
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

David Redmiles
University of California, Irvine
redmiles@ics.uci.edu

Anders Mørch
InterMedia
University of Oslo
anders.morch@intermedia.uio.no

Kumiyo Nakakoji
University of Tokyo
kumiyo@kid.rcast.u-tokyo.ac.jp

Gerhard Fischer
University of Colorado at Boulder
gerhard@cs.colorado.edu

Proceedings of the CHI 2004 Workshop on
Designing for Reflective Practitioners

April 2004

ISR Technical Report # UCI-ISR-04-2

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Proceedings of the CHI 2004 Workshop on
Designing for Reflective Practitioners

Edited by

David Redmiles

Institute for Software
Research and
Department of

Informatics
University of

California, Irvine
Irvine, CA 92697-

3425 USA
redmiles@ics.uci.edu

Anders Mørch

InterMedia
University of

Oslo
NO-0318 Oslo

Norway
anders.morch@

intermedia.uio.no

Kumiyo Nakakoji

University of Tokyo
4-6-1 Komaba,
Meguro, Tokyo,
153-8904 Japan

kumiyo@kid.rcast.u-
tokyo.ac.jp

Gerhard Fischer

Department of
Computer Science

University of Colorado
at Boulder

Boulder, CO 80303
USA

gerhard@cs.colorado.edu

ISR Technical Report # UCI-ISR-04-2

April 2004

Abstract: Donald Schön described professionals as practicing reflection-in-action. This
characterization inspired many researchers to experiment with computing systems whose
interfaces supported and even prompted reflection on the part of end users. Many
parallels to Schön’s notion exist in different communities whose members attend CHI.
Some work extends beyond computer interfaces to social and organizational issues. This
workshop was an opportunity for diverse researchers to come together to identify and
trace the evolution of common threads, to share and assess solutions, and to open
channels of communication that will support one another’s long-term objectives of
designing for reflective practitioners.

1

2

Table of Contents

Organizers Welcome and Introduction

• Gerhard Fischer (University of Colorado at Boulder), Anders Mørch (University of Oslo), Kumiyo
Nakakoji (University of Tokyo), David Redmiles (University of California, Irvine): Designing for
Reflective Practitioners: Sharing and Assessing Progress by Diverse Communities

Session: Communication and Sense-Making

• Fahri Yetim (New Jersey Institute of Technology): A Meta-Communication Model for Reflective
Practitioners.

• Kari Kuutti, Tonja Molin-Juustila (University of Oulu): Making the common object of a work
"visible" and reflectable: a case of emerging software product

• Maria Francesca Costabile (Università di Bari), Daniela Fogli (Università di Brescia), Piero
Mussio (Università degli Studi di Milano), Antonio Piccinno (Università di Bari): Virtual
Workshops to Support Reflection in Action

• Gloria Mark, Steve Abrams (University of California, Irvine): Sensemaking and Design Practices
in Large-scale Group-to-Group Distance Collaboration

Session: Computer-Supported Learning Environments

• Effie Lai-Chong Law (Eidgenössische Technische Hochschule Zürich): Reflective Design
Practices in Human Computer Interaction and Software Engineering

• Anders Mørch (University of Oslo), Karianne Omdahl (University of Bergen), Sten Ludvigsen
(Univeristy of Oslo): Knowledge Building in Distributed Collaborative Learning: Organizing
Information in Multiple Worlds

• Carolyn Penstein Rosé, Vincent Aleven, Cristen Torrey (Carnegie Mellon University): CycleTalk:
Supporting Reflection in Design Scenarios with Negotiation Dialogue

• Finn Kensing (The IT University of Copenhagen): Designing for, with, and by Reflective
Practitioners

• Ari Heiskanen (University of Oulu): The Reflective Information Systems Practitioner Approach as
a Research and Learning Expedient.

Session: Integrating Problem Framing and Problem Solving

• Bruce Corson (Corson Associates): The Non-denominational Design Studio : Lessons for the
Proficiency of Organizations

• Mark Bergman, Gloria Mark (University of California, Irvine): Application of Collaborative
Conflict in System Design: The Case of the New Millennium Program

• Gerhard Fischer (University of Colorado, Boulder): Reflective Practitioners and Unselfconscious
Cultures of Design

• Robert T.Hughes, Abdullah Al Shebab, Marian Eastwood (University of Brighton): The use of
cognitive causal mapping as an aid to professional reflection

• Kumiyo Nakakoji (University of Tokyo): Designing for Reflective Practitioners

Session: New Methods and Techniques for Software Development

• Milorad Tošić (University of Niš): Meta Architecture for Intelligent Information Systems
• Cestmir Halbich (CUA Prague): Reflective practitioners in software design – A Case study in

Extreme programming.
• Orit Hazzan (Technion) and Jim Tomayko (Carnegie Mellon University): The Reflective

Practitioner Perspective in Software Engineering.
• Yunwen Ye (University of Colorado, Boulder,2SRA Key Technology Laboratory): On the Timing

of Presenting Situational Talkback in Support of Reflective Practitioners

• Aran Lunzer (University of Copenhagen): Interfaces that Reduce the Cost of Examining
Alternatives

3

4

Organizers Welcome and Introduction

5

6

Designing for Reflective Practitioners:
Sharing and Assessing Progress by Diverse Communities

Gerhard Fischer
Department of

Computer Science
University of Colorado

at Boulder
Boulder, CO 80303

USA
gerhard@cs.colorado.edu

Anders Mørch
InterMedia

University of Oslo
NO-0318 Oslo

Norway
anders.morch@

intermedia.uio.no

Kumiyo Nakakoji
RCAST

University of Tokyo
and PRESTO, JST

4-6-1 Komaba,
Meguro, Tokyo,
153-8904 Japan

kumiyo@kid.rcast.u-
tokyo.ac.jp

David Redmiles
Department of

Informatics
University of

California, Irvine
Irvine, CA 92697-3425

USA
redmiles@ics.uci.edu

WORSHOP THEME AND GOALS: DESIGNING FOR
REFLECTIVE PRACTITIONERS
Donald Schön described professionals as practicing reflec-
tion-in-action [13]. This characterization inspired many
researchers to experiment with computing systems whose
interfaces supported and even prompted reflection on the
part of end users [5]. Many parallels to Schön’s notion exist
in different communities whose members attend CHI. Some
work extends beyond computer interfaces to social and or-
ganizational issues. This workshop is an opportunity for
diverse researchers to come together to identify and trace
the evolution of common threads, to share and assess solu-
tions, and to open channels of communication that will sup-
port one another’s long-term objectives of designing for
reflective practitioners.

Author Keywords
Reflection-in-action; software critics; software agents; situ-
ated action; participatory design; open source.

ACM Classification Keywords
D.2.2 Design Tools and Techniques; H.5.2 User Interfaces;
K.4 COMPUTERS AND SOCIETY

PARALLEL THEMES WITH A COMMON CHALLENGE
The theme and title for this workshop is inspired by Donald
Schön’s writings about the reflective practitioner in which
he describes professional practice as transcending technical
rationality [13]. Ill-formed problems lead to breakdowns,
which become opportunities for reflection and modification
of practice. Many others have articulated related concepts,
and concerns. For instance, Fred Brooks distinguished be-
tween accidental and essential activities for designers of
software systems [1]. Software tools could support mun-
dane aspects of designers’ work, but the most creative as-

pects would still elude computer support. Herbert Simon
also referred to the bounds of rationality and evoked the
anecdote of the painter faced with a blank canvas to de-
scribe ill-formed problems that required a different kind of
thinking [14]. Designers postulate starting points, evolve
them to stable substrates, and then rethink them. Lucy
Suchman demonstrated the limits of rationalized designs in
her seminal characterization of situated action [15]. As she
notes, anticipating all potential user behaviors is not a fea-
sible approach to design.

Interestingly, these concepts create a conflict of sorts for
researchers in computing. Namely, if computer software
operates on the plane of technical rationality, how can it
support reflective and situated action by practitioners in the
real world?

TAKING UP THE CHALLENGE
The challenge of designing computer support for reflective
practitioners has been taken up by many communities and
from many perspectives. There are software-based ap-
proaches, cognitive approaches, and social and organiza-
tional approaches.

Among the software based responses, software critics are
intended directly to trigger reflection by end users, provid-
ing feedback on design tasks while designers are still in the
context of making design decisions [5]. Critics are not in-
tended to replace human decision making, but to comple-
ment it [7][16]. Similarly, software agents proactively co-
ordinate to assist end users, including software designers as
end users [9]. Even techniques for supporting software
process descriptions have evolved from rigid prescriptive
systems to reflective models that can adapt to exceptions
[11].

There are cognitively based responses to supporting reflec-
tion. In a sense, the notion of affordances [10] and even
social translucence [4] may be interpreted as styles that
enable essential reflection by removing the distraction of an
awkward interface.

Copyright is held by the author/owner(s).
CHI 2004, April 24–29, 2004, Vienna, Austria.
ACM 1-58113-703-6/04/0004.

7

There are also social responses to this challenge. The com-
puter-supported collaborative learning community seeks to
enhance reflection by integrating working and learning,
physical and computational artifacts, and different commu-
nities of interest [6]. The methods and techniques of par-
ticipatory design integrate end users into the design process
to achieve greater realism in systems [2][8]. The open
source movement might also be interpreted as a style of
software development geared toward placing the evolution
of a software system with the practitioners [12]. Activity
theorists also emphasize the role of reflection in community
activity [3].

FOSTERING A NEW COMMUNITY
The above responses by different communities to the reflec-
tive and situated nature of work practice have existed for
decades, and have faced trials and refinements. Many
themes have evolved within these disciplines. Some have
appeared independently under different terms and in differ-
ent settings. The purpose of this workshop is to bring to-
gether representatives of diverse communities who have
designed solutions that support reflection-in-action, or re-
lated notions such as those named above. The organizers
seek to trace the evolution of common threads, to share and
assess solutions, and to open channels of communication
that will support one another in the long term. We seek to
foster a sense of community among diverse researchers who
all have been designing for reflective practitioners.

RELATION TO CHI 2004 THEME
The Conference Overview by Elizabeth Dykstra-Erickson
and Manfred Tscheligi describes the themes of CHI 2004 as
forming connections and expanding boundaries (see
http://www.chi2004.org/geninfo/overview.html). In this
workshop, we seek to build connections among people from
many disciplines and strengthen communication in the long
term. The theme of focusing on reflective practitioners has
a long history because it is a problem rooted in humanity,
namely the abilities and instincts human beings have for
carrying out activities in a complex world, where routine
action is frequently frustrated. The major change in recent
decades is the involvement of the computer in these activi-
ties. From one perspective, the computer is merely a new
opportunity for understanding humanity. In this sense, the
workshop is also forward-looking as well.

REFERENCES
1. Brooks, F. No Silver Bullet: Essence and Accident in

Software Engineering. IEEE Computer, 20(4), 10-19,
1987.

2. Ehn, P. Work-Oriented Design of Computer Artefacts,
Arbetslivscentrum, Stockholm, Sweden, 1988.

3. Engeström, Y. Coordination, Cooperation and Commu-
nication in the Courts, in Mind, Culture, and Activity,
Cambridge University Press, 369-388, 1997.

