? If connectors are used, how do they facilitate
the expression and enforcement of security?

This section begins by examining security extensions of
standard object-orientated techniques (Section 5.8.1). It
then turns to approaches without an explicit notion of
connectors (Section 5.8.2, 5.8.3, and 5.8.4). The next
discussion is about architectural models supporting explicit
connectors (Section 5.8.5 and 5.8.6). The issue of
architecture evolution is discussed in Section 5.8.7.

5.8.1 Object-Oriented Labeling
Like modeling software architecture with standard object-
oriented notations [88], some design techniques extend
object-orientated methodologies to support security.
Herrmann introduces a methodology to analyze information
flow security [52]. The theoretical foundation of the
methodology is a decentralized labeling model. The meta-
model used in the methodology is the Common Criteria [19].
To facilitate the adoption of the methodology, a tool based
on graph rewrite system is also developed.

A label in the decentralized labeling model [97] identifies a
set of principals. One of them is the owner; the others are
readers who are granted reading access by the owner. An
“act for” relationship can be defined between principals so
one principal can have the same reading privilege as the
other principal. Operators are defined over labels to
generate more restrictive or less restrictive labels. Each
component, interface, method, and field of an object-

oriented design model is assigned a label. A label serves as
an access control policy to define what kind of access is
granted to which principal. The decentralized labeling
model facilitates static analysis of information flow security
for a model so labeled.

The Common Criteria [19] defines a set of classes for
concepts in a security evaluation process. An asset is a
resource needing protection. It has vulnerabilities, so it is
exposed to threats. Risks are associated with these threats.
Countermeasures can be deployed to fight the threats.
However, countermeasures may contain vulnerabilities
themselves, so more countermeasures are needed. For each
asset, vulnerability, risk, threat, and countermeasure, a
number is assigned to reflect its relative value, severity, or
effectiveness.

A graph rewrite system is a set of rules used in transforming
graphs. Each rule specifies a pre-pattern that identifies the
graph before transformation, a post-pattern that specifies
the graph after transformation, an application function that
must be met by the attributes of the original graph, and an
effect function that the attributes in the transformed graph
will exhibit.

Guided by the meta model of the Common Criteria, the
object-oriented labeling methodology assigns a numeric
value to each data item described in the object-oriented
model. It also labels each component, interface, method,
and field to reflect the current access control policy. Using
graph rewrite rules, the full access control relationship is
computed, so is the asset value of each data structure and
data storage component. If some of the more precious assets
might be exposed to malicious principals, a threat is
identified, and the corresponding risks are assessed. If the
risks are within the acceptable range, then the object-
oriented model is satisfactorily secure. Otherwise, either the
label needs relabeling, or countermeasures should be
deployed to attack the threats. The effectiveness of the new
countermeasure needs to be reevaluated. Since
countermeasures might bring in new vulnerabilities, this
process will iterate until the risks fall into a range acceptable
to the security assessor.

This methodology integrates formal information flow
analysis into mainstream object-oriented design techniques,
resulting in a usable approach that can enhance the security
of design. Its use of a graph rewrite system can easily
integrate more knowledge about security analysis into the
design process, if the knowledge can be embodied in a graph
rewriting rule.

The assessment on security is reached through a subjective
evaluation process, thus the assurance provided by the
methodology is at best qualified. Currently the methodology
can only utilize one kind of formalism (object structure) and
evaluate designs statically. Integrating multiple kinds of
formalism (object behaviors) and expanding the evaluation
into a dynamic environment is worth pursing.

A similar approach is MOMT [81], a methodology that adds
multilevel security to the original Object Modeling
Technique . The basic extension is to add a security label to
attributes and operations of objects and classes in the static
model, and add a security label to the events produced in

 30

the dynamic model. The MOMT methodology is not widely
used, possibly due to its incompleteness.

5.8.2 ASTER
Bidan and Issamy proposes one of the first techniques to
address security issues using an architecture description
language supporting connectors [12]. Based on security
requirements of components to be composed, the approach
uses the specification matching technique [138] and
composes a customized connector out of base connectors
and system-provided connectors to connect the components
and meet those requirements.

In canonical software architecture paradigm, a connector
handles communication issues between components. The
quality of service of communication, such as security, can be
handled via newly formed connectors composed of existing
application-level connectors and system connectors [121].
This connector composition approach has the following
benefits: 1) separation of concerns: computation,
communication, and QoS of communication are handled by
different constituent parts of the architecture; 2) limited
impact on the existing architecture; 3) assurance of
enforceability by the underlying system.

The proposed approach addresses three types of security
properties: encryption, authentication, and access control.
An encryption specification of a component specifies the
parameters of the encryption, such as the algorithm used,
the key size, and the session length. A component might use
a set of encryption algorithms and have different levels of
trust for each algorithm, with the highest trust on the most
secure encryption. Based on the specifications, if two
components can each find an algorithm sufficiently trusted
and the algorithms are compatible (probably using the same
algorithm and accepting keys of the same size), the
components are bound together, and the connector will be
the most secure connector that can be established between
the two components.

A similar process is applied to match the authentication
requirements of the components. Each component specifies
the authentication protocols that it can use and the level of
trust of each protocol. The most trusted protocol that can be
mutually applied will authenticate the components.

A different specification is used to specify access control
policies [11]. For each component, the specification
stipulates the types of subjects (classifications) and the
types of access these subjects will be granted (access rules).
When composing two components together, the composite
classifications can be the union, intersection, or product
from the classifications of the components. The composite
access rules can be the logical conjunction or logical
disjunction of the access rules of the components. Two types
of match are defined to compare access control policies: a
plug-in match if one policy subsumes the other and an exact
match if they are equal.

The ASTER configuration-based environment is extended to
compose components having security specifications. The
environment is based on a module interconnection
language, and it can be used for run-time composition of
components.

This approach is among the first to specify security
requirements for components and form composition based
on the requirements (see also Section 5.5). The approach is
supported by a configuration-based design environment.
The approach has the following limitations: 1) The security
specification is not very expressive. It is limited to certain
aspects of certain properties, such as algorithms of
encryption and protocols of authentication. 2) The match of
the specifications is primitive. It is mostly a selection
process based on parameters of the specifications. 3) Even
though the approach argues for composition of connectors,
it is still oriented towards module interconnection, lacking
an explicit notion of connector that stores and enforces the
composite security property. 4) The approach does not
directly address how composition can be applied to
composite systems.

5.8.3 System Architecture Model
System Architecture Model (SAM) is a methodology that
can be used to model and analyze security of system
architectures [27]. The methodology models security as a
global constraint on the system architecture. It then
propagates the constraint down to the components, and
verifies that the components satisfy the constraint
collectively. The methodology then applies the same process
to model and analyze each component individually.

The System Architecture Model (SAM) integrates a model-
oriented formalism, Petri net, and a property-oriented
formalism, Temporal Logic. Its lower level (proposition
level) utilizes Place-Transition nets and Real-Time
Computation Tree Logic, so the model can be automatically
analyzed. At the higher level (first order level), it adopts
Predicate/Transition nets and First Order Temporal Logic,
because they are more expressive. The security modeling
and analysis is based on the higher level notions. Petri nets
describe components and connectors, and Temporal Logic
specifies architectural constraints.

The methodology consists of the following steps [27]:

1) Construct a top-level secure system architecture model.

2) Specify system wide architectural security constraint
patterns. These patterns are expressed in temporal logic,
and they involve only ports of the components.

3) Decompose the system wide security constraint patterns
to constraint patterns on components.

4) Verify the consistency between the system wide
constraint patterns and the component-level constraint
patterns. The verification generally is not decidable.
However, since the component constraints are derived from
the system wide constraints and the architecture connects
components together, a smaller Petri net can be designed to
replace each component, using conversion guidelines
delineated by the methodology. The resulting larger and
executable Petri net can be used to verify the consistency
between constraint patterns at two levels.

5) Incrementally design and verify components. Apply the
about four steps for each component.

