Institute for Software Research

University of California, Irvine

Web Services: SOAP, UDDI, and Semantic Web

Justin R. Erenkrantz
Univ. of California, Irvine
jerenkra@ics.uci.edu

May 2004

ISR Technical Report # UCI-ISR-04-3

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425
www.isr.uci.edu

www.isr.uci.edu/tech-reports.html

Web Services: SOAP, UDDI, and Semantic Web

Justin R. Erenkrantz
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jerenkra@ics.uci.edu

ISR Technical Report # UCI-ISR-04-3

May 2004

Abstract: As the World Wide Web has grown, it has been a challenge to allow meaningful under-
standing of content on the web. To face this challenge, several technologies and initiatives have
been introduced under the umbrella of web services - such as SOAP, which is used to exchange
information between web services, and UDDI which provides discovery services. Additionally,
the semantic web has also been proposed to facilitate understanding. However, these initiatives
conflict with the underlying architectural style of the World Wide Web (REST) and its predomi-
nate instantiation (HTTP). These mismatches are discussed along with potential recommenda-
tions to resolve these conflicts.

Web Services: SOAP, UDDI, and Semantic Web

Justin R. Erenkrantz

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425
jerenkra@ics.uci.edu

ISR Technical Report # UCI-ISR-04-3

Abstract

As the World Wide Web has grown, it has been a chal-
lenge to allow meaningful understanding of content on the
web. To face this challenge, several technologies and initia-
tives have been introduced under the umbrella of web ser-
vices - such as SOAP, which is used to exchange
information between web services, and UDDI which pro-
vides discovery services. Additionally, the semantic web has
also been proposed to facilitate understanding. However,
these initiatives conflict with the underlying architectural
style of the World Wide Web (REST) and its predominate
instantiation (HTTP). These mismatches are discussed
along with potential recommendations to resolve these con-
flicts.

1. Introduction

The growth of the World Wide Web has created a virtual
forum that allows rapid exchange of information between
parties. However, there is no common manner for transfer-
ring application-specific data. The key protocols of the cur-
rent web infrastructure are HTTP[10] and HTML[24].
HTTP concerns itself with how data should be transported
between a server and client. HTML defines the predominate
data format that is used to render text on the current infra-
structure.

However, these technologies are not designed to enable
meaningful communications between peers. HTTP utilizes
the traditional server-client network architecture. While it
may be cheap to introduce a new web server into a network,
HTTP is not designed for two servers to autonomously
transfer application-specific data. A HTTP server will only
respond to requests from clients for the data it is responsi-
ble for.

The data format of HTML is useful for rendering a web-
site, but it is geared towards presentation of elements on a
user agent. Additionally, over the years, the number of sites
containing invalid HTML has compromised the integrity of
the specification. While HTML has proven that it is easy to
learn, most current web browsers will leniently parse web

pages. Errors in the syntactical nature of a website are usu-
ally corrected by the browser without the user’s interven-
tion.

This lack of precision makes it difficult to rely on HTML
for meaningful representation of data. The data may be ill-
formed which may lead to imprecise understanding of the
original intent of the content. When conducting communi-
cation between peers, a shared agreement must be reached
on what the data is and what it should mean. There should
be no room for misunderstanding between peers.

The cloud of technology that should enable this level of
peer-to-peer interaction is called Web Services. We will
examine SOAP, a new initiative that defines a much stricter
data format that allows integrity and allows for proper syn-
tactic validation of the message. We will also introduce
UDDI, which is a service for discovering available web ser-
vices using a public directory. Finally, we will look at the
Semantic Web. In addition to defining the syntax of these
interactions using Web Services technologies, the Semantic
Web may also be helpful to define the semantic meanings of
these interactions.

2. Web Services

The current W3C Working Draft Glossary on Web Ser-
vices defines Web Services as “a software system identified
by a URI, whose public interfaces and bindings are defined
and described using XML” [17].

The current incantation of the World Wide Web is built
around passive informal interactions. Currently, the web is
centered around content. It is not always possible to interact
with the sources of content. Instead of interacting with
Google through a web page, Google could expose their
Search API and allow programmatic access to their search
engine. In fact, Google has exposed their Search engines in
such a manner[13].

With traditional web pages, there is no metadata that
describes how to interact with a website. Competing sites
may offer similar functionality using a variety of mecha-
nisms. This presents a challenge to meaningful business-to-

business integrations. It may lock in a partnership because
it is too cost-prohibitive to create a new relationship with
another partner even though there is a high level of dissatis-
faction.

For a business partner to integrate with another business
using web-based technologies, a custom bridge must be
built. If one of the parties redesigns their website, the
bridge may have to be rebuilt. The bridge may not be able
to rely on translation from the old to the new format
because the old website is removed. If the business rela-
tionship is severed and a new partner is acquired, a brand
new bridge must be built because there is no shared inter-
face with the previous partner. This makes it difficult to
create and use interchangeable relationships on the World
Wide Web.

Therefore, the goal of web services is to enable active
well-defined interactions. It should be possible to create
connectors that can withstand change to the layout
intended for users. The core components should be
exposed in a meaningful manner. Layering components
and connectors should be supported by any web service.

There are a number of specifications that are crucial to
the Web Services goal. One of the key components is
SOAP, a mechanism for transferring content. Another key
component is UDDI, a mechanism for discovering web ser-
vices. Together, these two technologies and several others
attempt to create Web Services.

3. SOAP

Simple Object Access Protocol (SOAP) Version 1.2 is
defined by the W3C as “a lightweight protocol intended for
exchanging structured information in a decentralized, dis-
tributed environment” [16]. SOAP is meant to promote
shared understanding of data in a way that machines can
easily and correctly parse them. To achieve this goal of
extensibility, SOAP uses XML as the principal data format.

While SOAP is meant to be protocol-agnostic, the spec-
ification defines protocol bindings frameworks to describe
how SOAP messages are transported on the wire. Cur-
rently, most SOAP interactions travel over HTTP, but
hypothetical SMTP interactions are also described in the
W3C SOAP primer [22].