4. Erickson, T., Halverson, C., Kellogg, W., Laff, M.,
Wolf, T. Social Translucence: Designing Social Infra-
structures That Make Collective Activity Visible. Com-
munications of the ACM, 45(4): 40-44, 2002.

5. Fischer, G. Domain-Oriented Design Environments,
Automated Software Engineering, Kluwer Academic
Publishers, Boston, MA, 177-203, 1994.

6. Fischer, G. Communities of Interest: Learning through
the Interaction of Multiple Knowledge Systems, Pro-
ceedings of the 24th IRIS Conference (eds: S. Bjor-
nestad, R. Moe, A. Morch, A. Opdahl), Ulvik, Depart-
ment of Information Science, Bergen, Norway, 1-14,
August 2001.

7. Fischer, G., Nakakoji, K. Beyond the Macho Approach
of AI: Empower Human Designers - Do Not Replace
Them, Knowledge-Based Systems Journal, Special Issue
of AI in Design, 5(1), 15-30, 1992.

8. Greenbaum, J., Kyng, M. (eds.), Design at Work: Coop-
erative Design of Computer Systems, Lawrence Erl-
baum Associates, Hillsdale, NJ, 1991.

9. Hilbert, D., Redmiles, D. Large-Scale Collection of Us-
age Data to Inform Design, Eighth IFIP TC 13 Confer-
ence on Human-Computer Interaction (INTERACT
2001, Tokyo, Japan), 569-576, July 2001.

10. Norman, D. The Design of Everyday Things, Currency-
Doubleday, New York, NY, 1989.

11. Nutt, G. The Evolution Towards Flexible Workflow
Systems, Distributed Systems Engineering, 3(4), 276-
294, December 1996.

12. Raymond, E. S. The Cathedral and the Bazaar, First
Monday, 3(3), 1998.

13. Schön, D. The Reflective Practitioner: How Profession-
als Think in Action, Basic Books, New York, 1983.

14. Simon, H. The Sciences of the Artificial, The MIT
Press, Cambridge, MA, 1981.

15. Suchman, L. Plans and Situated Actions, Cambridge
University Press, Cambridge, UK, 1987.

16. Terveen, L. An Overview of Human-Computer Collabo-
ration, Knowledge-Based Systems Journal, Special Issue
on Human-Computer Collaboration, 8(2-3): 67-81,
1995.

8

Session: Communication and Sense-Making

9

10

A Meta-Communication Model for Reflective Practitioners

Fahri Yetim
Information Systems Department, College of Computing Sciences,

New Jersey Institute of Technology, Newark, NJ 07102- 1982, USA
Email: Fahri.Yetim@njit.edu

http://web.njit.edu/~yetim

Position Paper: CHI 2004 Workshop: “reflective practitioner”

Developing any kind of information system embodies reflections about the desired

features of the resultant system. The reflective practice becomes more important the more

the differences in technologic standards, social values, norms, assumptions and interests,

etc. in global contexts interfere the sphere of the Information Systems Development

(ISD). To deal with such issues and underlying validity claims in a rational and reflective

way, previous approaches to rational and reflective practice in ISD have already

emphasized that a rational practice requires not only knowledge and its successful

transformation into efficient and effective action but also justification of normative

implication for those involved and affected.

I have extended the framework for reflective practice proposed by Ulrich (2001) by

integrating – among others – discourse-ethical concepts advanced by J. Habermas

(Habermas 1984, 1996) and suggested a model of meta-communication for reflective

practice, which provides a wider spectrum of concepts for dealing with global challenges

in a rational and reflective way. The operationalization of the model towards the practice

is illustrated by the concept of communicative genres (referred as to ‘communication

action patterns). The argument is that meta-communication processes guided by

discourse-ethical principles promote a legitimate definition, design, and development of

such patterns, and thus increase the legitimacy of resultant norms and contents of patterns

for communication, especially in intercultural interaction contexts (Yetim 1998).

In my approach (Yetim 2004), I distinguished between three different types of meta-

communication:

11

- Ex ante meta-communication (taking place before action),

- Meta-communication in action (taking place during action), and

- Ex post meta-communication (taking place after action).

The meta-communication model itself consists of two levels:

- Clarification level (where conversation for clarification takes place). At this level

there are eleven clarification issues to be reflected on.

- Discourse level (where the discursive examination of contested claims takes

place). At this level, there are eight discourses, which are related to the

clarification issues.

This diversification also allows us to easily relate the discourse ethical differentiation of

discourses of justification to ex ante meta-communication, and discourses of application

to meta-communication in action. Ex post meta-communication remains related only to

breakdowns that occur when an action has taken place.

The approach contributes to the advancement of the previous research dealing with

reflective practice by providing additional concepts. These concepts allow renegotiations

of system features and thus can support the continuous co-evolution of a system.

References

Habermas, J. (1996). Between Facts and Norms. Cambridge, MA, MIT Press.
Habermas, J. (1984). The Theory of Communicative Action: Reason and the Rationalization of

Society. Boston, MA, Beacon Press. (Vol. I)
Ulrich, W. (2001a). A Philosophical Staircase for Information Systems Definition, Design and

Development. Journal of Information Technology Theory and Application 3 (2001), 55-
84.

Yetim, F (2004). Meta-Communication for Reflective Practice in Information Systems
Development: A Discourse-Ethical Approach and its Operationalization by
Patterns of Global Communication. To appear in: Information and Organization.

Yetim, F. (2001): A Meta-Communication Model for Structuring Intercultural Communication
Action Patterns. SIGGROUP Bulletin 22(2), 16-20. (Reprinted from the Proceedings of
the Sixth International Workshop on the Language-Action Perspective on
Communication Modeling.

Yetim, F. (1998). Interkulturalität und Informatische Gestaltung – Eine Interdisziplinäre
Annäherung. Informatik-Spektrum 21 (1998), 203-212.

12

Making the common object of a work "visible" and
reflectable: a case of emerging software product

Kari Kuutti & Tonja Molin-Juustila
University of Oulu, Department of Information Processing Science
(kari.kuutti@oulu.fi, tonja.molin-juustila@oulu.fi)

Introduction: a need for a "visible" object of work
The most fundamental point of reflection for a reflective practitioner is the purpose of
the work involved: are we doing the right thing? The cultural-historical activity theory
(CHAT, see e.g. Kuutti 1996), one of the frameworks which have gained interest
wihin the HCI research during the last years, has a good concept to deal with this, the
concept of object of a work. activity. One of the foundational hypothesis of the CHAT
framework is the idea, that when seen from the viewpoint of an individual actor, work
and also other spheres of life is organized into activities which are largest meaning-
giving units within an individual horizon. According to the theory, activities are
separated from each other by their object, which is the purpose of the corresponding
activity: a potential fulfillment of a need that can be reached from where we are now,
when we organize ourselves accordingly, select the right tools and transform the
world by a set of directed, interconnected actions leading towards that fulfillment.

If the object of a work activity is well known by participants, it is a good beacon: at
every moment everybody can check and compare the current state of affairs with the
object and reflect and correct the direction, if needed, and thus there is a strong self-
organizing feature in the arrangements. Correspondingly, if the object is known only
by some, but it is not shared and common, there is a considerable effort in
communicating the object, and the work has to be more strictly organized from above
to ensure that the direction is right and the intermediate results will serve their
ultimate purpose (the popularity of the terms of "mission" and "vision" in current
management literature are clearly related to this issue).

It is, however, characteristic to human life, that objects cannot be easily "given " from
above or from outside, but they must be "invented" or appropiated by the actors
themselves, otherwise they will not have such organizing power – the given outside
object, and the corresponding activity will exsist only on paper, and the participants
will be engaged into something else instead. Because objects and activities cannot be
given, they are often not very clear to participants, and even when they may be clear
for a while, they are not fixed. When situations develop and unfold in the course of
actions, new possibilities and limitations reveal themselves, and the object will evolve
accordingly. In times of crisis, an evolution is not enough, but it may be necessary to
change the object radically. No wonder, that a considerable slice of work in
organizations is, in a way or another, devoted to figure out the current object of work
and communicate it to other stakeholders. Working out the object of work is a major
point of reflection within work organizations.

13

It would be helpful, if we had ways of making the object more "visible",
comprehensible, and even manipulable, and thus also a better tool for reflection. And
given the prominence of information technology at the workplace one would like to
see, if it could help us in this. We will illustrate the issue with a practical example,
where different communities of stakeholders needed to produce a common conception
of their object. The case is related to an ongoing doctoral thesis work in Oulu.

Case: New product development in an IT company

The ideas presented here are based on several years’ fieldwork, observation and
experiments in a medium-sized software company. The case company operates in
software product business. It has sales offices, development centers and partner
companies employing about 1000 people worldwide. The business consists of few
different products for well-defined markets. Our analysis has been concentrating on their
one new product idea and the emerging business for that (during our cooperation the unit
consisting of about 100 people). The new software was more like an enterprise solution
type of product than a true mass-market package software.

The development of the new product run into problems. The market and needs of the
new innovation were not so clear in the case company and the software product itself
was much more iteratively produced than it was assumed. The product seemed to be in a
constant design phase; the very early releases were implemented for the pilot customers
and later on their applications were updated based on the new releases. Both the
company and its sales partners based their businesses on these early customers.
Company was trying to understand the customers and generalise the market needs from
these early pilots. At the same time sales partners were demanding new properties to
satisfy their prospects. There was an obvious danger that the company long-term visions
and the pilot customers needs were not always in harmony with each other, but there
seemed to be no way to reconcile them.

With the iterative nature of development work, there was a potential to reflect the long-
term visions with the market. Ongoing interplay between the representatives at the
customer interface and the product developers would be the prerequisite for this.
However, the product alone was not enough as a common focus for their interaction.
Also the dispersed information about the business assumptions of the different
stakeholders needed to be shared. However, this was lacking a suitable means for
communication. There was a need to keep the different functional actions better focused
during the early iterations in order to find the best possible business for the new product.
We found a special piece of knowledge that needed to be shared among the different
stakeholders around the new business area – a shared vision about the product-market-
user -combination. As stated in one of the workshops, there was a need for “more
systematic way of combining the strategies, technology, vision and the requirements as
to company targets” (memo 12.10.2000). In short, what was missing was a new cross-
functional work activity of defining the new product, the emergence of which was made
difficult by different visions each function had about the potential object of the activity
and also their fluidity and constant change.

Without a common frame of reference it was impossible to understand “how to evaluate
and efficiently utilise the current implementations against these targets”. In order to
define the best possible fit between the product and the user/market needs, they not only
needed to share their assumptions about this, but they also needed to reflect these
assumptions against their everyday practice. The "shared vision about the product-

14

market-user –combination", is a hypothetical and tentative idea that evolves all the time
when more experience is gained.

As a result we did build our tentative model for the interaction between the different
stakeholders. In our market centred approach to product innovation development
(MAPID) the new software product development is seen as a process of iteratively both
to identify the market needs and to improve a product to match them, cf. Figure 1. Next
is an illustration of the main elements of the model.

 Figure 1. The MAPID model.