The overall methodology is illustrated in Figure 25, which
shows the environmental constraints and component
constraints at the high level, and how constraints on one

 31

component are inherited as the composition constraint in
the low level.

The SAM methodology is applied to model the Resource
Access Decision Facility of CORBA. It is verified that the
architecture satisfies the security constraints: the access
control decision is always in accordance with the current
policy.

This methodology can model the security of a system
architecture in a systematic and formal manner. It can
assure that a system composed from components satisfies
the security requirements. It claims to be one of the first
such efforts that model architectural security in a
composable and verifiable fashion.

The methodology achieves scalability through the classical
divide-and-conquer mechanism. Once the constraints on
each component are verified to preserve the architectural
constraints, each component can be designed and analyzed
separately. As long as a component conforms to its part of
the full contract, the global property will not be affected.

Figure 25, System Architecture Model, from [27]

The SAM methodology is a top-down approach. It starts
with the security requirement of a system, and assigns
responsibility to each component, so their composition can
be verified for satisfying the requirements. The methodology
could not be applied in a bottom-up manner, where the
composite security from composing components needs to be
reasoned from the security of those components.

The methodology also models security as a form of
correctness. It treats security as a property that can be
expressed by first order temporal logic. While this can cover
a large set of problems, the approach cannot address
problems in the covert channel domain. This methodology
is an architectural level integrity verification methodology
for safety composition and refinement (see Section 5.1.1 and
5.1.2).

In step 3 of the methodology, how to decompose the global
constraints into each component is not always

straightforward. With a given architecture, there can be
several alternatives to allocate constraints. How to decide
the trade offs of the allocations is worth exploration. More
challengingly, when the architecture is still under design
and it can still be changed to accommodate different
security property, performing such an allocation and trade-
off analysis becomes even more difficult.

Since the System Architecture Model is based on Petri nets,
its notion of connector is different than a canonical one. The
“connector” is actually the transitions between places, not
the usual notion of communications between computations.
Therefore, the methodology does not have a step to
incrementally design and verify “connectors”. While the
temporal logic-based formalism is applicable to other
software architecture description languages, extrapolating
the Petri net specific mechanism might not be very
straightforward.

5.8.4 Colored Petri Net
A special type of Petri Nets, Colored Petri Nets, is also used
to analyze security [41]. A Colored Petri Net associates a
type (its “color”) with each place of a Petri Net. It also uses
guards to specify conditions for firing a transition.
Expressions can also be attached to transitions to describe
further actions.

A software architecture containing components and
connectors is mapped into places and transitions of Petri
Nets. More information is captured through colors of places
and guards and expressions on transitions. A Colored Petri
Net is executable, so a simulator can be used to simulate the
architecture and collect execution information.

An example given in [41] is a simple model for security of a
network. The network is modeled as a transition. The
weakness of cryptography, the importance of information,
and the ease of wiretapping are modeled as expressions on
the transition and used as parameters to calculate a value
designating security on the network.

Other quantitative approaches construct a queuing model or
a Markov Chain Model and have to use different models for
different systems and different types of quality. Compared
to those models, the Colored Petri Net approach can handle
different types of quality of different systems in a uniform
manner. However, this approach is not suitable for general
security analysis. As pointed out in [41], the approach is best
suited for qualities with the following properties: 1) The
quality can be calculated using numerical factors 2) the
numerical factors can be assigned to components and
connectors, and 3) the calculation can be performed along
the execution of the architecture. Reliability is a good
example of such qualities. Security, on the other hand, does
not belong to this category.

5.8.5 Connector Transformation
Given the importance of connectors in architectural
development [89], constructing them effectively is of great
importance. Handcrafting each connector can be very
expensive. Existing connectors do not always provide all
required qualities. Like composing general application using
existing components, connector composition is becoming
indispensable to software development. Spitznagel and
Garlan proposes a set of operators that can be used to

 32

transform an existing connector into a new connector that
provides required security property [120].

The motivating problem of the approach is to add security
property to a generic communication mechanism. In the
example given in [120], it is to add Kerberos authentication
support to Java Remote Method Invocation. One possible
solution is to ask the developer to modify the original
application that uses the communication mechanism. This
solution is very expensive, and the result is not
maintainable. A second possibility is to modify the
generator generating stubs for the communication
mechanisms so it provides the security capability at
appropriate locations. This method requires expertise of the
communication and security mechanisms, and it cannot
scale to other properties because a new property will require
further modification of the modified mechanism.

The authors propose a solution employing a set of
transformations on the original connector to produce a new
connector that can meet both the communication and
security requirements. A tool can be developed to automate
the process. This transformational method lowers
requirements on the knowledge about the original
mechanism. The general transformational method could be
applied again on the resulted connector when the
mechanism needs to provide other qualities.

The transformation method is outlined in Figure 26, where l
designates communication libraries, generated stubs, etc.,
below the application level, s represents low level
infrastructure services, t stores data and tables for
information like locations of communicating parties, p is a
policy specifying the proper use of these parts, and w
collects the formal specification describing the connector’s
proper behavior.

Figure 26, Connector Transformation, from [120]

They argue that the transformations on connectors should
balance between formalism and practice, and the
transformations should be useful, general and analyzable.
They propose the following transformations for secure

communication: data transformation that changes the
format of data exchanged, splice that combines two binary
connectors into one new binary connector, adding a role
that enables adding a new party to the interaction, session
that makes a stateful connection stateless or vice versa, and
aggregate that puts a set of connectors under the control of
one controller.

The Kerberos support is successfully added to Java RMI
after these transformations. The engineering effort involved
is reasonable, but the advantages gained are significant.

They admit that their current technology only handles
different types of transformations applied on a single type of
connector, because a transformation requires knowledge of
the specific connector. Finding a set of general
transformations applicable to many types of connectors is a
great challenge. The current formalism used in describing
the transformations is still limited to the specific connector
type.

Transformational construction of connectors can be an
effective way of providing extra functionality in connectors.
However, finding a set of transformations useful, general,
and analyzable remains a big challenge.

Connector transformation can be considered as one method
to introduce more aspects onto the base communication
capability. The aforementioned aspect methodologies (see
Section 0) provide a general framework that can handle
many different aspects, but not much support specific for
security is provided. The connector transformation
methodology utilizes a set of transformations useful in
supporting security. Which methodology is more powerful
and more secure, and whether a combination of both is
possible, remain open research issues.

5.8.6 SADL
Architecture Proof. Secure Software Architecture [96] is
one of the few approaches that directly deal with security at
the architectural level. Based on the correct refinement
approach presented in [95], the Secure Software
Architecture approach presents three unique features: it
supports not only horizontal decomposition of architectures
but also vertical decomposition between different layers of
abstractions, it maintains a correctness retaining mapping
between different layers, and it utilizes a canonical
architecture description language that supporting property
refinement. The approach is illustrated in Figure 27.

They use the approach to prove the Bell-LaPadula [9]
security of a secure extension to the X/Open Distributed
Transaction Processing standard (SDTP). They argue that
proving the security property at an architectural level on a
standard has the advantage that any compliant products will
possess the same security assurance without further proof.
They develop different security extensions to the original
architecture and prove that each extension preserves the
required security.

In the SDTP proof, the DTP standard partitions a
distributed transaction processing system into three
components: the application component that is the initiator
of the transaction, the resource manager that manages
resources of the transaction, and the transaction manager
that coordinates the transaction. Three possible

 33

architectures that enforce Bell-LaPadula security are: 1) Put
all three components into a single security level. 2) Put the
application and the resource manager at different levels,
connect them through a MLS filter that enforces security,
and use a full MLS transaction manager. 3) Use a full MLS
application component, a full MLS resource manager, and a
full MLS transaction manager. They prove that each
architectural variation can preserve the required security.

Figure 27, Secure Software Architecture, from [44]

The reasoning power of the architecture definition language
SADL is based on logic. During the refinement process, the
mapping established between the higher level abstraction
and the lower level abstraction must be both a theory
interpretation and a faithful interpretation. That is, a true
property at the higher level abstraction is also true at the
lower level, and a false property at the higher level is also
false at the lower level. In other words, the lower level
architecture implements the higher level architecture
exactly. This is based on a completeness assumption that
assumes all true statements at each level of abstraction can
be derived from the specifications of that level. As will be
clear later, this is a rather stringent requirement.