SOAP originates comes from the prior XML-RPC spec-
ification [26]. When SOAP is used with the HTTP protocol
binding, it is functionally equivalent to XML-RPC. One of
the main limitations of XML-RPC is that it has a limited
type system. For example, parameter values are not ordered
or labeled. This can result in ambiguity in determining the
appropriate mapping of parameter values. SOAP addresses
this ambiguity by leveraging XML Schema to expand the
data structures that can be represented by publishing a
scheme for the SOAP message[9].

SOAP consists of several components and actors that
work together. A SOAP envelope consists of the data to be
transmitted. Each actor is represented by a server node that
has a role in processing the message that defines its behav-
ior and responsibilities. In addition, SOAP also has an error
structure that allows for graceful handling of faults. Each
of these will be further discussed in detail in the following
sections.

3.1. SOAP Envelope

A SOAP message consists of two portions: a SOAP
header, and a SOAP body. The header serves as the meta-
data for the message, while the body defines the data in the
message. The actual content of these sections are generally
left to the application to define. However, as will be dis-
cussed later, the SOAP specification has defined what
actions SOAP nodes may perform on components con-
tained within the envelope.

3.1.1. SOAP Header

The SOAP Header portion of the envelope consists of
multiple XML entities called header blocks. These header
blocks serve to define the metadata for this transaction.
Each header block may also be targeted at specific SOAP
nodes by identifying the role of the node that should pro-
cess it. Therefore, we can view the SOAP header as con-
taining hop-to-hop information as well as describing the
SOAP body in a end-to-end fashion.

Since the message may be transformed by intermediar-
ies before arriving at its final destination, a mustUnder-
stand XML attribute may be included for all header blocks.
The presence of this attribute indicates that if a SOAP node
is targeted via the role attribute and does not recognize or
understand the header, it must generate a SOAP fault.

3.1.2. SOAP Body

The SOAP body consists of the actual XML-formatted
end-to-end data. The SOAP body should only be processed
by the SOAP receiver. The syntax and semantics of this
body is left undefined by the SOAP specification. The
underlying application may generate a SOAP fault if the
body is malformed or inconsistent.

3.2. SOAP Nodes and Roles

There are several types of participants in a SOAP trans-
action. Each participant has its own duties and roles as
defined by the specification. Since SOAP can be modeled
on the request/response network paradigm, there is a par-
ticipant responsible for the origination of the message and
another participant that is responsible for the responding to
that message. Due to the typical protocol binding with
HTTP, the SOAP specification allows for an intermediary
participant that is responsible for relaying messages and
possibly altering the content.

As mentioned above, each SOAP header block may
include a role attribute that defines which nodes may indi-
cates which role should process it. However, these roles do
not include any routing information. The actual routing of a
message between intermediaries is not defined by the
SOAP specifications.

3.2.1. SOAP None Role

The first standard role is the none role. It is defined by
the XML namespace hittp://www.w3.0rg/2002/06/soap-
envelope/role/none. It is invalid for a SOAP node to partic-
ipate in this role. Tagging a header with this role may be
useful for including information that may not be manipu-
lated by any intermediaries.

3.2.2. SOAP Next Role

The second standard role is the next role. It is defined by
the XML namespace http://www.w3.org/2002/06/soap-
envelope/role/next. All SOAP intermediaries must act in
this role. The final recipient of the message should also act
in the next role.

Once the relevant SOAP header is parsed by a node, it
does not have to be passed to subsequent nodes. In this
manner, header values tagged with this role are useful for
hop-to-hop information.

3.2.3. SOAP Ultimate Receiver Role

The final standard role is the ultimateReceiver role. It is
defined by the XML namespace http.://www.w3.0rg/2002/
06/soap-envelope/role/ultimateReceiver. Only the final
recipient of the SOAP message may act as the ultimateRe-
ceiver. This is useful for including information that only
concerns the final destination. Intermediaries may not
modify header blocks that are tagged with the ultimateRe-
ceiver role. This allows end-to-end data to be preserved.

3.2.4. SOAP Sender

The SOAP sender is the originator of the SOAP mes-
sage. It is responsible for creating the message and defining
the initial construction for the message. The SOAP sender
may deliver the message to either a SOAP intermediary or
the SOAP receiver. It should be realized that the SOAP
sender may not be aware if it is directly sending the mes-
sage to the SOAP receiver or to a SOAP intermediary. In a
correctly implemented SOAP architecture, this distinction
should not matter.

Since the SOAP sender is responsible for the creation of
the SOAP message, this node does not act in any defined
roles. However, it may tag certain SOAP header blocks
with the correct roles.

3.2.5. SOAP Intermediary

This party receives a message from either a SOAP
sender or another SOAP intermediary. It must act in the
next role. There may be an unspecified number of SOAP
intermediaries before a message reaches the final SOAP

receiver.

A SOAP intermediary may be active or passive. An
active intermediary will alter the content of the message to
be fit the semantic definitions of subsequent nodes. A pas-
sive intermediary will not otherwise change the content of
the message, but will route the message accordingly.

3.2.6. SOAP Receiver

This is the final destination of the SOAP message. This
node is responsible for interpreting the message. If the
message calls for a response, the SOAP receiver should
generate a reply. The SOAP receiver acts in both the next
and ultimateReceiver roles.

It is at this stage that the semantics of the message are
finalized. Until the SOAP receiver is reached, there is no
firm definition of what the end-result of a SOAP message
will be. Application-specific errors usually will only be
generated by the SOAP receiver.

3.3. SOAP Fault

A SOAP fault is generated when an error occurs during
the processing of the SOAP message. A fault may be gen-
erated by a SOAP intermediary or by a SOAP recipient. A
SOAP faults is separate from binding-related errors. A
binding error is reported using the error mechanisms of the
underlying transport protocol. When a SOAP fault occurs,
no additional data may be returned. Therefore, it is not pos-
sible to return partial data and a SOAP fault in the same
message.

A SOAP fault must contain a code element which
describes the type of error that occurred. Furthermore, it
must also contain a reason element that should provide fur-
ther explanation as to why the fault was generated. Option-
ally, the SOAP fault may indicate the node and role where
the fault originated. This is to help identify where the error
occurred if the routing is not explicit. The SOAP fault may
also contain a detail element which further describes the
reason the fault occurred.