Creation of the product-market-user vision is seen as a hypothesis of the existence of a
market and a potential product for this market – an emerging object for a new product
business activity. The hypothesis (or there might be several of them) will be a combined
view of the different stakeholders: the shared assumptions and the generalised view from
the early contacts with the field (e.g. pilot customers). Developers need to understand
how the marketing and sales people see the future business and what are their needs for
the development. Marketing and sales people need to understand what kind of solutions
the development is able to offer for them now and in the future.

The hypothesis evolves over time driven by the actions at the customer/market interface.
Daily contacts with the possible customers (marketing and sales events, customer pilot
projects, contextual design etc.) are the main points for the evaluation of the current
hypothesis. The hypothesis is both directing the everyday actions of different
stakeholders, and constantly questioned, validated and refined based on the experiences
from the field. When developing a new software product by the means of pilot customer
projects, each customer case should be treated as an experiment to validate and correct
the current hypothesis. The concrete information about the real customer case should be
contrasted with the assumptions described in the hypothesis.

We implemented a practical version of this model in the case company during 2002-03.
Initially we had fancy ideas of rich IT support for both the object/hypothesis itself and
the interaction around it, but we came soon into our senses and instead decided to
produce something that could be taken into immediate use; without any further training,
using already available tools and means for communication, and with minimal additional
workload to our stakeholder users. We ended up with a true technology mundane
solution of pre-structured Word-templates, predefined shared directories, e-mail

experience

MARKETING

MARKET

SALES

DEVELOPMENT

directing directing

directing

building &
refining

building &
refining

building &
refining

conctacts conctacts conctacts
experience

experience

e.g. marketing events e.g. pilot customers e.g. contextual design

HYPOTHESIS

15

facilities, and some organizational arrangements – a new committee, and some guided
practices for producing and reflecting these templates, cf. Figure 2.

Figure 2. The implementation of the MAPID model in the case company.

The main document template (called Segment Description; SD in short) is used in
documenting and sharing the hypothesis. It needed to be concrete enough to help to
focus their daily efforts. Each SD has an owner appointed by the company management.
The owner is responsible to collect a cross-functional team to produce the SD. The team
would use all the available information to build a new SD. All stakeholders are able to
comment the current SD based on their daily contacts with the field, and that way
support the evolution of the SD. Comments need to be saved for further refinement of
the SD. There is also a template for documenting the early and real customer cases
(called Case Description; CaseD in short). This template was following the structure of
SD in order to ease its reflection. The owner of the SD is responsible for the
management of the teams work and the iterative progress of the SD.

In line with the CHAT assumptions, we did not invent the model by ourselves and
give it to the organization "from above", but it was co-invented and constructed
during a longer period. Thus the results were also accepted very well by the
organization, and it started to become part of their thinking and vocabulary. When the
system was set to work, it seemed to start to produce such interactions we have been
hoping for. However, our project funding ended in early 2003, and we have not had
possibilities to follow clearly, if our work has had any lasting effects. After summer
2003 we have not heard anything from the company (mainly because the main
researcher, second author, has been busily writing her thesis). We hope that we can
update the situation for the workshop.

Kuutti, K., Activity Theory as a potential framework for human-computer interaction
research, in Context and Consciousness: Activity Theory and Human Computer Interaction,
B. Nardi, Editor. 1996, MIT Press: Cambridge. p. 17-44.

SALES

CaseD SD TEAM SD

Customer Cases Reflective Comments

MAKETING DEVELOPMENT

16

 1

Virtual Workshops to Support Reflection in Action

Maria Francesca Costabile1, Daniela Fogli2, Piero Mussio3, Antonio Piccinno1
1 Dipartimento di Informatica, Università di Bari, Bari, Italy

{costabile, piccinno}@di.uniba.it
2Dipartimento di Elettronica per l’Automazione, Università di Brescia, Brescia, Italy

fogli@ing.unibs.it
3 Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, Milano, Italy

mussio@dico.unimi.it

Position paper

In our experience of computer scientists, we cooperate in participatory projects to develop computer systems to be used
by professional people, such us medical doctors, geologists, mechanical engineers. These professionals need to use
computer systems for performing their work tasks exploiting all the communication and operation possibilities offered
by these systems, but they are not and do not want to become computer experts. This has motivated the definition of a
particular class of end-users, that we call domain-expert users (or d-experts for short) [4]: they are experts in a specific
discipline (e.g. medicine, geology, etc.), not necessarily experts in computer science, who use computer environments
to perform their daily tasks. These d-experts often complain about the systems they use, they feel frustrated because of
the difficulties they encounters interacting with them.

In domains of their competence, communities of d-experts progressively developed documentation styles, notations and
procedures to record the community’s knowledge - abstract or concrete concepts, prescriptions, results of activities - as
documents. This enabled the community’s knowledge to be available to members when and where they require it and in
the form required to perform their current activities. Notations developed by the communities of experts determine the
layout and appearance of the document thus permitting the expression of tacit information – embedded and conveyed by
the document shape as well as by images, icons, textual words, which are meaningful only for experts in the domain at
hand. Documents expressed in these notations support reasoning based on implicit knowledge, namely the knowledge
that people possess and currently use to carry out tasks and to solve problems but that they are unable to express in
verbal terms and that they may even be unaware of. It is a common experience that in many application fields experts
possess a large amount of implicit knowledge, since they are often more able to do than to explain what they do.
Implicit knowledge depends on the specific work domain and is related to the d-experts “practical competence and
professional artistry in achieving a task” [8]; it is exploited by users to interpret the documents and, nowadays, to
interpret messages from the computer systems.

As designers, we are challenged to develop interactive software systems that a) support their users in exploiting their
practical competence, and b) enables the practitioner to develop and extend the knowledge available to the profession
[1]. To develop such systems, we recognize the importance of notations developed by d-expert communities as
reasoning, communication, and documentation tools, and we adopt a methodology for developing virtual environments,
in which users interact using languages that are a formal representation of their traditional notations and virtual tools
that recall the real ones with which users are familiar. More specifically, the methodology takes into account the
following observations:

1) We recognize user notations and ‘semiotic systems’ as tools to convey user tacit information. The notations
developed by the user communities from their working practice are not defined according to computer science
formalisms but they are concrete and situated in the specific context, in that they are based on icons, symbols and words
that resemble and schematize the tools and the entities used in the working environment. Such notations emerge from
users’ practical experiences in their specific domain of activity. They highlight those kinds of information users
consider important for achieving their tasks, even at the expense of obscuring other kinds, and facilitate the problem
solving strategies, adopted in the specific user community [2].

2) We recognize that new computer-based reasoning and communication modalities created the possibility of new
modalities of communication and of the development of completely new ‘semiotic systems’ and notations. We stress
that d-experts, using systems that exploit these new semiotic systems and notations, must master them in order to
maintain the interpretative expertise of the virtual world in which they operate. Sometimes, the new modalities diverged
so radically from the past that large portions of the users’ practical experience failed to generalize to the new situation
[5]. The current phase of introducing digital media coupled with computerization poses yet a more fundamental

17

 2

challenge to user work as a whole. The change in the material and technological mediation from traditional to electronic
media suggests a drastic and through-going reorganization of everyday work practice.

3) We recognize the need of local categorization of knowledge. Our view refines the Schön observation that “the
categorization of knowledge in terms of a category like ‘tool’, as distinct from the ordinary, familiar coherences of
objects as they go together in our everyday life, is what I mean by the formal categorical character of knowledge. And it
is one of the key features that separates schools from life. The ways in which things are grouped together, the way in
which things are treated as similar and different, are not the way in which they are grouped and treated as similar and
different in our ordinary life experiences” [9]. We stress that in ordinary life experience, experts use different
categorizations of events and things according to the current activity they are developing. We observe that these
categorizations are reflected in the experts’ notations and semiotic systems; moreover, different categorizations of
events and things linked to the specific culture of the expert and to the current context occur. These different
categorizations lead to the existence of different notations and semiotic systems – mechanical engineers document their
activities in a different way from physicians - and to the existence of dialects within notations and semiotic systems -
mechanical engineers in Italy use different notations than their colleagues in other countries.

Starting from these observations, three principles are at the basis of our methodology to design interactive software
systems: i) the language in which the interaction with systems is expressed must be based on notations and dialects
traditionally adopted in the domain; ii) systems must present all and only the tools necessary to perform the user work,
without overwhelming users by unnecessary tools and information; iii) systems must present a layout simulating the
traditional layout of the tools employed in the domain, such as for example mechanical machines or paper-based tools.
Our approach to the design of a software system devoted to a specific community of domain-expert users is to organize
the system as composed of various environments, each one for a specific sub-community. Such environments represent
virtual workshops [3][4] since they are organized in analogy with the artisans workshops, where the artisans find all and
only the tools necessary to carry out their activities. In a similar way, a d-expert using a virtual workshop finds available
all and only all the tools required to develop his/her activities. These tools must be shaped and must behave so that to be
usable by the d-expert in the current situation.

In each virtual workshop, d-experts of a sub-community interact using a computerized version of their traditional
languages and tools; they get the feeling of simply manipulating the objects of interest in a way similar to what they
might do in the real world. In other words, our approach provides each sub-community with a personalized workshop.
In this way, d-experts of a sub-community work out data from a common knowledge base and produce new knowledge,
which can be added to the common knowledge base, increasing the community knowledge.

Thus d-experts may work cooperatively to reach a common goal; in this sense, the computer system becomes a
collaboratory, as defined in [10]: “a center without walls, in which researchers [in our case professionals] can perform
their research [work] without regard to geographical location, interacting with colleagues, accessing instrumentation,
sharing data and computational resources, and accessing information in digital libraries”.

An important activity on which d-experts’ collaboration is based is the annotation of documents [6][7]. In the workshop
methodology, electronic annotation is a basic operator, on which the communication among different d-experts and the
production of new knowledge are based. An expert has the possibility of performing annotations of a piece of text, of a
portion of an image or of the same workshop in use in order to extend, make explicit his/her current insights - on the
problem at hand or even on the features of the workshop. Annotations are added to the common knowledge base and
become accessible by other d-experts, each one accessing the data through his/her own workshop and interacting in
his/her own professional language. Such annotations provide further possibilities to support the d-expert to reflect on
his/her activities, and to make his reflection available to the whole community. Indeed, the activity of a d-expert is
influenced by the observations performed and annotated by a colleague, which are then visible to him/her.

To make an example of how these systems can allow cooperative work of professionals who perform a common task,
and how the annotation is important for triggering user’s reflections, let us briefly consider a scenario taken from the
medical domain. The scenario refers to some physicians collaborating to achieve a diagnosis [4]. A pneumologist and a
radiologist incrementally gain insight into a case by successive interpretations and annotations of chest radiographies,
performed in (possibly) different places and at (possibly) different times. They work in two different workshops that
share a knowledge repository. They achieve the diagnosis by updating the knowledge repository after each session of
interpretation of the results and of annotation of their new findings. Working in his workshop, the radiologist is
analyzing a chest radiography and recognizes an area of interest denoting a pleural effusion; he then selects from a
toolbox the tool that allows him to draw a close curve around the area of interest, and adds to this area a textual
annotation that describes its observations about a ‘Pleural effusion’ that he wants also to communicate to the
pneumologist. The system is able to associate a widget to this annotation. This newly created widget will also appear to
the pneumologist when he looks at the same radiography in his workshop. By clicking on this widget, the pneumologist
may read the radiologist’ annotation, that becomes a trigger for his reflective activity.