After establishing the mappings between the proposed
secure architectures, they manually prove that these
mappings actually preserve the security properties.

Implementation. The effectiveness of the architectural
refinement methodology is demonstrated by implementing
the secure distributed transaction processing (SDTP)
architecture proposed above [44]. The demonstration
reveals important properties of the methodology.

The most important objective of the implementation case
study is to determine whether applying transformations
using only faithful interpretations is sufficient to derive the
implementation level description from the most abstract
descriptions. The non-definitive conclusion from the case
study is that it is very difficult or even impossible. A less
stringent kind of transformations always preserving security
is showed to suffice for the derivation, but it requires very
strong preconditions, which severely affects the applicability
of such transformations. Eventually they have to introduce
transformations that do not always preserve security, and
they will check to assure that such transformations retain
security in each case. To prove that the transformations still
preserve security, they utilize the same transformations

used in architectural descriptions to prove the security
perseverance of these transformations. They call this notion
as “proof-carrying architecture” because of the carrying
along of transformations from architecture. Combining
transformations that always preserve security and
transformations that can be checked to preserve security
together, they accomplish the goal of deriving a low-level
secure architecture from an abstract description.

The study also demonstrates that rearchitecting can be an
effective method to introduce security. Security is not an
inherent property of the original architecture standard. It is
an add-on feature after the architecture is established. The
methodology shows how to introduce and verify security on
a legacy architecture.

Transformations are a common software production
technique. While they cannot achieve everything through a
limited set of transformations, they verify the validity of
transformations that they believe are generally useful.

Also, they can derive the final implementation from the
lowest “implementation-level” descriptions
straightforwardly, due to the formality of facilities from the
selected programming language. The argument for the
programming language dependence is that this is necessary
to assure no significant gap exists between the lowest level
description and the code, and the confidence gained in the
transformations and checking is not lost in the final step of
software construction.

Discussion. This experience suggests that employing
mathematically sound transformations only, such as faithful
interpretations or security preserving transformations, is
too difficult for practical applications of the methodology.
However, loosening the stringent requirements on
transformations and checking security after transformations
with the connection embodied in architectural descriptions
is very effective in verifying the security of the architecture.
This is also demonstrated in [27], where verifying the
consistency between architectural constraints and
component constraints is facilitated by the fact that the
latter is derived from the former.

A common obstacle against a transformation and proof-
based approach is that it requires significant expertise and
is highly labor intensive (see also Section 5.1.2). An
automated tool simplifying the application of the
methodology is possible, with the insights gained from the
effectiveness of rearchitecting, the available stock of general
and verified transformations, and the easiness of producing
code from low level descriptions,.

They plan to use light weight formal approach, design a lot,
specify some, and prove just a little [122]. This is more
practical than a formal method that requires great efforts
from methodology experts.

5.8.7 Law-Governed Architecture
Law-Governed Architecture [92] is a methodology arguing
for not only the description of an architecture model but
also its enforcement. The benefits of an enforced
architecture model are two folds. First, it can bridge the gap
between a descriptive architecture and the system, enabling
reliable reasoning about the system. Second, due to its
carefully circumscribed flexibility, developers can enforce

 34

invariants of evolution when the system evolves during its
lifetime.

The focus of the Law-Governed Architecture approach is the
evolution of a system in its operational context. An evolving
system models three aspects of the system. The first is the
system itself. The second is the explicit rules (called laws)
that govern the structure of the system, the evolution of the
structure, and the evolution of the laws. The third is the
environment in which a system lives and the laws are
enforced.

The laws can be classified into two categories. The system
sub-laws govern the structure and behavior of the system.
The evolution sub-laws regulate the development and
evolution of the system and the laws themselves. Based on a
set of initial laws, a system can evolve into other forms.
During the evolution, certain rules are enforced, and these
rules are called evolution invariants. Strong invariants are
those invariants that not even the developer or the manger
can change.

Different types of systems, different kinds of laws, and
different enforcement techniques can be used in Law-
Governed Architecture. The laws can be enforced statically
and centrally, through a persistent object base describing all
program modules, rules of evolution, meta rules about rules
creation and modification, and builders who conduct
development and evolution. Or the laws can be enforced
dynamically and distributedly, by intercepting message
exchanges between architectural components.

The Law-Governed Architecture can be applied to enforce
secure operation and evolution of a system. For example, a
set of rules can be defined to require that one component
cannot access data in another component. Rules can be
refined into more detailed rules. Or they can also be relaxed
to allow more permissive accesses. However, the strong
invariants should never be violated.

In sum, Law-Governed Architecture not only models the
architecture of a system but also specifies and enforces its
evolution, through a set of reflexive rules. The rules can
specify the security properties of the system, among other
aspects.

The limitation of the Law-Governed Architecture
methodology lies in the expressiveness and enforcement of
the laws. The laws must be enforceable, and the
enforcement should be reasonably efficient. This limits laws

that can be imposed. The methodology suggests that there
still are many useful laws within the limit. This issue
remains an open research problem

5.8.8 Discussion
This section discusses several software architecture-related
solutions for the modular secure software problem.

The simple extension of standard object-oriented notions
with security information (Section 5.8.1) can be very useful,
when such a model comes into existence at a later stage of
design. They can serve as a prelude to the secure program
partition method (Section 5.3.6), whose information flow
security requirements on programs can derive from the
secure object-orientated design models.

However, security should be addressed as early as possible.
This naturally leads to an architecture-based approach.
Simple extensions to module interconnection models
(Section 5.8.2) do not provide a formalism rich enough to
express and reason about architectural security concerns.
Even models with a formal underpinning (Section 5.8.2) can
mix the artificial requirements of the formalism and the
underlying semantics of the real communication and hinder
the ability to reason about security in certain cases.

An architecture model that features connectors (Section
5.8.5 and 5.8.6) can facilitate the analysis and design of
security, because the security issue can be expressed clearly
at an early stage, and reasoning about, composing and
implementing security can be allocated into relevant
connectors.

An architecture model can also guide the proper evolution
of a system (Section 5.8.7). The model can serve as a basis to
prevent the system from degenerating into insecure
variants. This remains a big challenge for researchers.

6. CONCLUSION
The surveyed technologies are summarized in Table 3, using
the framework developed in Section 4. Shades are used to
separate categories of techniques from each other.

A rather coarse rating (fair, good and excellent) is given to
each technique, based on subjective judgment of its
expressiveness, applicability, flexibility, maturity, and
potential for solving the modular security problem.

Table 3, Summary of Surveyed Techniques

Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating

Integrity
Verification, like
CSS [99, 100]

Access Control Logic Formula Refinement Top-down

Logic + PVS Good
(Applicable,
proof
intensive)

Trace-based
Information
Flow, like SIF
[84, 86], [80],
[47]

Information
Flow Security

Trace Product, Cascade,
Feedback

Bottom-up Trace Good
(Theoretically
appealing,
few
applications)

Process Algebra-
based
Information

Information
Flow Security

Process Parallel execution Bottom-up Process Algebra +
Model Checking

Good
(Theoretically
appealing,

 35

Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating

Flow, like SPA
[36, 37, 39],
[110]

few
applications)

Application-level
Wrapper, like
[140]

Access Control Application Wrapped application Top-down Fair

(Ad hoc)

Library
function-level
Wrapper, [8]

Access Control Function Call Function call
interception

Bottom-up Mediator Excellent

(Practical
solution)

System Call-level
Wrapper,
Hypervisor [93,
94] and GSW
[40]

Access Control System Call System call interception,
Kernel Loadable Module

Bottom-up Wrapper Definition
Language

Excellent

(Practical
solution)

Gateway Agent
[14]

Access Control Gateway Agent Bottom-up Prolog-like
knowledge base

Fair

(Ad hoc)