3.4. SOAP Transmission

SOAP is primarily meant only to represent data in a
structured format. SOAP does not explicitly tie itself to a
particular method of interaction. As described in [18],
SOAP can be used by a variety of different asynchronous
and synchronous interaction models called message
exchange patterns (MEPs).

The core SOAP specification describes a protocol bind-
ing with HTTP [15]. Therefore, most uses of SOAP prima-
rily use HTTP as a transport mechanism. The SOAP HTTP
protocol binding restricts itself to two MEPs: SOAP
request-response, and SOAP response to a HTTP request.

When using HTTP for the underlying protocol, a SOAP
message is typically POSTed to a SOAP-aware URL. This
POST body will contain the SOAP envelope with the

appropriate content-type set. The HTTP server receiving
this POST will then either act as a SOAP recipient or as a
SOAP intermediary. In the case of the SOAP intermediary,
the POST body will be forwarded to the next hop. If an
error occurs at any point during the processing, the errors
should be returned with an appropriate HTTP error code
and, if available, a SOAP fault description.

3.5. Problems with SOAP

In theory, SOAP creates a very fine line about what it
can and can not do. However, in application, the predomi-
nate use of SOAP has corrupted the integrity of its archi-
tecture. Most of these problems can be traced to
architectural mismatches with the predominate protocol
binding - HTTP.

3.5.1. Layering of resources and representations

HTTP’s primary architectural style is Representation
State Transfer style (REST)[11]. REST creates a distinc-
tion that resources and the representation of those
resources. One representation can be translated into
another representation by applying the correct content fil-
ter. These filters can then be layered on top of each other
until the desired representation is achieved.

With the presence of active intermediaries, SOAP has a
similar resource layering concept. Active SOAP intermedi-
aries can translate the data into syntactically or semanti-
cally different SOAP messages as desired. SOAP
intermediaries can be chained together to produce a mean-
ingful representation. In this way, SOAP has kept the
resource/representation distinction of REST.

However, SOAP is meant to be extensible so that it can
be resistant to changes in the underlying representations.
Yet, SOAP does not provide a strong versioning and exten-
sibility system. If a system changes in a manner that breaks
the old system, a custom bridge must still be built or the
original system must be modified to work with the new
system.

3.5.2. Idempotent operations

One of the fundamental concepts of HTTP is idempo-
tent operations. Certain HTTP methods (such as GET) are
classified as idempotent. If a GET is performed multiple
times on the same resource, the results should be identical.
Other methods (such as POST) are non-idempotent. If a
POST is performed multiple times on the same resource,
the side effects are undefined by the specification.

In practice, most SOAP interactions are performed via
the POST HTTP method. Therefore, it is not possible to
know whether an message will be idempotent without
acquiring semantic knowledge of what the SOAP receiver
will do with the message. However, in HTTP, by only look-
ing only at the method name, it is possible to identify
whether the resulting HTTP operation will be idempotent.

Canonical SOAP example (Example 12a in [22]):

POST /Reservations HTTP/1.1

Host: travelcompany.example.org
Content-Type: application/soap+xml...
Content-Length: nnnn

<?xml version='1.0" 7>
<env:Envelope...>
<env:Body>
<m:retrieveltinerary...>
<m:reference>
FT35ZBQ
</m:reference>
</m:retrieveltinerary>
</env:Body>
</env:Envelope>

Web-friendly alternative (Example 12b in [22]):

GET /Reservations/itinerary ?record=FT35ZBQ HTTP/I.1
Host: travelcompany.example.org
Accept: application/soap+xml

Table 1. Soap Mismatch Example

The protocol itself defines whether the operation is idem-
potent without any relationship to the resource.

This inability to rely upon idempotency presents a sig-
nificant obstacle to intermediaries that wish to intelligently
cache SOAP messages sent over HTTP. SOAP should
allow for a mechanism to identifying messages as idempo-
tent. Section 4.1 in [15] attempts to address this by men-
tioning that HTTP bindings with SOAP should be used in a
manner that is friendly to the current architecture of the
World-Wide Web.

Table 1 provides an example of this mismatch and the
proposed alternative that promotes web-friendly behav-
ior.Instead of using POST for idempotent requests, the
request should be made using a HTTP GET. However, the
request is no longer in SOAP and does not get the benefits
of the structured data. Therefore, sites should measure the
ability to represent the request in SOAP versus using a
idempotent HTTP request.

3.5.3. Use of SOAP Envelope

The use of a separate SOAP envelope collides with the
notion of separation of HTTP metadata and data. The
SOAP protocol binding contains the entire SOAP envelope
in the body of the HTTP request. Therefore, in order to
properly parse the request, a SOAP intermediary must
examine the entire body of the HTTP request. A HTTP
proxy can operate only be examining the metadata of the
request.

A better solution would allow alteration of how a SOAP
message is delivered based on the underlying protocol.
Protocols that already provide for a metadata/data separa-
tion should have those mechanisms utilized by SOAP bind-
ings. A HTTP protocol binding including SOAP headers in
the HTTP headers while including the SOAP body in the
HTTP body would be more efficient. This change would
allow the SOAP intermediary to route the message based
only on the HTTP headers.

3.5.4. Two-level naming system

Additionally, the SOAP HTTP binding also suffers from
a two-level naming system. In Table 1, the message is
POSTed to the /Reservations resource. Inside of the SOAP
envelope, it indicates that the retrieveltinerary method
should be executed. This makes it difficult to determine
what the actual function is without understanding the body.

In this example, any intermediary that attempts to route
a message would have to understand the entire /Reserva-
tions namespace. The granularity of the naming system is
insufficient to allow an intermediary to only intercept
retrieveltinerary requests without looking at the body of
the SOAP request. However, doing so, may be in violation
of the SOAP specification.

As indicated in Table 1, a potential solution is to utilize
the SOAP response message pattern described in Section
6.3 of [15]. A request would be a HTTP request with no
SOAP components, while the response would be a SOAP
response embedded inside of a HTTP request. However,
this leads to an asynchronous method of operation. Rather
than replying with a HTTP response, a SOAP message
would be in the response.