18

 3

References

[1] Alexander, I., Book Review: The Reflective Practitioner – How professionals think in action, online

<http://i.f.alexander.users.btopenworld.com/reviews/schon.htm.
[2] Carrara, P., Fogli, D., Fresta, G., Mussio, P. Toward overcoming culture, skill and situation hurdles in human-

computer interaction. Int. Journal Universal Access in the Information Society, 1(4), 288-304, 2002.
[3] Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A. Computer Environments for Improving End-User

Accessibility. Proc. of 7th ERCIM Workshop "User Interfaces For All", Paris, 187-198. 2002.
[4] Costabile, M.F., Fogli, G., Mussio, P., Piccinno, A. End-User Development: the Software Shaping Workshop

Approach. Submitted to book End User Development, Lieberman H., Paternò F., Wulf V. (Eds), Kluwer Academic
Press.

[5] Karasti, H., Increasing Sensitivity Towards Everyday Work Practice in System Design, PhD thesis, University of
Oulu, Oulu, 2001.

[6] Mackay, W. E., Augmented Reality: Linking real and virtual worlds – A new paradigm for interacting with
computers, Invited paper, Proc. of AVI ’98, L’Aquila, Italy, May 1998, 13-21.

[7] Mussio, P., E-Documents as tools for the humanized management of community knowledge, Keynote Address, to
appear in ISD 2003 Proc., Melbourne, August 2003.

[8] Schön, D., The Reflective Practinioner – How Professionals Think in Action, Basic Books, 1983.
[9] Schön, D., Educating the Reflective Practitioner, Meeting of the American Education Research Association,

Washington, DC, 1987.
[10] Wulf, W. A., The Collaboratory Opportunity, Science: New Series, Vol. 261, 1993.

19

 1

Sensemaking and Design Practices
in Large-scale Group-to-Group Distance Collaboration

Gloria Mark

Department of Informatics
University of California, Irvine

gmark@ics.uci.edu

Steve Abrams

Department of Informatics
University of California, Irvine

sabrams@ics.uci.edu

A new paradigm in collaborative interaction is arising. Large-scale collaborations across distance are becoming more
common enabled by technological development such as the Access Grid and the need to bring together not just individuals,
but entire groups of experts to solve complex problems. Despite this growing trend, this form of collaboration have not
received much attention. In this paper we describe how this new kind of interaction order affects collaboration in the domain
of space mission design.

Intersubjectivity, sensemaking, and group interaction

In group-to-group distance collaboration, entire groups, each working in a common space, are connected together
through some combination of technologies. People are interacting in multiple social worlds simultaneously: their collocated
team, and the larger, distributed team. Interaction in these different social worlds is characterized by different types of
sensemaking, where people interpret cues, negotiate, apply expectations, and commit to decisions [4]. In any collaborative
context, through the experience of interacting with another, and making sense of the environment, a sense of common
meaning, or intersubjectivity is developed. Intersubjectivity refers to a state of interaction where perspectives can be mutually
or reciprocally understood [3]. Especially sharing a common environment or “community of space”, where people directly
experience each other, creates favorable conditions where intersubjectivity can emerge. People are constantly modifying their
understandings of the other, and consequently are continually constructing shared meanings. In the case of social
relationships that are not face-to-face, one understands the other through an “ideal type”. Schutz [3] describes that people
rely on assumptions to construct a “shared interpretive scheme” (pg. 229). In distant interaction, one receives little or no
feedback as to whether one’s assumptions about the partner type were accurate. Compared to the full spectrum of possible
experiences that can be shared in face-to-face settings, this is meager information. Without information to contradict or
update it, distant partners generally continue to rely upon the ideal type.

Interaction does not always remain at the same “level” according to Wiley [5] who frames interaction from the
individual to the societal and cultural level. Through interaction, individual meanings can merge into intersubjective
meanings, which in turn can emerge into a generic subjectivity, which constitutes social structure1. Intersubjective interaction
over time evolves into “interlocking routines and habituated action patterns” (Wiley, pg. 74) between individuals that can be
taken for granted and which affords a degree of predictability to the interacting individuals.

When actors are distributed across distance with technology-mediated interaction, intersubjectivity can emerge
differently than in a face-to-face environment. In a collocated setting, it is easier to understand when intersubjectivity is
slipping away due to the rich availability of feedback. When generic subjectivity emerges, this is also easier to maintain in a
collocated setting as the extent to which people follow (or don’t follow) scripts is highly visible. In a distributed setting, with
limited feedback through distinct channels (i.e. audio, video, images, text) the “ideal type” perception must be overcome for
intersubjectivity to emerge. Experiencing distant behavior through limited social bandwidth makes it difficult to predict
routines and patterns, which also can inhibit the development of generic subjectivity. Interaction may also vascillate between
levels, e.g. between intersubjective and generic subjective states. No interaction is purely one form of (inter)subjectivity or
the other.

The study setting

We performed an ethnographic investigation, guided by our research question of examining different types of
sensemaking in group-to-group collaborative settings. We studied a large distributed technology organization, who

1 Wiley describes four levels, the individual, the intersubjective, the generic subjective, and cultural, but only the middle two

levels are treated here as they are relevant for the current study.

20

 2

researches, designs, and develops space-based scientific technologies and missions. We observed a design team from this
organization, comprised of four engineering groups (teams 1–4) distributed around the U.S. Team 1 had 24 team members at
Site 1 on the west coast, team 2 had 12 members at Site 2 in the Midwest, team 3 had 9 members at Site 3 in the south, and
there was a single person at Site 4 in the southwest. Most of the people on teams 1, 2, and 3 had previously worked together
within their teams but had never worked with the other teams in the past. The purpose of collaborating together was to
combine different specializations to work on a conceptual design for an actual space mission.

The design team relied on a number of technologies to share design data, audio, and video streams. NetMeeting
shared applications across sites projecting document views from Microsoft Excel and PowerPoint. ICEMaker [2] linked
workstations and shared data, thus enabling the members of the design team to publish design specifications and parameters
relevant to a particular subsystem as either numeric data in the spreadsheets. A dedicated person managed the updating of
spreadsheets and the projection of spreadsheets both locally and remotely. A video-teleconferencing (VTC) service shared
the audio of all four sites, and switched the video such that it displayed the view of the recent most vocally active site to the
other sites. Multiple large public displays (12 x 6 feet at Site 1 and 6 x 5 feet at Sites 2 and 3) showed the video and the
shared applications. MeetingPlace managed distributed small group discussions, or sidebars, by sharing multiple voice
streams by telephone. E-mail and fax, were also available.

The design team collaborated for a total of nine hours, spanning three days within a week. Three researchers
traveled to Sites 1–3 and observed the teams’ interactions for the whole duration. We videotaped the teams at Sites 1–3 and
interviewed the team members at Sites 2–3. We also received individual audio recordings of each of Site 1 participants, and
audio recordings of all distributed sidebars.

The task of space mission design involves constant problem-solving. The design involves choosing a number of
different parameters, e.g. trip time, weight, power type, as well as graphically designing the spacecraft configuration.
Parameters begin with initial estimates and are constantly refined. The work is highly interdependent, e.g. the power engineer
needs information from the mission design and instruments expert before she can calculate her values. The interdependencies
in the design decisions leads to the high degree of interaction to negotiate values or discuss design tradeoffs.

Different levels of sensemaking in the team process: Reciprocity of perspectives

At Site 1, for the most part, all team members were familiar with each others’ identities and were aware of their
areas of expertise. More commonly, collocated team members shared perspectives in the design process. They were all
concerned with keeping costs down, minimizing mass in the design, and assessing “technology readiness levels” to estimate
the amount of research and development needed between that design session and the commencement of mission operations.
Shared perspectives emerged in individual interaction for example when team members made guesses about the meanings
and implications of numeric values in a spreadsheet, which were confirmed by another member indicating a shared
understanding.

An essential aspect of design is the capacity to explore various scenarios for benefits and risks. When, in the course
of such exploration, a feature is identified and its implications are immediately grasped by another, it indicates a reciprocal
understanding of the situation. For example, a telecommunications hardware expert expressed concern about the effects of
cold temperatures found in space on an instrument to penetrate the surface of a spatial body. The Science and
Instrumentation experts immediately grasped that cold-induced brittleness was a risk that had not yet been identified in this
design.

Other reciprocal perspectives reflect local norms and attitudes. One engineer at Site 1 told another that he was
going to “pick on him,” reflecting a local norm encouraging informed peer critique. In another situation, two team members
at Site 1 sought advice from a non-Team member, also at Site 1, rather than seek assistance from a team member at a remote
site.

Finally, shared perspectives were reflected in the common practice of conveying design information in a
“shorthand” manner by referencing similar information from prior designs. For example, when one CDS engineer referred to
a data system design as “Seeker,” the other CDS expert immediately understood. Similarly, a shorthand reference to the
“Cassini” mission for the schedule was then used by another person.

In contrast, the full, distributed design team experienced difficulty in establishing shared perspectives for the design
process. Discrepancies, in both understanding and in the actual design parameters, occurred. Design decisions made at each
site were often reported on the third day, and there was insufficient time to track down subsequent design decisions that had
already been made with the discrepant values.

Thus, sensemaking was conducted differently within sites compared to across sites. The collocated team members
exhibited behaviors that indicated that they shared common perspectives, especially with respect to the design process. In
contrast, in the entire design team, many incidents occurred that pointed to a lack of common perspectives. These differences
led to three consequences for the team, discussed next.

21

 3

Sidebars as scripts: the “heart” of design work

In space mission design, much of the “heart” of design work occurs in smaller groups, or sidebars, where
clarifications or design tradeoffs are discussed. A characteristic of the sidebars at Site 1 was their spontaneity. At any time,
from one to five sidebars usually occurred at the Site. People continually monitored the environment, listening for keywords
in the surrounding discussions that had relevance for them. When such a keyword was detected, the team member would
spring up from their seat and join the sidebar. Importantly, nearly all sidebars were self-organized. Thus, it was expected that
the patterned interaction of sidebars was the standard type of encounter in this collocated setting. Rarely did the facilitator
organize a sidebar. Sidebars could range from a simple and quick question, such as for clarification or to seek specific
information (“what is the temperature of Mars?”) to a lengthy and complex design tradeoff discussion, such as how to reduce
weight on the spacecraft.

In contrast, sidebars did not exist as standard types of encounters for the larger distributed design team. Sidebars
were always delegated by facilitators who announced publicly over the VTC who would join them. All sidebars were held
via teleconferencing. It was perfectly possible for any team member to initiate a sidebar across distance by asking the
coordinator for a phone line and dialing the other site. Yet of the 24 distributed sidebars that occurred, only three were self-
organized. The distributed sidebar interactions generally involved complex discussions of longer duration, generally around a
single topic. The distributed team never used sidebar interaction to spontaneously clarify, seek information, or challenge a
design value or assumption. This would have been advantageous for the design team, e.g. if the Power engineer in Team 1
clarified a value with the Power engineer in Team 2.

Thus, a pattern of behavior never emerged where distributed team members would spontaneously contact their
colleagues across distance as the need arose. The coordination overhead may have prevented people from spontaneously
engaging in distributed sidebars; it took an average of three minutes, 17 seconds to set up a distributed sidebar. In fact, no
other generalized forms of distributed interaction, or scripts across sites, were detected.