SAW [24, 25] Mandatory
Access Control

Database Secure Access Wrapper Top-down Lattice mapping and
labeling graph

Excellent

(Practical
solution)

MLS METEOR
[62, 63]

Mandatory
Access Control

Single-level
Workflow

Pump [65], Policy
servers

Top-down Design Environment Good

Workflow
Partition [7]

Information
Flow Security

Conflict-free
Workflow

Neutral Agent Top-down Workflow trust
relationships

Good

JIF/Split [97] Information
Flow Security

Conflict-free
subprogram

 Top-down Hosts trust
relationships

Good

SafeBot [35] Wrapper Agent Knowledge base Bottom-up Ontology language,
compiler, and
library

Fair

(Over
Ambitious)

Actor [6] Access Control Actor Meta level events Top-down,

Bottom-up

 Good

(Has
potential)

Security Meta
Object [106, 107]

Access Control Object Security Meta Objects Top-down

Bottom-up

 Fair

(Limited)

Simple MOP
[107]

Access Control Object Compile time tagging +
Stub class

Top-down

Bottom-up

Tagged Java source Good

(Practical)

Kava [129, 131] Access Control,
Clark-Wilson

Object Bytecode rewriting Top-down

Bottom-up

Kava Class Loader,
Binding
specification

Excellent

(Practical,
Flexible)

Computer
Security
Contract [68,
69]

Access Control Component Contract Negotiation Bottom-up Logic, Active
Interface

Good

(Has
potential)

cTLA Contract
[53]

Access Control Logic Formula Top-down Temporal Logic Good

(Has
potential)

ICARIS [23] Bottom-up Fair

(Limited)

CRSS [32] Low-level service Select low-level services
for high-level service

Bottom-up Fair

(Limited)

 36

Technology Security Model Component Type Connection Mechanism Approach Formalism & Tools Rating

IDIAN [33] Intrusion
Detection

Intrusion
Detection
Component

Events, Negotiation Bottom-up Formally specified
components and
negotiation protocol

Good

(Domain is
limited)

PSF [58] Role-based
Access Control

Views generated
from object

Dynamic composition,
monitored connection

Top-down
Bottom-up

Logic-support
credential

Good

A-TOS/JAC
[102] [103]

Access Control Base + Aspect Meta Object, Meta Class Top-down,
Bottom-up

 Excellent

(Practical)

AOSF [117] Base + Aspect Weave Top-down Weaver Fair

(Limited)

DADO [135] Access Control Adaptlet Extended CORBA Top-down

Bottom-up

Extended IDL;
service and request

Excellent

(Applies to
middleware)

Lasagne [126] Access Control Wrapped
Component

Dynamic, context-
specific composition;
Dispatching

Top-down Excellent

(Powerful
composition)

CVM [30] Access Control Deployable
Component

Container-based
interception; dynamic
composition

Bottom-up Aspect Description
Language and
Aspect User
Language

Excellent

(Very
Flexible)

Object-Oriented
Labeling [52]

Information
Flow Security

Object Top-down Decentralized
Labeling; Graph
Rewrite

Good

ASTER [12] Access Control Component Component selection Bottom-up Logic Fair

(Limited)

SAM [27] Access Control Petri net Petri-net composition Top-down Petri net and
Temporal Logic

Excellent

(Practical
approach)

Connector
Transformation
[120]

Secure
Communication

Regular
component

Transformed secure
connector

Top-down Transformations Excellent

(Has
potential)

SADL [96] Mandatory
Access Control

Component Security-preserving
Transformation

Top-down Logic, PVS Good

(Powerful,
but proof
intensive)

The following observations are drawn from the survey:

Foundations. Security is an extra-functional property. It is
not always preserved by standard notion of refinement or
composition. This implies that the assurance gained by
formal proofs of a higher abstraction level cannot be
necessarily transferred down to a lower abstraction level.
This presents a big challenge to applying traditional
abstraction and reasoning mechanisms for security design
and analysis [87].

A refinement and composition approach can help establish
certain security properties so that the cost of compromising
them is higher than an adversary can afford [83]. To assure
these properties, development methods that can yield such
systems are preferred. Refinement methods can lead to
more secure systems than developing a system first and
then analyzing its security. Trusted components and
methods of reasoning about the security of the composite

system should be developed to complement the refinement
effort. The composition logic should resemble the
refinement logic.

Security Model Support. The most common form of
security addressed by surveyed technologies is integrity,
taking the form of access control. Its enforcement typically
relies on inserting checks at appropriate places. Another
security issue that is similarly enforced is encryption and
decryption. Exemplar enforcing techniques are wrappers
(Section 5.2), meta-object protocols (Section 5.4), and
aspects (Section 5.8).

Confidentiality, in the form of information flow security,
along with its composition has been researched extensively
in an abstract manner, but few applications addressing
information flow security have adopted those research
results. It might be worthwhile to investigate the
applicability of the various models and techniques proposed

 37

in the literature for an environment where modern
component technologies are deployed. However, this is a
very difficult problem, due to the enormous gap existing
between the theoretical models and the reality.

Availability has received much less attention from
researchers. It deservers further investigation, and might be
well suited for architectural level analysis.

Connector-oriented Architecture. There exists a
dichotomy between abstract formal models about security
and real practical systems to which the models are supposed
to apply. A bridge should be found to cover the gap between
the two worlds[98, 122]. The bridge should be formal
enough to support modeling and analysis, but it should also
be reasonably easy to relate to real systems. Software
architecture can be a well-suited bridge, due to its ease of
analysis and link to final implementation.

Architecture can be used to specify where security
functionality is allocated and what security mechanisms are
used to achieve it. An explicit architecture enables the
designer to identify security critical areas: places where
attacks have happened, places where security functionalities
are deployed, and places whose compromise can lead to
severe security problems. Then, high assurance but high
cost engineering methods, such as formal analysis, can be
directed to these areas. A balance has to be achieved
between security architecture analysis and functionality and
availability of existing components, which usually take
precedence over security requirements [98].

In an architecture-based approach, connectors, as the loci
for communication, are appropriate to enforce extra
functionality when components are connected together.
Efforts have been made to construct secure connectors
[120]. Recursively applying a compositional approach for
the construction of secure connectors seems quite natural.
However, current theories on connector compositions [121],
like most other composition theories, address security
insufficiently, and are still not easy to use. Some work, like
[50], addresses security, but the notion of composition,
compared to similar notions used in most other formal
works, tends to be rather abstract and primitive. Theories,
techniques, and tools that can support design and analysis
of secure connectors are very much needed.

Description and Enactment mechanisms. Describing
security properties of each component (see Section 5.5) still
remains a research problem. Current proposals based on
logic [68, 69] have not fully demonstrated their power yet.
Other forms wait for exploration.

There have been many different types of enactment
mechanisms that support augmenting systems with
security. Simple wrappers (see Section 5.2) are a suitable
choice to handle low-level security, because there is little
information available at this abstraction level. Flexible
extension mechanisms provided by the original
infrastructure can greatly facilitate the development of
wrapper support. Agents (see Section 5.3) can serve as high-
level security enablers, when each situation will probably
ask for a unique solution.

The aspect technology (see Section 0) can be used as a
powerful mechanism to enact security. Its generality and
expressiveness lies between wrappers and agents. Its

support of modularity and flexibility is very desirable. Due
to its newness, many more experiments should be
conducted to demonstrate its applicability to the security
aspect. The Meta Object Protocol (see Section 5.4), in
addition to being an enactment mechanism, can also be
used as an implementation facility for the aspect
technology.

General composition frameworks (see Section 5.6) have not
demonstrated much success so far. While the notion is
appealing, the content of the frameworks is not rich enough,
and the frameworks have not proven that their coverage can
meet most security needs. Research on composition
mechanisms, especially those on dynamic composition, can
be beneficial for other enactment mechanisms.

Software engineering research generally favors flexibility
and generality. Whether this will come at the cost of
security, due to the complexity and difficulty incurred in
design and analysis, should be carefully evaluated. A
delicate and calculated balance in tradeoffs must be
maintained.