This solution allows regular HTTP proxies to cache the
request using its normal mechanisms. However, this solu-
tion may cause problems for SOAP intermediaries. A
SOAP intermediary would have to have two methods of
interactions - a SOAP proxy and a HTTP proxy. This may
lead to significant overhead for implementors of a SOAP-
aware proxy.

If an active intermediary intends to rewrite the normal
HTTP request, it must rewrite the request using the HTTP
syntax.

3.5.5. Efficiency of XML

SOAP’s use of XML allows for packaging of data in a
well-defined format. However, XML is not meant to be a
high-performance transport mechanism[8]. Rather XML
serves the purpose of being both moderately human-
parseable and precisely computer-parseable. XML does not
define the semantics of the message - that is left to the
application to define.

Properly-formed XML may be easily verified by the
human eye without knowing the semantic meaning of the
message. Knowledge of the generic syntactical structure of
XML is all that is required for a computer to validate an
XML document. SOAP is trading off the extensibility of
XML for a potential loss in performance.

Additionally, due to the hierarchical nature of XML, it
may be inefficient to parse a message if there is an interest
only in a segment of that message. In order to properly val-
idate a segment of a message, the entire message may have
to be validated. A SOAP message might include two SOAP
header sections. These types of abnormalities should be
detected as early as possible, but if a parser were to stop

after seeing the first SOAP header section, it would not
detect the error.

Furthermore, XML is inefficient for binary transport. As
a partial solution, XML does allow for CDATA elements.
These elements are not meant to be parseable by an XML
parser. However, there are certain character sequences that
are still invalid within a CDATA element. Furthermore,
even when the length of the binary stream is known ahead
of time, depending upon the implementation, the XML
parser may have to parse character-by-character. If the lan-
guage could take advantage of known binary lengths, this
might allow for reduction of inefficiencies.

Without modifying the XML specification, transporting
binary content within SOAP can be addressed by adding a
level of indirection. Instead of including a binary represen-
tation of a picture in a SOAP message, one would include a
URL for this picture. If the recipient is interested in the pic-
ture, the recipient would fetch the picture from the URL.
However, this increases the number of required round-trips
to fetch all components of the message.

In XML, all parseable content must be properly
escaped. For example, certain characters (such as ‘<‘ or
‘&) are not valid. Therefore, any content which would oth-
erwise contain these characters must be escaped. This may
introduce additional processing to verify that all content is
syntactically proper before transmission.

3.5.6. mustUnderstand header

In a SOAP message, there is a mustUnderstand attribute
that may be attached to an element. If a SOAP intermediary
or recipient does not understand the element which con-
tains this attribute, it must generate a SOAP fault. How-
ever, it does not mean that there is shared semantic
meaning as to what the value means.

For example, a SOAP sender could intend for a value to
mean one thing while an intermediary or the final recipient
understands that value to mean something else. While
SOAP does not present to rectify semantic conflicts, it still
is susceptible to semantic mismatches even when syntacti-
cal equivalence is achieved.

3.6. SOAP Example

Table 2 provides an example of a SOAP request for the
price of a catalog item, and a cacheable response with the
associated price[18, Examples 24 and 25]

4. UDDI

The Universal Description Discovery and Integration
(UDDI) system defined as “a set of services supporting the
description and discovery of (1) businesses, organizations,
and other Web services providers, (2) the Web services they
make available, and (3) the technical interfaces which may
be used to access those services.”[3]

Request:

<?xml version="1.0" 7>
<env:Envelope xmlns:env="http://www.w3.0rg/2001/09/soap-envelope">
<env:Body>
<c:CatalogPriceRequest xmlns:c="http://example.org/2001/06/cata-
log">
<c:PartNumber>ABC-1234</c:PartNumber>
</c:CatalogPriceRequest>
</env:Body>
</env:Envelope>

Response:

<?xml version="1.0" 7>
<env:Envelope xmlns:env="http://www.w3.0rg/2001/09/soap-envelope">
<env:Header>
<ca:CacheControl xmlns:ca="http://example.org/2001/06/cache">
<ca:CacheKey>ABC-1234</ca:CacheKey>
<ca:Expires>2001-03-09T08:00:00Z</ca:Expires>
</ca:CacheControl>
</env:Header>
<env:Body>
<c:CatalogPriceResponse xmlns:c="http://example.org/2001/06/cata-
log">
<c:PartNumber>ABC-1234</c:PartNumber>
<c:PartPrice c:currency="USD">120.37</c:PartPrice>
</c:CatalogPriceResponse>
</env:Body>
</env:Envelope>

Table 2. SOAP Example

The Universal Description Discovery and Integration
(UDDI) system is built as a mechanism on top of SOAP. Its
primary goal is to allow multi-organizational collaboration
of web services. Without a good naming and discovery sys-
tem, it can be hard to find the services one is looking for.
Therefore, by promoting a Web Services repository, aware-
ness can be increased of currently available web services.

Each organization can publish information about its
web services to an UDDI server or node. This information
should be enough to allow access of the web service. Other
organizations can then either subscribe to changes in the
repository, or search the repository based on keywords in
the web service description. Since UDDI is meant to be
universal in its reach, it also has support for international-
ization.

UDDI support clouds of nodes forming together to cre-
ate a registry. While UDDI can work with only a single
server, it is designed to allow for replication and synchroni-
zation between multiple UDDI nodes. This allows for dis-
tribution and fault-tolerance within the UDDI framework.
There has been substantial work on creating a UDDI Busi-
ness Registry that acts as a public UDDI repository[25].

4.1. Key entities

UDDI defines four key objects that compose the data
stored within an UDDI registry. They are businessEntity,
businessService, bindingTemplate, and tModel. As dis-
cussed below, these objects are arranged in a hierarchical
relationship. Furthermore, each object can only be owned
by a single publisher at a time.

4.1.1. businessEntity

The businessEntity object describes the participants in
the registry[3]. It contains the basic information for con-
tacting the entity represented in this object. It also contains

information for categorizing the entity using conventional
business taxonomies. An example of the data contained
may be a physical mailing address, electronic mailing
address, or website. The businessEntity also serves as the
parent to the rest of the UDDI data objects.

The businessEntity object does not necessarily need to
represent an entire corporation. If the registry is private to a
corporation, it may make sense to scope the businessEntity
objects to departments. However, when publishing to the
public UDDI Business Registry, the businessEntity should
represent an entire corporation.