Discrepant methodologies and assumptions

When intersubjective meaning is achieved in a group, it follows that all group members understand terms and
processes in the same way. During the design session, the different sites not only used different concepts and terms, but also
unique methodologies and design processes. In three cases, the different sites used different methodologies for concepts that
are standard in mission design, e.g. in computing contingent mass. They also used different terms for standard concepts, e.g.
“trajectory”. These cases revealed two things. First, though each site had developed a common understanding of its own
terms, a lack of shared understanding existed across sites. Second, intersubjectivity depends on actors performing the work to
maintain and develop shared perspectives. When attempts at establishing shared meanings were made by proposing hybrid
terms, these were not adopted by the design team. The sites did not make the requisite effort to allow intersubjectivity to
emerge in the entire team by committing to the decision. Though the design team was able to intellectually negotiate the
common terms and methodologies, the design team did not have congruent perspectives established that would enable them
to adopt the solutions.

Blind trust in technology

A third consequence that we observed is that misattributions occurred during the distributed design team interaction.
Participants at the different sites developed a blind trust that the collaborative tools that they used to interact and share data
across distance were “delivering” the information they intended. The actors behaved as though their distributed partners
would perceive their behaviors and work practices in the same way that their local team members would.

Examples included “what I say is what you hear”. There were 24 instances, spread approximately equally over Sites
1–3, where team members did not put in the requisite effort in public conversations to make themselves heard at the other
sites. Team members at remote sites complained that the site who spoke recently could not be heard. The speaker either
forgot to unmute the microphone, or spoke too far away from the VTC microphone to be heard remotely. Another example
of blind trust is “what I see is what you see” when people at one site expected other sites to see the same displayed value on
the networked spreadsheet. Still another example is falsely believing “what data I can access is what you can access” across
sites. They expected that once values were entered into the spreadsheets, they were immediately propagated and accessible to
the other remote sites which was not always the case.

While interaction is easy within a site, it was not clear to participants that they needed to invest extra effort to
understand how the remote members’ perceived their behaviors and work practices conveyed by technology. Also, for most
people, they were using new and unfamiliar technologies and did not have the opportunity to develop appropriate
expectations of the capabilities of the technology [1].

22

 4

Discussion

In this paper we have investigated a new interaction order of large-scale group-to-group collaboration. We
discovered that in the collocated sites, sensemaking tended to be mostly intersubjective, i.e. that people’s perspectives were
congruent and reciprocal. In the larger distributed design team, sensemaking was far less intersubjective. Sensemaking has
different facets and we can interpret the differences between collocated and distributed groups by examining these facets.
Table 1 shows more specifically how different components of sensemaking relate to the three consequences that we
observed.

Communication breakdowns in the design team were triggers for developing intersubjectivity, i.e. for the team to
move to a different level of sensemaking. An example of such a breakdown was when discrepant methodologies were
discovered, as for contingent mass. The breakdown had the potential of being a catalyst for the design team to develop
shared meanings. The team succeeded partially as new emergent terms did develop as a result of conversations, and were
unique to the design team. Yet intersubjectivity was not actually constructed across distance, as the design team did not adopt
the new terms. Each site reverted back to the use of their own terms, knowing that it was not accepted by the other sites. The
compromise agreement for contingent mass that each site would apply their methodology for that part of the design they
were responsible for is not a viable longterm solution. This agreement was also not adopted. Design is an iterative process
and the use of discrepant methodologies may lead to incongruencies downstream in later stages of mission design. This poses
a risk to the design (and mission).

Observed
consequences

Components of sensemaking Distributed design team Collocated teams

Sidebars Sensemaking as expected
patterns of behavior

Only three self-organized sidebars; the
rest are delegated and not
spontaneous, but formal; coordination
intensive; identities of partners not
always known

Spontaneous joining of
sidebars; monitoring sidebars;
articulation as well as design
sidebars; identities of partners
mostly known

Adoption of
terms

Sensemaking as
commitment

Though common terms were negotiated
and agreed upon, they were only
temporarily used; not permanently
adopted

Common language and
guidelines were developed and
used

Misattributions
or “blind trust”
in technology
use

Sensemaking as expectation

Have not developed appropriate set of
expected behaviors for technology use
across distance; not aware when
human use of technology breaks down

Breakdowns in human use of
technology are usually visible

Table 1. Different components of sensemaking in the distributed design and collocated teams.

Intersubjectivity does not remain constant but vascillates between the intrasubjective and generic subjective states

and must be maintained. The team process is a cycle of alignment and breakdown. Breakdowns can lead to the identification
of points where common meanings can be established. When alignment occurs, intersubjectivity has the opportunity to
emerge. The nonadoption of the common terms by the entire design team and misattributions were examples of how the
design team transitioned away from intersubjectivity. If communication repair occurs, then it is a step towards
intersubjectivity.

A major risk for large-scale scientific collaborations is when perspectives are not questioned. At local sites we
observed many instances of spontaneous challenges to e.g., a design parameter or assumption. These occurred mostly in
sidebar discussions, but also in large public discussions within the site. Debate and negotiation were the norm. In contrast,
we rarely observed spontaneous challenges made by team members across distance. The facilitators sometimes questioned a
perspective or a value, but the mission design would benefit more by having nonfacilitators, or experts in multiple
specialties, introduce challenges. Distributed sidebars, where design tradeoffs were discussed, were mostly limited to formal
discussions of predefined topics by team members assigned by the facilitators.

It was not our expectation that intersubjectivity or generic subjectivity would be achieved by the design team as it
did not have much experience meeting together. Our goal in this paper was rather to examine the consequences of what
happens when groups in large-scale collaborations experience different levels of intersubjectivity and practice different types
of sensemaking. Such short-term interaction is not uncommon in large-scale ad-hoc collaborations such as when scientific
teams discuss a problem using the Access Grid.

23

 5

REFERENCES
[1] Olson, G. M. and Olson, J. S. Distance Matters, Human-Computer Interaction, 15, 2/3, 2000, 139–178.
[2] Parkin, K. L., Sercel, J. C., Liu, M., and Thunnissen, D. P., ICEMakerT: An Excel-Based Environment for Collaborative

Design, IEEE Aerospace Conference, (Big Sky, MT, March 8-15, 2003). IEEEAC Paper #1564. Updated Jan 25, 2003.
http://monolith.caltech.edu/Papers/Parkin%20IEEE%20Paper%201564.pdf

[3] Schutz, A. On Phenomenology and Social Relations: Selected Writings, H R. Wagner (ed). University of Chicago Press,
Chicago, IL, 1970.

[4] Weick, K. E. Sensemaking in Organizations,m Sage Publications. Thousand Oaks, CA, 1995.
[5] Wiley, N. (1988). The Micro-macro problem in social theory. Sociological Theory, vol. 6, 254-261.

24

Session: Computer-Supported Learning Environments

25

26

Reflective Design Practices in Human Computer
Interaction and Software Engineering

Effie Lai-Chong Law
Eidgenössische Technische Hochschule Zürich

ETH Zentrum, TIK, Gloriastrasse 35, CH-8092 Zürich, Switzerland
law@tik.ee.ethz.ch

ABSTRACT
Three theories of reflection of Dewey, Vygotsky and Schön
can presumably well inform the development of different
aspects of HCI and software engineering. Upon reflecting
on the related literature, we derive some boundary
conditions for reflective design practice and formulate three
questions, of which the understanding is enhanced through
the three theoretical models of reflection.

INTRODUCTION
In the recent literature on design, be it of architectural
constructions, software systems, or professional training
programs, Donald Schön’s theory of reflection [18,19] has
frequently been referenced. In fact, Schön’s theory is rooted
in that of Dewey[1] and Vygotsky[27]. A common thread
linking the social constructivist theories of these three
scholars is that knowledge and actions are fundamentally
social in origin, organization and use, and are situated in
particular context. Presumably, Dewey’s social pragmatic,
Vygotsky’s socio-linguistic and Schön’s communicative
views of reflection (see below) can well inform the
development of different aspects of Human-Computer
Interaction (HCI) and software engineering (SE).
Specifically, some boundary conditions for reflective
design practice can be derived.

In HCI and SE various design models have
become popular in the last decade, including participatory
design, situated design, scenario-based design, user-
centered design, and evolutionary design. A basic tenet
shared by these models is that design, as a form of
creativity enabled by ample opportunities for reflection
[11], is essentially a social practice – a core concept
echoing the three views of reflection. Furthermore, the
ever-increasing research interest and effort in these social
constructivist approaches (cf. rationalist-cognitivist
approach) to design [28] has paralleled the prolonged
analyses on human-machine and work-technology
relationships [3]. Both lines of inquiry can mutually
influence each other. For instance, the supposition that there
is an inherent asymmetry between human beings and
machines in terms of their differential access to resources
embedded in the social and material environment [21, 22]
can inform the design of intelligent software agents [15].
Moreover, the social constructivist approaches to design
imply that software engineers need to address a vast array
of issues when designing a system. Reflective thinking is

necessary to cope with the overwhelming demand. The
concomitant question is: What should designers reflect on?

The recalcitrant gap between HCI and SE has
lately drawn much attention and concern of professionals
from both domains [9]. Issues pertaining to usability have
been one of the starting points to coordinate the efforts of
HCI specialists and software engineers. There exist joint
endeavors on incorporating usability into software
architecture, identifying usability patterns, constructing
taxonomies of usability problems, and improving usability
evaluation methods (UEMs). Since analyzing each of these
aspects is beyond the scope of this position paper, we
elaborate our view only on UEMs, of which several
problems are basically design in nature, including design of
usage scenarios, evaluation procedures and tools, and data
analysis scheme. A number of UEMs have been criticized
as not adequately rooted in a sound theoretical framework
and rather pragmatic in nature. Since evaluation is
essentially a reflective practice, we assume that theories of
reflection can somehow enhance our understanding of
UEMs. The concomitant question is with such an increase
in knowledge: How UEMs can be rendered more effective?

Besides, the definition of usability is problematic.
The core definition of usability concept as a set of
measurements (i.e., ISO 9241) is too limited and too
technical to explain phenomena and to support design and
research activities when social and cultural aspects have to
be dealt with [6]. Contextual approaches to usability have
been put forward but not yet adequately explored.
Similarly, the notion “cultural usability” has been
addressed. It is a working hypothesis for a design practice
that reaches beyond the functional interests of
contemporary usability research and interface development
by situating design in its wider socio-cultural contexts [25].
While the technical definition of usability is too narrow, its
social counterpart can be too broad to manage. The
concomitant question is: What is the manageable scope of
usability? In the ensuing discussion, we first briefly
delineate the three theoretical models of reflection and then
derive some boundary conditions for reflective design.
Next, we examine how they can improve our understanding
of the three questions raised above.

THEORIES OF REFLECTION
Historically, the challenge of defining reflection has been
entertained by scholars of different epochs. For Dewey, it is

27

mailto:law@tik.ee.ethz.ch

a preferred form of thinking triggered by doubt and
perplexity perceived in a situation, resulting in problem
resolution in light of previous experiences. For Vygotsky,
reflection is the transferal of argumentation from a social
level to an internal one. For Schön, it is a dialogue of
thinking and acting through which performance can be
enhanced. In sum, the definition of reflection is beset by its
temporal(anticipatory, contemporaneous, and retrospective)
and developmental dimensions (ranging from technical to
critical reflection).