Research Methodology and Plan. The problem of
security design and analysis in modular software has been
studied from different perspectives. While some have
produced many useful results, others are still in an
immature age. This survey holds the opinion that a
comprehensive methodology to solve the modular security
problem is necessary. Here the components of the
methodology and the future research plan are outlined.

In summary, the methodology will be architecture-centered
and connector-oriented. It can support both top-down
refinement and bottom-up composition. It will employ
lightweight formal methods to a reasonable extent, not
relying on knowledge and labor intensive proofs. It will
integrate practical security models beyond simple access
control. An architecture model will guide the development
of comprehensive security. The component specifications
will be extended to support flexible security requirements.
Their compositions will be handled by connectors, which
impose flexible security modularly and non-intrusively,
applying injection and composition technologies such as
wrappers, meta-object protocols, and aspects. Usable
automatic tools will be developed to support the practice of
this methodology.

The details of the methodology are as follows. The
methodology will support both top down refinement and
bottom up composition. It can be used to design a secure
system and its constituent parts, as well as assess the
security of an assembly composed from existing
components.

The methodology is architecture centered and connector
oriented. It is based on a connector-centric architectural
model. It employs formal methods for description and
analysis, but uses them only to a reasonable extent, not
relying on knowledge and labor intensive proof.

An architecture model guides the development of
comprehensive security. An architecture model provides a
complete picture, which is essential in ensuring each
component has received proper attention for security
assessment. An architecture model enables the designer to
allocate security enforcement into appropriate places. The

 38

combination of software architecture and software security
will provide novel insights in attaining secure software.

Future research will begin with using an architecture-based
model for expressing, reasoning about, and enforcing access
control. Access control is the dominant security
enforcement mechanism. A solution that can assure its
fulfillment at an early stage of software development will
facilitate the overall security of the system.

Supporting practical security models other than access
control will also be investigated. More specifically, trust and
availability might be appropriate issues that can be handled
at the software architecture level.

Component specifications will be extended to support
security requirements flexibly. Logic or process algebra will
be investigated as unifying description mechanisms that can
describe several security properties. The possibility of
automatic reasoning and analysis based on these
descriptions will be explored at both the design time and
run-time settings.

Component
[Component

Descriptions (5.5)]

Connectors
[MOP (5.4), Aspect

(5.7)]

Architecture Descriptions
[Architectural Methods (5.8),

Composition Framework (5.6), Formal
Methods (5.1)]

Security Models (2)

Figure 28, Research Plan

The composition of the components will be handled by
connectors, which impose flexible security modularly and
non-intrusively. The reasoning and analysis aforementioned
might take place at connectors. A connector can apply
injection and composition technologies to introduce security
onto base communication capabilities. The aspect
technology, combined with meta-object protocols, can be a
promising mechanism. More experiments using them for
connector implementation will be conducted.

The methodology will be supported by an architecture
description language. The language enables security design
and analysis for systems made of components and
connectors. The design-time and run-time support for the
language will be developed. Automatic tools to support the
practices and activities of this methodology will be
developed.

Case studies will be performed to evaluate the effectiveness
of the methodology. Significant examples will be developed
to demonstrate the applicability of the methodology.
Representative applications from research literature might
be rearchitected using the proposed methodology to assess
improvements brought about by the methodology.

The relationship between the constituent parts of the
proposed methodology and the techniques surveyed in this
paper is depicted in Figure 28 (the numbers are the
numbering of the sections surveying the techniques).

7. ACKNOELEDGEMENTS
The author would like to thank helpful comments and
discussions from Yuzo Kanomata, Justin Erenkrantz, Eric
Dashofy, and Kari Nies.

The author is supported partly by the National Science
Foundation under grant number 0326105 and by the Intel
Corporation. The content of the work should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of either
organization.

8. REFERENCES
[1] Abadi, M. and L. Lamport, Composing

Specifications. ACM Transactions on Programming
Languages & Systems, 1993. 15(1): p. 73-132.

[2] Agha, G., Actors: A Model of Concurrent
Computation in Distributed Systems. 1986: MIT
Press.

[3] Agha, G.A. and R. Ziaei. Security and Fault-
Tolerance in Distributed Systems: An Actor-Based
Approach. in Proceedings of Computer Security,
Dependability and Assurance: From Needs to
Solutions p.72-88, 1998.

[4] Alpern, B. and F.B. Schneider, Defining Liveness.
Information Processing Letters, 1985. 21(4): p. 181-5.

[5] Anderson, J.P., Computer Security Technology
Planning Study. 1972, ESD/AFSC, Hanscom AFB:
Bedford, MA.

[6] Astley, M. and G.A. Agha. Customization and
Composition of Distributed Objects: Middleware
Abstractions for Policy Management. in Proceedings
of 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, p.1-9, 1998.

[7] Atluri, V., S.A. Chun, and P. Mazzoleni. A Chinese
Wall Security Model for Decentralized Workflow
Systems. in Proceedings of 8th ACM Conference on
Computer and Communications Security, p.48-57,
2001.

[8] Balzer, R.M. and N.M. Goldman. Mediating
Connectors: A Non-Bypassable Process Wrapping
Technology. in Proceedings of DARPA Information
Survivability Conference & Exposition, p.361-368
vol.2, 2000.

[9] Bell, D.E. and L. LaPadula, Secure Computer
System: Unified Exposition and Multics
Interpretation. 1975, ESD/AFSC, Hanscom AFB:
Bedford, MA.

[10] Biba, K., Integrity Considerations for Secure
Computer Systems. 1977, ESD/AFSC, Hanscom AFB:
Bedford, MA.

 39

[11] Bidan, C. and V. Issarny. A Configuration-Based
Environment for Dealing with Multiple Security
Policies in Open Distributed Systems. in Proceedings
of 2nd European Research Seminar on Advances in
Distributed Systems, p.240-245, 1997.

[12] Bidan, C. and V. Issarny. Security Benefits from
Software Architecture. in Proceedings of 2nd
International Conference on Coordination
Languages and Models, p.64-80, 1997.

[13] Bieber, P. Security Function Interactions. in
Proceedings of 12th IEEE Computer Security
Foundations Workshop, p.151-160, 1999.

[14] Bieber, P., D. Raujol, and P. Siron. Security
Architecture for Federated Cooperative Information
Systems. in Proceedings of 16th Annual Computer
Security Applications Conference, p.208-216, 2000.

[15] Bishop, M., Computer Security: Art and Science.
2003: Addison-Wesley.

[16] Bonatti, P. and Sabrina, An Algebra for Composing
Access Control Policies. ACM Transactions on
Information and System Security 2002. 5(1): p. 1-35.

[17] Brewer, D.F.C. and M.J. Nash. The Chinese Wall
Security Policy. in Proceedings of 1989 IEEE
Symposium on Security and Privacy, p.206-214,
1989.

[18] Burrows, M., A. Abadi, and R. Needham, A Logic of
Authentication. ACM Transactions on Computer
Systems, 1990. 8(1): p. 18-36.

[19] Caplan, K. and J.L. Sanders, Building an
International Security Standard. IT Professional,
1999. 1(2): p. 29-34.

[20] Caromel, D., F. Huet, and J. Vayssière. A Simple
Security-Aware Mop for Java. in Proceedings of 3rd
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, p.118-125,
2001.

[21] Caromel, D. and J. Vayssiere. Reflections on Mops,
Components, and Java Security. in Proceedings of
15th European Conference on Object-Oriented
Programming, p.256-74, 2001.

[22] Clark, D.D. and D.R. Wilson. A Comparison of
Commercial and Military Computer Security
Policies. in Proceedings of 1987 IEEE Symposium on
Security and Privacy, p.184-94, 1987.

[23] David, M. and B. Pagurek. A Runtime Composite
Service Creation and Deployment Infrastructure
and Its Applications in Internet Security, E-
Commerce, and Software Provisioning. in
Proceedings of 25th Annual International Computer
Software and Applications Conference, p.371-376,
2001.