4.1.2. businessService

The businessService object describes the class of web
services that a businessEntity offers[3]. A businessService
may contain many different bindingTemplate objects. Each
businessService is the child of only one businessEntity.

The businessService provides a logical grouping for
related web service offerings that an organization provides.
For example, all of the ordering-related web service com-
ponents can be grouped under one businessService object,
while the shipping-related web-service components can be
grouped separately.

4.1.3. bindingTemplate

A bindingTemplate object refers to an individual web
service[3]. A bindingTemplate is a child of one busi-
nessService. Each bindingTemplate is associated with one
tModel.

This object contains the actual information required to
access the web service. However, it does not define the
implementation semantics for this web service. A bind-
ingTemplate only provides the URL at which the particular
instance of this web service can be reached.

4.1.4. tModel

A tModel object specifies the contract that a particular
web service will operate under [3]. This technical model
may describe the web service using WSDL[6] or XSD [9].
A tModel may be referenced by many bindingTemplate
objects that share a common interface, but live a different
locations. It should be noted that the tModel does not con-
tain the actual binding information, but a link to the author-
itative binding information for that web service.

4.2. Actions

The following actions can be performed on a UDDI reg-
istry: inquiry, publication, security, custody transfer, sub-
scription, replication. These interfaces are implemented
using SOAP with its HTTP protocol binding.

4.2.1. Inquiry

Due to the large nature of the registry, it should be pos-
sible to perform queries on the registry. Therefore, the
inquiry API is used to locate and obtain detail on entries in
the registry[3]. Users may browse the registry using this

interface. They may also drill-down on entries to examine
details or children of the entities. Additionally, users may
perform queries on the registry.

The inquiry API provides mechanisms for searches
using partial information concerning a registry entity. The
system can then perform wildcard searches on this data and
return any results that match the qualifiers. The UDDI
inquiry API also provides a mechanism to control sorting
of the returned results.

4.2.2. Publication

The publication API is used to create or modify infor-
mation in a UDDI registry[3]. Depending upon the security
policy of the UDDI registry node, any publisher may be
able to create a new businessEntity object. Once the busin-
essEntity is created, its children nodes can be added by
authorized publishers. Modifications to the registry entries
are handled through this interface.

4.2.3. Security

The security API provides for the ability for users to
prove their identity to the UDDI registry and for the UDDI
registry to maintain awareness of that user[3]. Upon suc-
cessful credential authentication, the system will generate
an opaque token that can be provided to the other UDDI
APIs. The system allows for expiration of the tokens by the
system. The user may also request that the token be dis-
carded by the registry to effectively log out of the system.

Most of the other UDDI APIs require the presence of
this authentication token to modify the registry. If the indi-
vidual represented by the token is authorized for perform-
ing this operation, then the registry will allow the
transaction to commence. Otherwise, a security violation
will be reported.

4.2.4. Custody Transfer

As described above, most objects in the registry may
only be owned by one publisher. Therefore, a Custody
Transfer API exists to allow migration of ownership
between publishers[3]. Once a publisher has transferred
custody of an object, it can no longer issue modifications to
the UDDI registry for that object.

4.2.5. Subscription

UDDI allows for monitoring of resources in the registry
[3]. A user can request to be notified whenever an addition,
modification, or deletion occurs. The subscription can also
have qualifiers to indicate which entries should be moni-
tored.

These subscriptions may occur at any level of the entity
hierarchy. Therefore, a request to be notified about all
changes for a particular businessService can be issued. If
any bindingTemplates or tModels underneath this busi-
nessService are altered, an event would be generated.

A subscription can last for a finite duration. When creat-
ing the subscription, a user may indicate when they wish to

begin receiving notifications. In addition, the user may also
issuing a stop date for notifications. As a convenience, the
interface allows for renewal of prior subscriptions.

UDDI notifications may occur either synchronously or
asynchronously. Under the synchronous model, the user
saves subscriptions on the server. Upon the demand of the
client, the notifications that they have not yet received are
returned.

Asynchronous events can also be handled via the UDDI
infrastructure. When subscribing to an event using the
asynchronous interface, the user provides a subscription
listener routine. This callback routine may either be an
email address or a HTTP URL with a UDDI-defined SOAP
service running on it. Rather than issuing events in real-
time, a UDDI node may choose to queue events up and
periodically issue the asynchronous notifications.

4.2.6. Replication

One of the interfaces that is not primarily meant for user
interaction, but for server interaction is the replication APL
The UDDI specification allows for servers to cooperate and
spread the load amongst many physical servers[3]. UDDI
allows for multiple-master replication - where each server
allows for modification of its data. Then, the changes are
replicated across the UDDI registry nodes in a controlled
fashion.

In the UDDI replication scheme, each server should
maintain a complete copy of the registry. Whenever a
change occurs, a notification of change is emitted to the
peer servers. When a node receives this notification, it can
then pull the changed data from the node that sent the
change notification.

4.3. Challenges to UDDI

There are several challenges and issues with UDDI that
may affect its acceptance and chances for long-term sur-
vival. The first is that UDDI has a non-uniform security
model. The second is that UDDI may be limited by its abil-
ity to only have single ownership of an entity. Finally, the
subscription model may place an undue burden upon the
clients of the UDDI system.

4.3.1. Non-uniform security model

One key concern about UDDI is that it does not guaran-
tee a common security policy across all registries [3]. Each
node is free to setup its own security policy irrespective of
the other nodes’ security policies. If the servers are under
decentralized control, this may present a challenge to
maintaining the integrity of the UDDI registry. UDDI
attempts to resolve this problem by introducing root and
affiliated registries[3].

A root server can delegate portions of the domain space
to other servers. These delegates are then authoritative for
that domain. Each server is then responsible for maintain-

ing internal consistency of its data. However, the data
stored on that server is replicated to all other servers in the
registry. Furthermore, most of the discussion in the UDDI
specification deals with ensuring that no duplicate keys
exist across registries rather than true delegation and sepa-
ration.