Dewey’s Social Pragmatic View of Reflection
According to Dewey[1], the role of reflection is to regulate
the dialectic relationship between knowing and acting, and
reflective thinking is a tool for problem resolution and
operates through the progressive cycle of 'inquiry'. An
inquiry is a teleological impetus for determining a course of
actions to counteract instability of a situation. There exist
two types of inquiry. Whereas a perceptual inquiry entails
adapting to the affordances of a situation and results in ad-
hoc actions, a reflective inquiry entails manipulating
symbolic representations and leads to planned actions.
Besides, Dewey’s evolutionary point of view implies that
reflective inquiry develops out of perceptual inquiry
through persistent agent-world transactions. Dewey[2]
emphasized the role of tools in the emergence of mind,
especially language. In accord with Dewey’s pragmatic
social behaviorism, communication and action in a social
setting can facilitate reflective thinking.
 Dewey[1] postulated five phases of reflective
thinking: problem recognition; enumeration of possibilities
of new actions or beliefs; evaluation of the possibilities
through consulting memory, questioning, or experimenting;
revision of possibilities; decision-making on next
appropriate actions. These phases, varying in duration with
the type of inquiry, can overlap in time. He also specified
three attitudes required for reflection: open-mindedness,
absorbed interest and responsibility in facing consequences.

Vygotsky’s Sociolinguistic View of Reflection
According to Vygotsky [27], reflection can be understood
as self-regulation, which is acquired by a process that
involves first experiencing "other-regulation" which occurs
in the zone of proximal development where adult guidance
or collaboration with more capable peers is available.
Through this special mode of social interaction, the form
and content of self-regulation are gradually transferred from
the more competent partner and internalized by the learner.
The Vygotskian views also stress that sociolinguistic
experience is indispensable for the emergence of
metacognition and that intersubjectivity is a primary means
for knowledge construction. The corollary is that modeling
and verbal communication (including self-verbalization) are
strong facilitators for reflection.

Vygotsky also advocated the thesis that reflection
plays a mediating role by transforming meaningful
experiences into learning which leads to development.
Vygotsky, like Dewey, regarded language as the most

potent cultural tool in achieving convergence of meaning
and co-construction of knowledge during social
interactions. Based on Vygotsky's theory of dialectical
relationship between the intra- and inter-psychological and
transformation of one into another, high-order thinking like
reflection is developed through consistent agent-world
dynamic interactions.

Schön’s Communicative View of Reflection
According to Schön [18,19], reflection-on-action and
reflection-in-action as essential factors for the development
of professional artistry, which refers to kinds of embodied
skills practitioners demonstrate in problematic situations of
practice. Whereas reflection-on-action refers to thinking
back on the action already accomplished or pausing in the
midst of an action to make a "stop-and-think" (i.e., offline),
reflection-in-action occurs while a practice is being
undertaken (i.e., online) and implies moment-by-moment
"active experimentation". Besides, reflection-in-action is
conceptually more complex, developmentally more mature,
and functionally more significant than reflection-on-action.
Based on his communicative views, Schön believed that the
effectiveness of a practicum depends crucially on social
interactions, especially reciprocally reflective dialogues
between coach and student who have to maintain
communication which eventually leads to convergence of
the interpretations of the concepts in question.
 Schön's model of reflective practice consists of
four central components: perceiving an indeterminate zone
of practice precipitated by instability of a specific situation;
framing the problem in terms of the particulars of the
situation, analyzing and criticizing such an initial problem
framing; reframing the problem in light of the inquirer's
repertoire of domain-specific knowledge and previous
experiences; generating moves for future actions leading to
the new coherence of the situation. This sequence of
operations can be seen as an individual's attempt to
converse with the situation in which he is embedded.
Reflective conversation is a highly dynamic and dialectical
cognitive enterprise. The inquirer shapes the situation, but
in conversation with it, his idiosyncratic methods and
appreciations are in turn shaped by the situation.

Implications of the Three Views of Reflection to Design
Based on the basic assumption that reflective thinking is
requisite for design activities, we infer some boundary
conditions for design from the three views of reflection.
�� First, design is essentially a social practice and

mediated by artifacts and tools socio-historically
constructed, of which language is particularly
important. Hence, collaborative working environments,
where pluralistic and meaningful social discourse
among stakeholders is supported, are conducive to
design [12].

�� Second, design entails a contextualized problem and a
source of stimulation, which, according to Dewey and
Vygotsky, can be described as dialectical transactions

28

between internal and external. Hence, to design systems
with any integrity, it is imperative for designers to
develop them in relation to specific settings of use [23]
and to sustain ongoing interactions with the social and
material environment, which can ‘talk back’ [18] to
designers to propel the related works.

�� Third, design is inherently evolutionary in nature,
undergoing progressive and iterative steps (cf. Dewey’s
evolutionary view on perceptual and reflective inquiry;
Vygotsky’s notion of spiral cognitive development;
Schon’s “framing-reframing” cycle). Hence, design
plans (cf. requirement specifications in SE) have to be
flexible and adaptive so as to accommodate emergent
needs. Plans can actually serve as a kind of resource to
bridge the gap between knowing and acting [9,21]. In
fact, evolutionary approaches to design have been
advocated by some contemporary scholars [4, 14].

�� Fourth, design is a highly dynamic mental activity that
tends to overburden our cognitive load [24] - a problem
closely related to the issue of intrinsic motivation.
Hence, objects of reflection should not be too
encompassing. Besides, well-articulated but negotiable
goals, which are somehow compatible with institutional
arrangements, need to be set, thereby increasing the
designer’s sense of ownership of the problem as well as
his or her motivation. Besides, the attitudes of open-
mindedness and responsibility have to be reinforced.

�� Fifth, design anchors in a rich declarative and
procedure knowledge base. This explains expert-novice
qualitative and quantitative differences in design
activities. Hence, to enrich the skills required, it is
desirable to provide designers with just-in-time training
or tutorial support. Among others, expert modeling
seems to be a relatively promising training strategy.

PROBLEM RESOLUTIONS
In this section, the three question posed in the foregoing
discussion will be examined. We point out that each of the
questions touches upon a large scope of intricately related
problems. While we cannot provide any conclusive
answers, we aim to stimulate further reflective
conversations in the community of practice and interest.

What Should Designers Reflect on?
Identifying appropriate objects of reflection is the foremost
and crucial step leading to the personal and professional
growth. We propose an expanding scope of reflection with

Figure 1:
Scope of Reflection

four levels of awareness (Figure 1). Evolution of self [13] is
the most significant function of reflection; consolidating a
coherent self enables one to reach out to other levels.
Locale is defined as a setting where design works get done.
It is imperative for designers to be aware of what kinds of
resources (e.g., expert guidance, reusable ideas in database)
are accessible and what local constraints they must observe.

Hybridity implies our constant moving across
disciplines and practices, leading to frequent shifts of
perspectives [25] and even feelings of alienation and
inadequacy [23]. Nonetheless, domains are not natural
entities [20] and disciplinary boundaries can be seen as
artifacts created to sustain the power and vested interest of
their upholders [7]. The implication of this line of argument
is that designers need to reflect on their roles in relation to
elements of the socio-material infrastructure that constitutes
technical systems. Besides, to optimize contributions of the
workforce involved in a design project, the following
factors are deemed necessary: reciprocal learning of
complementary concepts, genuine respect for divergent
views, high accountability, and ongoing dialogue facilitated
by (partial) translation of the concepts in interest. It is
noteworthy that the perimeters of the concentric rings
presented in Figure 1 are “permeable” in the sense that the
flows of information and knowledge among the four levels
are basically possible, as illustrated by the double-arrow.
With consistent practices of reflective activities entailed by
the four levels of awareness, designers can develop an
integrated view of the field where they are embedded.

How UEM can be Rendered More Effective?
Co-construction of knowledge is a paradigm commonly
upheld by the three views of reflection. Collaborative
discourse is congruent with reflective approaches to
knowing because articulation to others helps one to share
and clarify one’s ideas. Mutual intelligibility of the
concepts of interest can be attained through ongoing
negotiations among conversational partners [21]. The
implication is that the effectiveness of UEMs can be
enhanced in a collaborative context. For empirical UEMs
such as usability tests, in contrast to the ‘standard’
arrangement where single users work independently, there
exist team usability tests where users in dyad or a small
group co-discover usability problems while collaboratively
performing given task scenarios on prototypes or
operational products [5, 26]. For analytic UEMs, there exist
collaborative usability inspections [10], where usability
experts, representative users, developers, and graphic
designers jointly identify usability problems in prototypes t

Self awareness: Roles, needs,
cognitive and emotional developmen
or models. However, whether these “social-based” UEMs
are more cost-effective than their “individual-based”
counterparts in detecting usability problems cannot yet be
Locale awareness: Sociomaterial
infrastructure (e.g., stakeholders,
institutional arrangements)
consistently confirmed by the empirical data. The key may
lie in the techniques employed for extracting data on the
first place (i.e., thinking aloud in usability tests;

Hybridity awareness:
Boundary crossing –
disciplines & practices
heuristics/principles selected) and in the methods adopted
to compare the effectiveness of different UEMs.
Nevertheless, we believe that collaborative usability
Network awareness:
Enmeshment in cultural, political
& economic constraints
29

evaluation is a promising approach worthy of closer
investigation.

What is the Manageable Scope of Usability?
The three views of reflection are rooted in the socio-
constructivist theories, which have challenged the basic
assumptions underlying the rationalist-cognitivist tradition
and dethroned its hegemony. Indeed, different types of
phenomena entail different frameworks to make sense of
them. Similarly, the narrow, technical definition of usability
should be supplemented (not replaced) by a broader, social
one. Another reason for the need of an alternative definition
is the “ubiquitization” of human-machine interaction with
concomitant increase in user heterogeneity and their needs.
What they require from a product is more than effectiveness
and efficiency. Hence, usability is measured more in
qualitative rather than quantitative terms and more
experiential rather than conceptual. With the shift from a
rigid to a relatively fluid conceptualization of usability, we
need to review existing UEMs. Specifically, we may have
to ask users different questions concerning their emotional,
aesthetical, ethical, attitudinal, and social values towards
the usage of a product. One crucial point is that usability
problems are relative to product and service goals. The
challenge is how to map different UEMs to different goals.
Such mappings may serve as general guidelines, and
usability specialists need to adapt them to the particularities
of an application context. We assume that the
manageability of social-based usability can be optimized if
there are well-coordinated collaborations among
stakeholders and usability is addressed at the very
beginning of a product design and sustained throughout the
process.

Concluding Remark
We cannot provide any conclusive answers to the three
questions we posed, partly due to the limited empirical data
available. But they are significant issues that need to be
addressed in the future research of HCI and SE. We remark
that a reflective design practice implies critical sensibility to
design [25]. Accordingly, we should be cognizant of the
tacit assumptions underlying the discourses and usages of
new technologies, and of the socio-historical background of
existing cognitive tools (e.g., metaphors, taxonomies,
templates) with which design artifacts are represented and
constructed.