[24] Dawson, S., S. Qian, and P. Samarati. Secure
Interoperation of Heterogeneous Systems: A
Mediator-Based Approach. in Proceedings of 14th
IFIP TC-11 International Conference on Information
Security, 1998.

[25] Dawson, S., et al. Secure Access Wrapper: Mediating
Security between Heterogeneous Databases. in
Proceedings of DARPA Information Survivability
Conference & Exposition, p.308-322 vol.2, 2000.

[26] de Bruin, H. and H. van Vliet. Top-Down
Composition of Software Architectures. in

Proceedings of 9th IEEE International Conference
and Workshop on the Engineering of Computer
Based Systems, p.147-156, 2002.

[27] Deng, Y., et al., An Approach for Modeling and
Analysis of Security System Architectures. IEEE
Transactions on Knowledge and Data Engineering,
2003. 15(5): p. 1099-1119.

[28] Denning, D.E., A Lattice Model of Secure
Information Flow. Communications of the ACM,
1976. 19(5): p. 236-43.

[29] Dobson, J.E. and B. Randell. Building Reliable
Secure Computing Systems out of Unreliable
Insecure Components. in Proceedings of 17th Annual
Computer Security Applications Conference, p.164-
173, 2001.

[30] Duclos, F., J. Estublier, and P. Morat. Describing
and Using Non Functional Aspects in Component
Based Applications. in Proceedings of 1st
International Conference on Aspect-Oriented
Software Development, p.65-75, 2002.

[31] Emmerich, W. Distributed Component Technologies
and Their Software Engineering Implications. in
Proceedings of 24th International Conference on
Software Engineering, p.537-546, 2002.

[32] Feiertag, R., T. Redmond, and S. Rho. A Framework
for Building Composable Replaceable Security
Services. in Proceedings of DARPA Information
Survivability Conference & Exposition, p.391-402
vol.2, 2000.

[33] Feiertag, R.J., et al. Intrusion Detection Inter-
Component Adaptive Negotiation. in Proceedings of
2nd International Workshop on Recent Advances in
Intrusion Detection, 1999.

[34] Feldman, M. Enterprise Wrappers for Information
Assurance. in Proceedings of DARPA Information
Survivability Conference & Exposition III, p.120-122,
2003.

[35] Filman, R. and T. Linden. Safebots: A Paradigm for
Software Security Controls. in Proceedings of 1996
New Security Paradigms Workshop, p.45-51, 1996.

[36] Focardi, R., Analysis and Automatic Detection of
Information Flows in Systems and Networks, in
Department of Computer Science. 1998, University
of Bologna, Italy.

[37] Focardi, R. and R. Gorrieri, A Classification of
Security Properties for Process Algebras. Journal of
Computer Security, 1994. 3(1): p. 5-33.

[38] Focardi, R. and R. Gorrieri, The Compositional
Security Checker: A Tool for the Verification of
Information Flow Security Properties. IEEE
Transactions on Software Engineering, 1997. 23(9):
p. 550-571.

[39] Focardi, R. and R. Gorrieri, Classification of Security
Properties: (Part I: Information Flow), in
Foundations of Security Analysis and Design :
Tutorial Lectures. 2001, Springer-Verlag Heidelberg.
p. 331-396.

[40] Fraser, T., L. Badger, and M. Feldman. Hardening
Cots Software with Generic Software Wrappers. in
Proceedings of DARPA Information Survivability
Conference & Exposition, p.323-337 vol.2, 2000.

 40

[41] Fukuzawa, K. and M. Saeki. Evaluating Software
Architectures by Coloured Petri Nets. in Proceedings
of 14th International Conference on Software
Engineering and Knowledge Engineering, p.263-270,
2002.

[42] Garfinkel, T. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools. in
Proceedings of 10th Annual Network and Distributed
System Security Symposium, 2003.

[43] Ghosh, A.K. and G. McGraw. An Approach for
Certifying Security in Software Components. in
Proceedings of 21st National Information Systems
Security Conference, 1998.

[44] Gilham, F., R.A. Riemenschneider, and V. Stavridou.
Secure Interoperation of Secure Distributed
Databases: An Architecture Verification Case Study.
in Proceedings of FM'99 - Formal Methods, Wold
Congress on Formal Methods in the Development of
Computing Systems, Vol. I, p.701-717, 1999.

[45] Goguen, J.A. and J. Meseguer. Security Policies and
Security Models. in Proceedings of 1982 IEEE
Symposium on Security and Privacy, p.11-20, 1982.

[46] Gong, L., G. Ellison, and M. Dageforde, Inside Java 2
Platform Security: Architecture, Api Design, and
Implementation. 2nd ed. 2003: Addison-Wesley.

[47] Halpern, J. and K. O'Neill. Secrecy in Multiagent
Systems. in Proceedings of Computer Security
Foundations Workshop, 2002. Proceedings. 15th
IEEE, p.32-46, 2002.

[48] Harrison, M.A., W.L. Ruzzo, and J.D. Ullman,
Protection in Operating Systems. Communications
of the ACM, 1976. 19(8): p. 461-471.

[49] Heckman, M.R. and K.N. Levitt. Applying the
Composition Principle to Verify a Hierarchy of
Security Servers. in Proceedings of 31st Hawaii
International Conference on System Sciences, p.338-
347 vol.3, 1998.

[50] Heintze, N. and J.D. Tygar, A Model for Secure
Protocols and Their Compositions. IEEE
Transactions on Software Engineering, 1996. 22(1):
p. 16-30.

[51] Hemenway, J.A. and J. Fellows. Applying the Abadi-
Lamport Composition Theorem in Real-World
Secure System Integration Environments. in
Proceedings of 10th Annual Computer Security
Applications Conference, p.44-53, 1994.

[52] Herrmann, P. Information Flow Analysis of
Component-Structured Applications. in Proceedings
of 17th Annual Computer Security Applications
Conference, p.45-54, 2001.

[53] Herrmann, P. Formal Security Policy Verification of
Distributed Component-Structured Software. in
Proceedings of 23rd IFIP WG 6.1 International
Conference on Formal Techniques for Networked
and Distributed Systems, p.257-272, 2003.

[54] Herrmann, P. Trust-Based Protection of Software
Component Users and Designers. in Proceedings of
1st International Conference on Trust Management,
p.75-90, 2003.

[55] Herrmann, P. and H. Krumm. Trust-Adapted
Enforcement of Security Policies in Distributed
Component-Structured Applications. in Proceedings

of 6th IEEE Symposium on Computers and
Communications, p.2-8, 2001.

[56] Hinton, H.M. Under-Specification, Composition and
Emergent Properties. in Proceedings of 1997 New
Security Paradigms Workshop, p.83-93, 1997.

[57] Hoare, C.A.R., Communicating Sequential
Processes. 1985: Prentice-Hall. viii+256.

[58] Ivan, A.-A. and V. Karamcheti. Using Views for
Customizing Reusable Components in Component-
Based Frameworks. in Proceedings of 12th IEEE
International Symposium on High Performance
Distributed Computing, p.194-204, 2003.

[59] Jaeger, T., et al. Security Architecture for
Component-Based Operating Systems. in
Proceedings of 8th ACM SIGOPS European
Workshop on Support for Composing Distributed
Applications, p.222-228, 1998.

[60] Jaeger, T., X. Zhang, and F. Cacheda, Policy
Management Using Access Control Spaces. ACM
Transactions on Information and System Security
2003. 6(3): p. 327-364.

[61] Johnson, D.M. and F.J. Thayer. Security and the
Composition of Machines. in Proceedings of 1st IEEE
Computer Security Foundations Workshop, p.72-89,
1988.

[62] Kang, M.H., B.J. Eppinger, and J.N. Froscher. Tools
to Support Secure Enterprise Computing. in
Proceedings of 15th Annual Computer Security
Applications Conference, p.143-152, 1999.

[63] Kang, M.H. and J.N. Froscher. Software
Architecture and Logic for Secure Applications. in
Proceedings of DARPA Information Survivability
Conference & Exposition, p.391-405 vol.1, 2000.