UDDI also has an interface for retrieving the security
policy of the current node. When publishing the details of
an entity, the publisher is recommended to be aware of
what the policy is on all other nodes. A UDDI node in a
registry could exist that allows anyone to update the con-
tents of the registry. Therefore, this site could be used to
alter or overwrite the correct registry data.

However, checking each individual server may be an
infeasible approach as the number of nodes scales. A pub-
lisher would have to ensure the security policy of each
node before publishing. Therefore, the best policy may be
to artificially limit the number of nodes to only those that
are operated by legitimate and trustworthy businesses with
appropriate security policies.

However, even potentially unsafe entities might be able
to participate in a replication scheme that had true delega-
tion. A model similar to DNS[23] might be a better system
for a naming system. In DNS, caching and authoritative-
ness are handled in a well-defined and scalable manner.
The DNS replication model does not require complete
duplication of all information on each nodes, but uses a
caching algorithm to gain similar performance effects
without sacrificing authoritativeness.

4.3.2. Single ownership

Another concern about UDDI is that entities can only be
owned by a single publisher at any point in time. It is not
possible to have two businesses collaborate on the owner-
ship of an object. One goal of Web Services is to promote
relationships between businesses. A potential collaboration
would be the development of a web service. Yet, UDDI
does not allow for this to occur.

A possible solution to this problem is to select one of
the businesses to be responsible for the shared object. All
changes to the resource must be made by an authorized
representative of the responsible party. This impairs the
ability of the other party to modify the resource. If both
parties are equally responsible, this delegation may not be
acceptable.

However, another option is to create a virtual entity that
representations the collaboration. Both parties can then
have appropriate representation. However, the business
entities as viewed in UDDI would no longer reflect the
reality. The business entity would not exist outside of the
UDDI registry - it would only exist to allow both parties to
share responsibility for their joint venture.

Furthermore, it is questionable whether such an
approach would successfully scale. Would a company that

interacts with a lot of other companies have to create indi-
vidual businessEntity objects for each collaboration? If so,
then the worthiness of this approach should be placed in
doubt.

4.3.3. Duration and history of subscriptions

Another concern about UDDI is the fact that its sub-
scriptions have a limited duration. As a matter of policy, a
UDDI node may place an upper bound on the duration of
subscriptions. Therefore, a subscription must be constantly
renewed to be in effect.

This requires the client being able to manage the state of
its subscriptions internally. It must be able to determine
when the subscriptions are going to expire and renew them
before expiration occurs. This may place a burden on the
client to verify its subscription state periodically.

A potential rationale for this decision is that it requires
validation that the notification is still desired. If the party is
no longer interested, it may let the subscription expire
without renewal. This may lower the activity on the server
to process events that are not actively required anymore. In
open systems, this might be a concern if it is expensive to
generate the events.

A parallel concern that is not addressed by the UDDI
specification is whether subscriptions are only valid on the
single node, or on the entire registry. If the subscription is
made to an individual node in a UDDI registry cluster and
that node is taken out of service, are the subscriptions still
available? Or, must a UDDI client expect that its servers
may not always be available and able to recreate the sub-
scriptions on new nodes? It may also be possible for some
nodes to have a disproportionate amount of subscriptions
that it must handle. A better scheme may be to balance the
subscriptions across the entire registry.

In the UDDI specification, synchronous notification
requests will return all unseen events. Each time a synchro-
nous event is fetched from the server, it is marked as seen.
On subsequent requests, those events will not be sent to the
user. However, this places a burden on the server to main-
tain which synchronous events the client has not yet
requested.

4.4. UDDI Example

Table 3 gives an example[3, Appendix G.1] of a UDDI
transaction that searches for all businesses that start with
the name ABC and returns two results - one for ABC Con-
sulting and another for ABC Contractors.

5. Semantic Web

In addition to the umbrella of Web Services, there is
also work on creating a Semantic Web. The W3C working
group defines the Semantic web as way to “bring to the
Web the idea of having data defined and linked in a way

Request:

<?xml version="1.0" encoding ="UTF-8” 7>
<find_business xmlns="urn:uddi-org:api_v3”
www.w3.0rg/2001/XMLSchema-instance”>
<findQualifiers>
<findQualifier>
uddi:uddi.org:findQualifier:approximateMatch
</findQualifier>
</findQualifiers>
<name>ABC%</name>
</find_business>

xmlns:xsi="http://

Response:

<?xml version="1.0" encoding ="UTF-8" 7>
<businessList xmlns="urn:uddi-org:api_v3” xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance”>
<businessInfos>
<businessInfo businessKey="1234-56">
<name>ABC Consulting</name>
</businessInfo>
<businessInfo businessKey="1234-67">
<name>ABC Contractors</name>
</businessInfo>
</businessInfos>

</businessList>
Table 3. UDDI Example

that it can be used for more effective discovery, automa-
tion, integration, and reuse across various applica-
tions.”[21]

Similarly to Web Services, the Semantic Web is looking
to enhance the interaction of sites. If Web Services could
be viewed as the syntactic agreement of how web sites can
interact, then the Semantic Web is an agreement on what is
being transferred. Therefore, in addition to agreeing on a
common format of how data should be transferred, there is
also a contract as to the meaning of the transferred data.

By creating shared agreement of what the data actually
represents, this would allow true understanding of content
on a website. Any possibility of ambiguity or confusion
would be removed because the meaning of any representa-
tion is predetermined. Therefore, even with a Web Ser-
vices-enabled server, it may not always be possible to
reach agreement on what the returned data means. Only a
Semantic Web-enabled server would allow for agreement
on what the content transferred actually means.

5.1. Overview of Semantic Web Technology

Like Web Services, there is no single specification that
defines the Semantic Web. Also like Web Services, most of
the relevant work on the Semantic Web is being backed by
the W3C. The initial Semantic Web roadmap was issued by
W3C founder Tim Berners-Lee[4]. The W3C is also pro-
ducing a variety of recommendations for technologies that
can enable a Semantic Web.

The majority of current activity is in the area of web
ontologies. An ontology can be defined as “description of
the concepts and relationships that can exist for an agent or
a community of agents”[14]. Automatic discovery of ontol-
ogies in a computer setting has been a long time focus of
artificial intelligence researchers. So far, they have
achieved a substantial body of knowledge[7]. Furthermore,
ontologies has much deeper origins within mathematical

logic.