REFERENCES
1. Dewey, J. (1933/1986). How we think. In J.A. Boydston (Ed.), John

Dewey: The later works, 1925-1953, Vol. 8 (pp.105-352). Carbondale
& Edwardsville: Southern Illinois University Press.

2. Dewey, J. (1925/1981). Experience and nature. In J.A. Boydston
(Ed.), John Dewey: The later works, 1925-1953, Vol. 1 (pp.1-326).
Carbondale & Edwardsville: Southern Illinois University Press.

3. Greenbaum, J. & Kyng, M. (Eds.) (1991). Design at work. Hillsdale,
NJ: Erlbaum.

4. Fischer, G., & Ostwald, J. (2002). Seeding, evolutionary growth, and
reseeding. In T. Binder, J. Gregory, I. Wagner (Eds.), Proceedings of

the Participatory Design Conference pp 135-143, Malmö University,
Sweden.

5. Hackman, G. S. & Biers, D. W. (1992). Team usability testing: Are
two heads better than one? In Proceedings of the Human Factors
Society 36th Annual Meeting, 1205--1209. Santa Monica, CA: HFES.

6. Keinonen, T. (2001). From usability engineering to interaction
design [online]. Access at: http://www.mlab.uiah.
fi/culturalusability/papers/Keinonen_paper.html

7. Lave, J. (1988). Cognition in practice. Cambridge University Press.
8. Law, L.-C. (1998). A situated cognition view about the effects of

planning and authorship on computer program debugging. Behaviour
& Information Technology, 17(6), 325-337.

9. Law, L.-C. (2003). Bridging the HCI-SE gaps: Historical and
epistemological perspectives. In M. Morten & J. Vanderdonckt
(Eds.), Proceedings of the Workshop on Closing the Gaps (pp. 47-
54), Zurich, 1-2 Sept 2003.

10. Lockwood, L.A.D., & Constantine, L.L. (1999). Software for use.
New York: Addison-Wesley.

11. Loveless, A.M. (2002). Literature Review in Creativity, New
Technologies and Learning. A report for NESTA Futurelab [online].
At: http://www.nestafuturelab.org/reviews/cr01.htm

12. Mamykina, L., Candy, L., & Edmonds, L. (2002). Collaborative
creativity. Communications of ACM, 45(10), 96-99.

13. Mead, G.H.(1934). Mind, self, and society. Chicago: University of
Chicago Press.

14. Mørch, A.I. (2003). Evolutionary growth and control in user
tailorable systems. In N. Patel (Ed.), Adaptive Evolutionary
Information Systems (pp. 30-58). Idea Group Publishing.

15. Nwana, H.S., & Ndumu, T. (1999). A perspective on software agents
research. The Knowledge Engineering Review,14 (2), 1-18.

16. Ohnemus, K. R. & Biers, D. W. (1993). Retrospective versus
concurrent thinking-out-loud in usability testing. Proceedings of the
Human Factors and Ergonomics Society 37th Annual Meeting, 1127-
-1131. Santa Monica, CA.

17. Redmiles, D.F. (2002). Supporting the end users’ views. Working
Conference on Advanced Visual Interfaces (Trento, Italy), May 2002,
pp. 34-42.

18. Schön, D. A. (1983). The reflective practitioner. New York: Basic
Books

19. Schön, D. A.(1987). Educating the reflective practitioner. San
Francisco: Jossey-Bass.

20. Simon, H.A. (1996). The sciences of the artificial (3rd Ed.).
Cambridge, MA: MIT Press.

21. Suchman, L. (1987). Plans and situated actions. New York:
Cambridge University Press.

22. Suchman, L. (2000). Located accountabilities in technology
production [online]. Access at: http://www.comp.lancs.ac.uk/
sociology/soci039ls.html

23. Suchman, L. (2003). Figuring service in discourses of ICT: The case
of software agents. In E.H. Wynn, E.A. Whitley, M.D. Myers & J.I.
DeCross (Eds.), Global and organizational discourse about
information technology, 33-43. Boston: Kluwer.

24. Sweller, J. (1994). Cognitive load theory, learning difficulty, and
instructional design. Learning and Instruction, 4, 295-312.

25. Tarkka, M. (2001). Towards a critical design practice [online].
Access at: http://www.mlab.uiah.fi/culturalusability/
introduction.html

26. Van Kesteren, I.E.H., Bekker, M.M., Vermeeren, A.P.O.S., Lloyd,
P.A. (2003). Assessing usability evaluation methods on their
effectiveness to elicit verbal comments from children subjects. In
Proceedings of the 2003 Conference on Interaction Design and
Children, Preston, England, pp. 41-49.

27. Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard
University.

28. Winograd, T., & Flores, F. (1987). Understanding Computers and
Cognition. New York: Addison-Wesley.

30

http://www.mlab.uiah/
http://www.nestafuturelab.org/reviews/cr01.htm
http://www.comp.lancs.ac.uk/
http://www.mlab.uiah.fi/culturalusability/

Position paper submitted to workshop on “Designing for Reflective Practitioners”, CHI 2004, Vienna - Austria, April 25th.

Knowledge Building in Distributed Collaborative Learning:
Organizing Information in Multiple Worlds

Anders Mørch
InterMedia

University of Oslo
Norway

+47 22840713
anders.morch@intermedia.uio.no

Karianne Omdahl
Department of Information Science

 University of Bergen
Norway

+47 55558381
karianne.omdahl@uib.no

Sten Ludvigsen
InterMedia

University of Oslo
Norway

+47 22840712
sten.ludvigsen@intermedia.uio.no

ABSTRACT
In the CSCL (Computer Supported Collaborative Learning)
community a recent topic of keen debate has been whether or not
online discussion forums should be typed or not (i.e. information
categorized according to predefined message types). We have
analyzed findings from a field trial with Future Learning
Environment (FLE) and we identified some problems with the
system’s knowledge building categories. We propose to integrate
collaborative knowledge building with physical modeling
(designing with materials) to get more mileage out of information
categorization. This is stimulated by Donald Schön’s bottom-up
approach to information categorization, from design materials to
repertoires of cases.

1. Design according to Schön
In a series of empirical studies of professionals in a range of
domains Schön (1983) has shown that information categorization
to a large extent is bottom up work rather than originating from
readymade categories. This process starts from “materials of a
situation” and in a good process of design results in new
understanding realized as a “case” added to a existing repertoire
of cases The notion of a repertoire is more fluid than a concept
and constructed out of the local, often messy, situation a person
finds himself in when solving a design problem, but in the end is
linked with existing understanding so that it can be reused in
future situations requiring similar problem solving. A repertoire is
thus distinguished from a category set by being the result of a
combination of bottom up (situation specific) sense making and
top-down structuring of existing understanding. In his own words,
analyzing an architect at work, Schön describes the design
process as follows:

 “When a practitioner makes sense of a situation he perceives to
be unique, he sees it as something already present in his
repertoire. To see this site as that one is not to subsume the first
under a familiar category or rule. It is, rather, to see the
unfamiliar, unique situation as both similar to and different from
the familiar one, without at first being able to say similar or
different with respect to what. The familiar situation functions as
a precedent, or a metaphor (Schön 1983, p. 138).

The quote suggests categories (as flexible repertoire) should be
allowed to evolve over time, stimulated and informed by a
reciprocal relation of adaptation and situational “back talk”.
Adaptation occurs when categories are used locally and the back
talk provides feedback to regulate the adaptation process so that it
makes sense to the participants.

Even though students are not professionals in the sense just
described they need to take part in similar processes to
successfully learn. For example learners need to engage in a
process of grounding, i.e. interaction necessary to establish a
common ground to complete collaboration tasks (Baker et al.,
1999, Koschmann & LeBaron, 2003). Physical modeling by
manipulating domain-specific materials is one form of grounding
appropriate for conceptual knowledge building. The following
quote by Donald Schön is illuminating in this regard:

“the designer’s moves tend, happily or unhappily, to produce
consequences other than those intended. When this happens, the
designer may take account of the unintended changes he has
made in the situation by forming new appreciations and
understanding and by making new moves (Schön, 1983, p. 79).”

Design according to this occurs on two levels. On the one hand, it
is about “forming new appreciations and understanding,” on the
other it is about “making moves” in the domain. Moves with
unintended consequences can serve as triggers for conceptual
knowledge building by identifying new problems (framing of
issues) that may require exploration and explanation before new
moves can be made.

2. Conceptual Knowledge Building
CSCL focuses on technology in its role as mediator of activity
within a collaborative setting of instruction and learning, learners
and facilitators. It has inherited its intellectual legacy from
theoretical schools in the social sciences, in particular sociology,
anthropology, and communication (Stahl, 2002). Knowledge,
from this perspective, is seen as a human construction elaborated
through communication and collaboration with peers, mediated
by social and cultural artifacts implying that learning and
knowledge building first of all occur on inter-personal grounds
within a community of learners before occurring on the intra-
personal realm of the individual learner (Vygotsky, 1978).
A pedagogical model developed within this perspective is
Knowledge Building (Scardemalia & Bereiter, 1994). Knowledge
building entails that new knowledge is not simply assimilated
with the help of a more knowledgeable person, but also jointly
constructed through solving problems with peers by a process of
building mutual understanding in some domain of inquiry.
Knowledge building and its subsequent refinement Progressive
Inquiry (Hakkarainen, Lipponen, & Järvelä 2002) have received
considerable attention in the CSCL community. A reason for this
is that the model fits well with the educational philosophy

31

Position paper submitted to workshop on “Designing for Reflective Practitioners”, CHI 2004, Vienna - Austria, April 25th.

instituted by many schools in Canada and Scandinavia (problem-
based learning), as well as elsewhere in the world. The basic idea
is that students gain a deeper understanding of a knowledge
domain by engaging in a research-like process in this domain by
generating their own problems, proposing tentative hypotheses
and searching for deepening knowledge collaboratively with
peers.
FLE (Future Learning Environment) is an open-source learning
environment (http://fle3.uiah.fi/) developed according to the
Progressive inquiry model. It is an asynchronous web-based
groupware for computer supported collaborative learning
(Muukkonen, et al., 1999). It is designed to support collaboration
in the form of a discussion forum with message categories
(information types) named after the stages of the progressive
inquiry model.
Students using FLE are required to choose a knowledge-building
category each time they post a message to other students.
Although the initial questions were articulate and easily entered
into FLE, responding to them by selecting a new information type
was more difficult. In an empirical study (Ludvigsen & Mørch,
2003; Mørch, Dolonen & Omdahl, 2003) we identified recurring
problems with using the FLE categories (content/category
mismatches). We also identified student strategies of resolving
them, such as trial and error: referencing a subset (or the whole
range) of the categories to see if any one of them could apply.
This strategy of information categorization is partly supported by
the system. However, the teacher would also on occasion tell the
students what each of the categories meant.

3. A Proposal for Integrated Knowledge-
Building Environments
When the categories of a groupware are inappropriate to a
situation at hand it may be because the situation is unique. Rather
than forcing a “best match” on top of the situation the category be
expandable and adaptable to the situation. This may have the dual
effect of engaging those with skills to create new categories as
well those with difficulties using the existing category set.