[64] Kang, M.H., J.N. Froscher, and I.S. Moskowtiz. A
Framework for Mls Interoperability. in Proceedings
of 1st IEEE High-Assurance Systems Engineering
Workshop, p.198-205, 1996.

[65] Kang, M.H., A.P. Moore, and I.S. Moskowitz, Design
and Assurance Strategy for the Nrl Pump.
Computer, 1998. 31(4): p. 56-64.

[66] Kang, M.H. and I.S. Moskowitz, A Data Pump for
Communication. 1995, Naval Research Laboratory.

[67] Kang, M.H., I.S. Moskowitz, and D.C. Lee, A
Network Pump. IEEE Transactions on Software
Engineering, 1996. 22(5): p. 329-338.

[68] Khan, K., J. Han, and Y. Zheng. A Framework for an
Active Interface to Characterise Compositional
Security Contracts of Software Components. in
Proceedings of 2001 Australian Software
Engineering Conference, p.117-126, 2001.

[69] Khan, K.M. and J. Han, Composing Security-Aware
Software. IEEE Software, 2002. 19(1): p. 34-41.

[70] Khan, K.M. and J. Han. A Security Characterisation
Framework for Trustworthy Component Based
Software Systems. in Proceedings of 27th Annual
International Computer Software and Applications
Conference, p.164-169, 2003.

[71] Khan, K.M., J. Han, and Y. Zheng. Security
Characterisation of Software Components and Their
Composition. in Proceedings of 36th International
Conference on Technology of Object-Oriented
Languages and Systems, p.240-249, 2000.

 41

[72] Kiczales, G., et al. Aspect-Oriented Programming. in
Proceedings of 11th European Conference on Object-
Oriented Programming, p.220-42, 1997.

[73] Kiczales, G., J.d. Rivieres, and D.G. Bobrow, The Art
of the Metaobject Protocol. 1991: MIT Press.

[74] Kotonya, G. and N. Maiden, Editorial Component-
Based Software Engineering. IEE Proceedings-
Software, 2000. 147(6): p. 201.

[75] Lamport, L., The Temporal Logic of Actions. ACM
Transactions on Programming Languages and
Systems, 1994. 16(3): p. 872-923.

[76] Lampson, B.W., A Note on the Confinement
Problem. Communications of the ACM, 1973. 16(10):
p. 613-15.

[77] Lampson, B.W., Protection. ACM SIGOPS Operating
Systems Review, 1974. 8(1): p. 18-24.

[78] Lindqvist, U. and E. Jonsson. A Map of Security
Risks Associated with Using Cots. in Proceedings of
Computer, p.60-66, 1998.

[79] Maes, P. Concepts and Experiments in
Computational Reflection. in Proceedings of 2nd
ACM SIGPLAN Conference on Object-oriented
programming systems, languages and applications,
p.147-155, 1987.

[80] Mantel, H. On the Composition of Secure Systems. in
Proceedings of 2002 IEEE Symposium on Security
and Privacy, p.81-94, 2002.

[81] Marks, D.G., P.J. Sell, and B.M. Thuraisingham,
Momt: A Multilevel Object Modeling Technique for
Designing Secure Database Applications. Journal of
Object-Oriented Programming, 1996. 9(4): p. 22-9.

[82] McCullough, D. Noninterference and the
Composability of Security Properties. in Proceedings
of 1988 IEEE Symposium on Security and Privacy,
p.177-186, 1988.

[83] McLean, J. New Paradigms for High Assurance
Software. in Proceedings of 1992-1993 New Security
Paradigms Workshop, p.42-47, 1993.

[84] McLean, J. A General Theory of Composition for
Trace Sets Closed under Selective Interleaving
Functions. in Proceedings of 1994 IEEE Symposium
on Security and Privacy, p.79-93, 1994.

[85] McLean, J., Security Models, in Encyclopedia of
Software Engineering. 1994.

[86] McLean, J., A General Theory of Composition for a
Class of "Possibilistic" Properties. IEEE Transactions
on Software Engineering, 1996. 22(1): p. 53-67.

[87] McLean, J. Twenty Years of Formal Methods. in
Proceedings of 1999 IEEE Symposium on Security
and Privacy, p.115-116, 1999.

[88] Medvidovic, N., et al., Modeling Software
Architectures in the Unified Modeling Language.
ACM Transactions on Software Engineering and
Methodology, 2002. 11(1): p. 2-57.

[89] Mehta, N.R., N. Medvidovic, and S. Phadke. Towards
a Taxonomy of Software Connectors. in Proceedings
of 22nd International Conference on Software
Engineering, p.178-187, 2000.

[90] Millen, J., 20 Years of Covert Channel Modeling and
Analysis, in 1999 IEEE Symposium on Security and
Privacy. 1999. p. 113-114.

[91] Milner, R., Communication and Concurrency. 1989:
Prentice Hall. xi+260.

[92] Minsky, N.H. Should Architectural Principles Be
Enforced? in Proceedings of Computer Security,
Dependability and Assurance: From Needs to
Solutions, p.89-102, 1998.

[93] Mitchem, T., R. Lu, and R. O'Brien. Using Kernel
Hypervisors to Secure Applications. in Proceedings
of 13th Annual Computer Security Applications
Conference, p.175-181, 1997.

[94] Mitchem, T., et al. Linux Kernel Loadable Wrappers.
in Proceedings of DARPA Information Survivability
Conference & Exposition, p.296-307 vol.2, 2000.

[95] Moriconi, M., X. Qian, and R.A. Riemenschneider,
Correct Architecture Refinement. IEEE Transactions
on Software Engineering, 1995. 21(4): p. 356-372.

[96] Moriconi, M., et al. Secure Software Architectures.
in Proceedings of 1997 IEEE Symposium on Security
and Privacy, p.84-93, 1997.

[97] Myers, A.C. and B. Liskov, Protecting Privacy Using
the Decentralized Label Model. ACM Transactions
on Software Engineering & Methodology, 2000.
9(4): p. 410-42.

[98] Nelson, R. Integrating Formalism and Pragmatism:
Architectural Security. in Proceedings of 1997 New
Security Paradigms Workshop, p.1-4, 1997.

[99] Olawsky, D., et al. Using Composition to Design
Secure, Fault-Tolerant Systems. in Proceedings of
3rd IEEE International High-Assurance Systems
Engineering Symposium, p.29-32, 1998.

[100] Olawsky, D., et al., Using Composition to Design
Secure, Fault-Tolerant Systems, in DARPA
Information Survivability Conference & Exposition.
2000. p. 380-390 vol.2.

[101] Owre, S., J.M. Rushby, and N. Shankar. Pvs: A
Prototype Verification System. in Proceedings of
11th International Conference on Automated
Deduction, p.748-52, 1992.

[102] Pawlak, R., et al. Distributed Separation of Concerns
with Aspect Components. in Proceedings of 33rd
International Conference on Technology of Object-
Oriented Languages and Systems, p.276-287, 2000.

[103] Pawlak, R., et al. Jac: A Flexible Solution for Aspect-
Oriented Programming in Java. in Proceedings of
3rd International Conference on Metalevel
Architectures and Separation of Crosscutting
Concerns, p.1-24, 2001.

[104] Payne, C.N., Jr., Using Composition and Refinement
to Support Security Architecture Trade-Off
Analysis, in 22nd National Information Systems
Security Conference. 1999: Gaithersburg, MD. p.
238-44.

[105] Peri, R.V., W.A. Wulf, and D.M. Kienzle. A Logic of
Composition for Information Flow Predicates. in
Proceedings of 9th IEEE Computer Security
Foundations Workshop, p.82-94, 1996.

[106] Riechmann, T. and F.J. Hauck. Meta Objects for
Access Control: Extending Capability-Based
Security. in Proceedings of 1997 New Security
Paradigms Workshop, p.17-22, 1997.

[107] Riechmann, T. and F.J. Hauck. Meta Objects for
Access Control: A Formal Model for Role-Based

 42

Principals. in Proceedings of 1998 New Security
Paradigms Workshop, p.30-38, 1998.