So far, the W3C has produced a recommendation for a
web ontology built around the Resource Description
Framework (RDF)[20]. RDF can be represented in a vari-
ety of ways, but the preferred delivery mechanism is
XML[2]. RDF serves as a language to describe metadata
that describes a resource available on the web[19]. Work
has been done to create a core vocabulary for RDF that all
websites can share[5].

For example, information describing the ownership of a
resource can be expressed in RDF. In a Semantic Web-
enabled world, an analysis can be done on all documents to
determine what other pages a particular author has created.
Additional information about the author may also be
retrieved.

A long-term goal of the Semantic Web is to describe the
actual content rather than resource metadata properties.
Content should move away from being described using
free-form natural languages. Instead, content should be
written using the structured nature of RDF.

For example, an organizational chart could be entirely
described using RDF. In order to present the data, a RDF
user agent could display the chart using a graphical
medium. Additionally, RDF inference engines could be
used to analyze the relationships between employees. Que-
ries could be placed to determine the precise nature of rela-
tionships between sets of employees.

5.2. Challenges of the Semantic Web

There are two major classifications that challenge the
viability of a Semantic Web. The first one is that it is not a
small technical feat to create such ontologies. However, the
more serious challenge arises from a social perspective.
Therefore, it may be possible to address the technical chal-
lenges, but it may not be possible to address the social
challenges inherent in creating a Semantic Web.

5.2.1. Ambiguity in Natural Languages

The technical challenges facing the Semantic Web are
related to the ambiguity inherent in any natural language. If
a machine is to understand the content of a website, it must
be able to correct place the words in its proper context.
However, this is a significant challenge that has so far
resisted efforts by research and industry.

The approach taken by RDF is to restrict the language to
a structured format. However, this is not a natural way to
express content. RDF requires introducing formalism to
content where there may not be a precise categorization.
Categorization of elements may be a subjective process
where individuals could differ on how an item should be
classified even in the same ontology. Relying upon humans
to perform the classification may be introduce errors.

RDF also requires content creators to express properties
in a specific format rather than allowing for automated dis-

covery of the properties. Currently, content on the World-
Wide Web is expressed in a free-form manner using
HTML. HTML does not attempt to define a formal lan-
guage from which inferences can be drawn. Instead,
HTML is meant for presentation of content.

Additionally, the web infrastructure allows for publica-
tion of content in many different natural languages. It may
not be possible to achieve equivalent semantic representa-
tions between languages. Some concepts may not transfer
correctly from one culture to another. While this may not
be a serious problem, it is a possible obstacle.

5.2.2. Multiple Ontologies

Another consideration is who defines the ontology that
is used. If the ontology is not consistent between sites, then
true semantic communication can not be achieved. There
must be a shared form of communication. Currently, RDF
only describes the structure of the ontology, but it does not
define the ontology. This flexibility allows for the creation
of custom ontology schemas. However, that comes at the
price since not everyone will agree on what should be con-
tained within a RDF schema.

Without a shared ontology used by all sites, the situation
may not be any better than it currently is. Each site would
be free to define the ontology using their particular model.
While the syntax of the ontology would be well-defined,
unless the same ontology is used, they again may mean dif-
ferent things.

Tim Berners-Lee has suggested that there be a creation
of RDF translators that can handle this job[4]. RDF
descriptions should be evolvable and able to be mechani-
cally translated from one format to another. However,
translations of this sort have not met with success. In the
area of software architectures, it has been concluded that it
is often hard to conduct translations between architecture
description languages[12]. While these languages are in the
same problem domain, it is not always possible to achieve
the bi-directional translation as mandated by the Semantic
Web.

5.2.3. Unintentional Non-Participation

A larger concern for the Semantic Web is how it deals
with non-participation. For various reasons, sites may not
decide to publish their data in the relevant formats. If the
Semantic Web can not encompass all of the available con-
tent, then there may be a significant omission of knowl-
edge.

One reason for non-participation is that pre-existing
sites may not update their content to follow the recommen-
dations required to creating a Semantic Web. A major
advantage to the current web infrastructure is its low bar-
rier to entry. It does not require a lot of technical training to
publish a web site. A Semantic Web-enabled site may
require a higher level of administrative expectations that

prohibits hobbyists from publishing on the web. This
would create an exclusionary web infrastructure that goes
against a key principle of the current infrastructure.

There are two possible solutions to this: creating freely
available tools or allowing natural language harvesting of
data. If the tools to create a Semantic Web-enabled site are
free and of sufficient quality, then the barrier of entry may
be lowered. However, this assumes that the creator of the
content has the necessary incentive to update their current
content. If the perceived advantages do not outweigh the
time to update the content, the changes will not occur even
if the tools are free.

Another possible solution is to allow semantic capture
of data. A spider would crawl the website and infer the
semantic content from the original content. However, cur-
rent efforts to capture semantic knowledge from natural
language is not thorough enough to serve the needs a
Semantic Web.

5.2.4. Intentional Non-Participation

Even if the site has the technical expertise to update
their site and there is a perceived benefit, it still may not be
in everyone’s best commercial interest to switch to a
Semantic Web. It may make sense to withhold some of the
content or limit the participation to parties that are not
really peers.

Currently, both Amazon[l] and Google[13] provide
SOAP interfaces to their backends. In the license agree-
ment for both interfaces, usage of the system can not be
done by commercial parties. As a way to enforce this, both
systems place an artificial limitation on how often a user
may issue Web Services request. This limits the amount of
information that can be retrieved using this interface.

However, there is a difference between allowing data to
be accessed versus presenting a formal semantic represen-
tation. If Amazon made semantic information about their
books publicly available, then it would be possible to for a
competitor to leverage this work. A competitor may then
write an RDF translator to convert Amazon’s data to their
own system. Therefore, it may make business sense for
companies to withhold critical information from a Seman-
tic Web to maintain an advantage over their competitors.

6. Conclusion

The technologies presented here are a first step to
enabling communications between peers in a web-like
infrastructure. However, there are many obstacles to mak-
ing these types of interactions a reality. Currently, the tech-
nologies are still only focused on solving accidental syntax
problems rather than essential semantic problems. The
specifications have allowed for a tradeoff between flexibil-
ity and standards. These specifications are so flexible that
true semantic relationships have yet to emerge.

Two web services that implement the same functionality
may still have different interfaces. SOAP merely allows for
the separation between display of content from the content
itself. Current technologies like HTML do not create this
level of separation. Therefore, just removing the element of
display from content is a significant win. However, SOAP
by itself does not allow for inherent migration from content
providers.

UDDI is a necessary technology that is required to make
the adoption of Web Services widespread. Without a good
naming system, Web Services would become unmanage-
able. Yet, UDDI suffers from scalability issues that would
essentially cripple it if it gained widespread acceptance that
it seeks. Issues of security, replication, and subscription
would overwhelm a widespread UDDI infrastructure.

The Semantic Web tries to make semantic mismatch a
slightly easier problem to handle. Yet, there is still no con-
sensus on how to define true semantic meaning. For exam-
ple, there is no RDF format that everyone agrees can fully
describe a document. Each individual can come up with
their own RDF schema. The RDF specification allows for a
RDF schema to be published, but it does not specify one
true schema. The Semantic Web technologies may make
the problem of addressing semantics easier, but it only
allows the infrastructure to be built to support this rather
addressing it directly.

The question remains whether components on the web
can truly become replaceable components. Are the inter-
faces going to become well-defined to the point where
search engines can be plugged in using the same SOAP
interface? Can a book vendor be replaced at will without
loss of information? The current guess leads to the assump-
tion that this will not occur. Technologies like SOAP may
make it a little easier to switch from one provider to
another, but changing providers will still incur a heavy
cost. The outlook for a silver bullet to achieve semantic
matching is quite dim.

7. References

[1] Amazon. Amazon Web Services. <http://www.amazon.com/
webservices/>, HTML, 2002.

[2] Beckett, D. RDF/XML Syntax Specification. <http://
www.w3.org/TR/rdf-syntax-grammar/>, W3C, HTML, 2002.

[3] Bellwood, T., Clément, L., et al. UDDI Version 3.0. <http://
uddi.org/pubs/uddi_v3.htm>, OASIS, HTML, 2002.
[4] Berners-Lee, T. Semantic Web Roadmap.
www.w3.org/Designlssues/Semantic>, HTML, 1998.
[5] Brickley, D. and Guha, R.V. RDF Vocabulary Description
Language 1.0: RDF Schema. <http://www.w3.org/TR/rdf-
schema/>, HTML, 2002.

[6] Christensen, E., Curbera, F., et al. Web Services Description
Language. <http://www.w3.org/TR/wsdl/>, W3C, HTML, 2001.
[7]1 Clark, P. KBS/Ontology Projects Worldwide. <http://
www.cs.utexas.edu/users/mfkb/related.html>, HTML, 2002.

<http://

[8] Dodds, L. Intuition and Binary XML. <http://www.xml.com/
pub/a/2001/04/18/binaryXML.html>, XML.com, HTML, 2001.
[9] Fallside, D.C. XML Schema Part O: Primer. World Wide Web
Consortium, W3C Recommendation Report, May 2, 2001.

[10] Fielding, R., Gettys, J., et al. Hypertext Transfer Protocol --
HTTP/1.1. Internet Engineering Task Force, Request for Com-
ments Report 2616, June, 1999.

[11] Fielding, R.T. and Taylor, R.N. Principled Design of the
Modern Web Architecture. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering. p. 407-416, Limer-
ick, Ireland, June, 2000.

[12] Garlan, D., Monroe, R.T., et al. ACME: An Architecture
Description Interchange Language. In Proceedings of the CAS-
CON '97. p. 169-183, IBM Center for Advanced Studies. Toronto,
Ontario, Canada, November, 1997.

[13] Google. Google Web APIs. <http://www.google.com/apis/>,
HTML, 2002.

[14] Gruber, T. What is an Ontology? <http://ksl-web.stan-
ford.edu/kst/what-is-an-ontology.html>, Stanford Knowledge
Systems Lab, HTML, 2001.

[15] Gudgin, M., Hadley, M., et al. Simple Object Access Proto-
col (SOAP) 1.2: Adjuncts. <http://www.w3.org/TR/soap12-part2/
>, W3C, HTML, 2003.

[16] Gudgin, M., Hadley, M., et al. Simple Object Access Proto-
col (SOAP) 1.2: Messaging Framework. <http://www.w3.org/TR/
soapl2-partl/>, W3C, HTML, 2003.

[17] Haas, H. and Brown, A. Web Services Glossary. <http://
www.w3.0org/TR/ws-gloss/>, World Wide Web Consortium,
HTML, 2002.

[18] Ibbotson, J. SOAP Version 1.2 Usage Scenarios. <http://
www.w3.org/TR/xmlp-scenarios/>, World Wide Web Consor-
tium, 2002.

[19] Klynne, G. and Carroll, J.J. Resource Description Frame-
work: Concepts and Abstract Syntax. <http://www.w3.org/TR/
rdf-concepts/>, HTML, 2002.

[20] Lassila, O. and Swick, R. Resource Description Framework
(RDF) Model and Syntax Specification. World Wide Web Consor-
tium, W3C Recommendation Report, February 22, 1999.

[21] Miller, E. Semantic Web Activity Statement. <http://
www.w3.0rg/2001/sw/Activity>, W3C, HTML, 2002.

[22] Mitra, N. Simple Object Access Protocol (SOAP) 1.2:
Primer. <http://www.w3.org/TR/soap12-part0/>, W3C, HTML,
2003.

[23] Mockapetris, P. RFC 1035: Domain Names - Implementa-
tion and Specification. IETF, Report, 1987.

[24] Pemberton, S., Austin, D., et al. XHTML 1.0: The Extensible
HyperText Markup Language. <http://www.w3.org/TR/xhtml1/>,
‘World Wide Web Consortium, HTML, 2002.

[25] UDDI. UDDI Business Registry. <http://www.uddi.org/reg-
ister.html>, HTML, 2002.

[26] Winer, D. XML-RPC Specification. <http://www.xml-
rpc.com/spec>, Userland, HTML, 1999.