[108] Ryan, P., et al. Non-Interference, Who Needs It? in
Proceedings of 14th IEEE Computer Security
Foundations Workshop, p.237-238, 2001.

[109] Ryan, P.Y.A., Mathematical Models of Computer
Security, in Foundations of Security Analysis and
Design : Tutorial Lectures. 2001, Springer-Verlag
Heidelberg. p. 1-62.

[110] Ryan, P.Y.A. and S.A. Schneider. Process Algebra
and Non-Interference. in Proceedings of 12th IEEE
Computer Security Foundations Workshop, p.214-
227, 1999.

[111] Sabelfeld, A. and A.C. Myers, Language-Based
Information-Flow Security. IEEE Journal on
Selected Areas in Communications, 2003. 21(1): p. 5-
19.

[112] Samarati, P. and S.d.C.d. Vimercati, Access Control:
Policies, Models, and Mechanisms, in Foundations
of Security Analysis and Design : Tutorial Lectures.
2001, Springer-Verlag Heidelberg. p. 137-196.

[113] Sandhu, R.S., et al., Role-Based Access Control
Models. Computer, 1996. 29(2): p. 38-47.

[114] Santen, T., M. Heisel, and A. Pfitzmann.
Confidentiality-Preserving Refinement Is
Compositional - Sometimes. in Proceedings of 7th
European Symposium on Research in Computer
Security, p.194-211, 2002.

[115] Schneider, F.B., Enforceable Security Policies. ACM
Transactions on Information and System Security
2000. 3(1): p. 30-50.

[116] Sewell, P. and J. Vitek. Secure Composition of
Untrusted Code: Wrappers and Causality Types. in
Proceedings of 13th IEEE Computer Security
Foundations Workshop, p.269-284, 2000.

[117] Shah, V. and F. Hill. An Aspect-Oriented Security
Framework. in Proceedings of DARPA Information
Survivability Conference & Exposition III, p.143-145,
2003.

[118] Shands, D., et al., Secure Virtual Enclaves:
Supporting Coalition Use of Distributed Application
Technologies. ACM Transactions on Information and
System Security, 2001. 4(2): p. 103-133.

[119] Shaw, M. The Coming-of-Age of Software
Architecture Research. in Proceedings of 23rd
International Conference on Software Engineering,
p.656-664, 2001.

[120] Spitznagel, B. and D. Garlan. A Compositional
Approach for Constructing Connectors. in
Proceedings of 2nd Working IEEE/IFIP Conference
on Software Architecture, p.148-157, 2001.

[121] Spitznagel, B. and D. Garlan. A Compositional
Formalization of Connector Wrappers. in
Proceedings of 25th International Conference on
Software Engineering, p.374-384, 2003.

[122] Stavridou, V., et al. Intrusion Tolerant Software
Architectures. in Proceedings of DARPA Information
Survivability Conference & Exposition II, p.230-241
vol.2, 2001.

[123] Stavridou, V., R.A. Riemenschneider, and F. Gilham.
Sdtp: A Verified Architecture for Secure Distributed
Transaction Processing. in Proceedings of DARPA

Information Survivability Conference & Exposition,
p.369-379 vol.2, 2000.

[124] Sutherland, D. A Model of Information. in
Proceedings of 9th National Computer Security
Conference, p.175-183, 1986.

[125] Szyperski, C., Component Software - Beyond Object-
Oriented Programming. Second Edition ed. 2002:
Addison-Wesley.

[126] Truyen, E., et al. Dynamic and Selective
Combination of Extensions in Component-Based
Applications. in Proceedings of 23rd International
Conference on Software Engineering, p.233-242,
2001.

[127] Welch, I. Reflective Enforcement of the Clark-Wilson
Integrity Model. in Proceedings of 2nd Workshop on
Distributed Object Security, 1999.

[128] Welch, I. and Robert Stroud. Security and Aspects: A
Metaobjects Protocol Viewpoint. in Proceedings of
Workshop on Aspects, Components and Patterns for
Infrastructure Software at the 1st International
Conference on Aspect-Oriented Software
Development, 2002.

[129] Welch, I. and R. Stroud. From Dalang to Kava-the
Evolution of a Reflective Java Extension. in
Proceedings of 2nd International Conference Meta-
Level Architectures and Reflection, p.2-21, 1999.

[130] Welch, I. and R. Stroud. Supporting Real World
Security Models in Java. in Proceedings of 7th IEEE
Workshop on Future Trends of Distributed
Computing Systems, p.155-9, 1999.

[131] Welch, I. and R.J. Stroud, Using Reflection as a
Mechanism for Enforcing Security Policies on
Compiled Code. Journal of Computer Security, 2002.
10(4): p. 399-432.

[132] Welch, I. and R.J. Stroud. Dynamic Adaptation of
the Security Properties of Applications and
Components. in Proceedings of ECOOP'98 Workshop
Reader, p.282, 1998.

[133] Welch., I. Adding Security to Commercial-Off-the-
Shelf Software. in Proceedings of 1997 European
Research Seminar on Advances in Distributed
Systems, 1997.

[134] Wittbold, J.T. and D.M. Johnson. Information Flow
in Nondeterministic Systems. in Proceedings of 1990
IEEE Symposium on Research in Security and
Privacy, p.144-61, 1990.

[135] Wohlstadter, E., S. Jackson, and P. Devanbu. Dado:
Enhancing Middleware to Support Crosscutting
Features in Distributed, Heterogeneous Systems. in
Proceedings of 25th International Conference on
Software Engineering, p.174-186, 2003.

[136] Zakinthinos, A., On the Composition of Security
Properties. 1996, University of Toronto: Toronto,
Ontario.

[137] Zakinthinos, A. and E.S. Lee. Composing Secure
Systems That Have Emergent Properties. in
Proceedings of 11th IEEE Computer Security
Foundations Workshop, p.117-122, 1998.

[138] Zaremski, A.M. and J.M. Wing, Specification
Matching of Software Components. ACM
Transactions on Software Engineering and
Methodology, 1997. 6(4): p. 333-369.

 43

[139] Zdancewic, S., et al., Secure Program Partitioning.
ACM Transactions on Computer Systems, 2002.
20(3): p. 283-328.

[140] Zhong, Q. and N. Edwards, Security Control for Cots
Components. Computer, 1998. 31(6): p. 67-73.

	INTRODUCTION
	SECURITY MODELS
	Access Control Models
	Information Flow Models

	COMPONENT TYPES AND CONNECTION MECHANISMS
	Abstract Computation
	Module, Object, and Component
	CBSE Components
	COTS Component

	SURVEY FRAMEWORK
	TECHNIQUES FOR DESIGN AND ANALYSYS OF MODULAR SECURITY
	Formal Foundations
	Abadi-Lamport Composition in Alpern-Schneider Framework
	Integrity
	Confidentiality: Information Flow Security

	Wrapper
	Application-level Wrapper
	Library function-level Wrapper
	System Library-level Wrapper
	System Call-level Wrapper
	Discussion

	Agents
	Gateway Agent
	Secure Access Wrapper
	NRL Pump
	MLS METEOR
	Workflow Partition
	JIF/Split
	SafeBot
	Discussion

	Meta Object Protocols
	Actor
	Security Meta Object
	Types of Java Meta Object Protocol
	A Proxy-based Run-Time MOP
	Kava
	Discussions

	Component Specifications
	Computer Security Contract
	cTLA Contract
	Discussion

	Composition Framework
	Infrastructure for Composability at Runtime of Internet Serv
	Composable Replaceable Security Service
	Intrusion Detection Inter-component Adaptation Negotiation
	Partitionable Services Framework
	Discussion

	Aspect
	A-TOS/JAC
	Aspect-Oriented Security Framework
	DADO
	Lasagne
	Component Virtual Machine
	Feature Solution
	Discussion

	Architectural Approaches
	Object-Oriented Labeling
	ASTER
	System Architecture Model
	Colored Petri Net
	Connector Transformation
	SADL
	Law-Governed Architecture
	Discussion

	CONCLUSION
	ACKNOELEDGEMENTS
	REFERENCES