Although information categorization can be remedied by making
categorization structures more transparent (e.g. with the use of
everyday terms) we do not want to water out categorization
structure entirely, since semi-structured messages can be
surprisingly useful as basis for computer support (Malone et al.,
1987). Instead, we propose a combination of user-tailorable
categories and domain-specific designer kits with computational
design materials serving as electronic lenses transforming and
connecting the local situation with the conceptual information
space.

Many knowledge domains consist of domain-specific rules and
building blocks that adhere to general principles that define broad
conceptual spaces within which small-scale experiments can mark
individual trajectories (e.g. mathematics, physics, biomedical
engineering). These design elements or “domain distinctions”
(Fischer et al., 1995) are not exploited in the current generation of
knowledge building environments. On the contrary, the term
knowledge building has become synonymous with manipulation
of conceptual artifacts (Bereiter, 2002). Although the computer is
well equipped to support conceptual artifacts as we have shown
above, it is even better equipped to support modeling and

simulation of physical phenomena, which we have tentatively
dubbed “physical knowledge building” to complement conceptual
knowledge building.

Modeling and simulation of physical phenomena is not foreign to
designers of collaborative learning environments and has been
acknowledged as being important for stimulating learning activity
in many knowledge domains (e.g. Papert, 1991; Fischer et al.,
1995; Roschelle et al., 1999). However, this approach has
received little attention in the knowledge building community and
few attempts have been made at building bridges across the two
worlds from the other side. We start by making a first move and
suggest that the following hypotheses should be implemented and
empirically tested in the next generation of knowledge building
environments:

• Integrated knowledge building environments are needed
for full support of distributed collaborative learning

• Integrated knowledge building environments need
computer support for conceptual and physical
knowledge building within the same computational
environment

• Physical knowledge building can be supported by
domain specific designer kits

• Designer kits need to align with the established domain
distinctions of a particular knowledge domain

• Designer kits will make it easier for physically active
students to engage in knowledge building

• Designer kits can complement existing (conceptual)
knowledge building environments and help to focus
collaboration activity

• End-user tailorability and intelligent agents are two
computational techniques that can help to link general
information categories with domain-specific, situations
of a designer kit

• Automatic (adaptive) classification by the computer
suggesting categories on the basis of analysis of the
current situation in the learning environment

4. Related Work
The following past (and contemporary) work and system building
describe related initiatives, directly and indirectly.
Grace (Atwood et al, 1991) was an integrated learning
environment for Cobol programming. The Grace environment
consisted of a suite of tools for different aspects of programming.
For example, the environment included an intelligent tutoring
component, a Cobol construction kit, and a Cobol critic. The
system was field-tested in the training center at corporate
headquarter of a regional telephone company (NYNEX). It was
also a single user environment and implemented on the Symbolics
machine.
VKB (Virtual Knowledge Builder) (Shipman, et al., 2002) is a
distributed, spatial hypertext system allowing multiple users at
different sites to manipulate shared ideas. The system is domain-
independent, and implemented to allow collective creation,
editing and manipulating of free-form textual notes. VKB has a

32

Position paper submitted to workshop on “Designing for Reflective Practitioners”, CHI 2004, Vienna - Austria, April 25th.

set of suggestion agents that can recognize certain semantic
attributes and values of the notes and suggest various ways to
classify and reorganize them. For example a type suggestion
agent can analyzes the attributes and visual properties of a newly
create (untyped) note and suggest a classification for it based on
matching it with the existing set of typed (categorized) notes, and
by doing so helping the users with grouping ideas into meaningful
clusters.
Epsilon (Soller, 2001) is an intelligent facilitation agent that is
integrated with a shared graphical editor for the domain of object-
oriented analyses and design using OML (Object Modeling
Language). Collaboration among students is scaffolded by
everyday sentence-openers (such as “Do you know”, “Please
show me”, “Let me explain it this way, “To justify”, “To
summarize”, etc) modeled after speech act theory, but in a more
user friendly way. Epsilon can observe a group’s conversation
and dynamically analyze individual contributions. For example, it
can recognize events such as a student having failed to discuss his
or her work with others. When it detects an opportunity to react,
the agent might intervene by asking the group to explain the
student’s actions. If the students in return are not able to select the
proper sentence openers for this type of utterance the agent might
intervene and tell them about the role of explanation in group
learning. Epsilon continues the top-down tradition of information
categorization, but the categories are now easier to select because
they are mixed with everyday terms.

References
[1] Atwood, M.E., Burns, B., Gray, W. D., Morch, A. I.,

Radlinski, E. R. and Turner, A. The Grace Integrated
Learning Environment: A Progress Report. Proceedings, the
Fourth International Conference on Industrial &
Engineering Applications of Artificial Intelligence & Expert
Systems (Koloa Hawaii, June 1991), ACM Press, 741-745.

[2] Baker, M., Hansen, T., Joiner, R. and Traum, D. The Role
of Grounding in Collaborative Learning Tasks. In
Dillenbourg, P. (ed.) Collaborative Learning: Cognitive and
Computational Approaches. Amsterdam, Pergamon, 1999,
31-63.

[3] Bereiter, C. Education and Mind in the Knowledge Age. New
Jersey. Lawrence Erlbaum, 2002.

[4] Fischer, G., Lindstaedt, S., Ostwald, J., Stolze, M, Sumner,
T. and Zimmermann, B. From Domain Modeling to
Collaborative Domain Construction. Proceedings of
Designing Interactive Systems (Ann Arbor, 1995), 75-85.

[5] Hakkarainen, K., Lipponen, L., and Järvelä, S. Epistemology
of Inquiry and Computer-Supported Collaborative Learning.
In T. Koschmann, R. Hall, and N. Miyake (eds.). CSCL 2:
Carrying Forward the Conversation. Lawrence Erlbaum,
2002, 129-156.

[6] Ludvigsen, S. and Mørch, A. Categorization in Knowledge
Building: Task-specific Argumentation in a co-Located
CSCL Environment. Proceedings of CSCL 2003, Bergen,
Norway. Kluwer Academic Publishers, pp. 67-76.

[7] Koschmann, T. and LeBaron, C.D. Reconsidering Common
Ground: Examining Clark’s Contribution Theory in the OR.
Proceedings ECSCW’03. Kluwer Academic, 81-98.

[8] Malone, T.W., Grant, K.R., Lai, K.Y., Rao, R., and
Rosenblitt, D. Semi Structured Messages are Surprisingly
Useful for Computer-Supported Coordination, ACM
Transactions on Office Information System 5, 2 (1987), 115-
131.

[9] Mørch A, Dolonen J, Omdahl K. Integrating Agents with an
Open Source Learning Environment. In: Lee KT, Mitchell K,
ed. Proceedings of International Conference on Computers
in Education 2003 (ICCE 2003), Dec. 2-5, Hong Kong:
AACE Press, 2003.

[10] Muukkonen H., Hakkarainen K., Lipponen L., Leinonen, T.
Computer Support for Knowledge Building. 9th European
Congress on Work and Organizational Psychology,
Innovations for Work, Organization and Well-being (Espoo-
Helsinki, Finland, May 1999).

[11] Papert, S. Situating Constructionism. In Harel, I. and Papert,
S. (eds.). Constructionism. Ablex Publishing, 1991, 1-12.

[12] Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A.,
Jackiw, N., and Suthers, D. Developing Educational
Software Components. IEEE Computer 32, 9 (1999), 50-58.

[13] Scardemalia, M. and Bereiter, C. Computer Support for
Knowledge-Building Communities. The Journal of the
Learning Sciences 3, (1994), 265-283.

[14] Schön, D.A. The Reflective Practitioner: How Professionals
Think in Action. Basic Books, New York, 1983.

[15] Shipman, F.M., Moore, J.M., Maloor, P., Hsieh, H., and
Akkapeddi, R. Semantics Happen: Knowledge Building in
Spatial Hypertext. Proceedings Hypertext 2002 (College
Park, June 2002), 25-34.

[16] Soller, A.L. Supporting Social Interaction in an Intelligent
Collaborative Learning System. International Journal of
Artificial Intelligence in Education 12, 1 (2001), 40-62.

[17] Stahl, G. (ed.). Computer Support for Collaborative
Learning: Proceedings of CSCL 2002. Lawrence Erlbaum,
2002.

[18] Vygotsky, L. S. Mind and Society. Harvard University Press,
1978.

33

CycleTalk: Supporting Reflection in Design Scenarios with
Negotiation Dialogue

Carolyn Penstein Rosé, Vincent Aleven
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh PA, 15216 USA

cprose,aleven@cs.cmu.edu

Cristen Torrey
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh PA, 15216 USA

ctorrey@andrew.cmu.edu

ABSTRACT

In this paper we discuss the motivation for a novel style of
tutorial dialogue system that emphasizes reflection in a
design context by engaging students in negotiation
dialogues. Our current research focuses on the hypothesis
that negotiation-style dialogue will lead to better learning
than previous tutorial dialogue systems because (1) it
motivates students to explain more in order to justify their
thinking, and (2) it supports the students’ meta-cognitive
ability to ask themselves the right questions about the
choices they make.

Author Keywords
Tutorial Dialogue, self-explanation, design

INTRODUCTION
Among the most important skills one can develop during
one’s education regardless of the chosen profession or trade
is the ability to think critically and construct sound
arguments. For example, these skills are foundational to
effective conflict resolution, which is a basic facet of all
business relations. Furthermore, widespread accessibility
of information in recent years, such as through the internet,
is empowering individuals to take the initiative to educate
themselves about their legal rights and medical options.
However, in order for people to benefit from this initiative,
they must be prepared to evaluate, filter, and synthesize
potentially conflicting information from a wide assortment
of sources in order to be able to argue their own
interpretation of this morass of information. The centrality
of reflection, critical thinking, and argumentation is perhaps
most clearly seen in the scientific arena. Understanding
how science connects with the real world on a conceptual
level involves building mental models, in other words

arguments, that use scientific principles to explain why
objects interact the way they do. On another level, critical
thinking and argumentation are at the heart of the scientific
method. Finally, argumentation comes into play when
science is applied in an engineering scenario when design
trade-offs are evaluated in the light of scientific
understanding. Because of these reasons, we are
developing the CycleTalk tutorial dialogue system that
supports the development of critical thinking and
argumentation skills by engaging students in negotiation
dialogues in natural language to immerse students in
scientific inquiry at these three key levels: (1)
understanding science at a conceptual level, (2) doing
science by forming and then testing predictions using a
simulator, and (3) using science for evaluating design trade-
offs. A key feature of our approach is to engage students in
negotiation dialogues for the purpose of stimulating
reflection and drawing out their reasoning along these three
lines and encouraging them to clarify their own thinking.

MOTIVATION FROM PREVIOUS WORK
The important role of language in learning has been
affirmed many times from many different angles and with
respect to many different types of subject matter. Recent
research on student self-explanations supports the view that
when students explain their thinking out loud it enhances
their learning [6,7,8,17]. A human tutoring study in the
Basic Electricity and Electronics domain [19] revealed a
trend for Socratic style tutoring dialogues to be more
effective for learning than didactic style ones. A possible
explanation for this result is that students learn more
effectively when they are given the opportunity to reflect
and discover knowledge for themselves in an active way
[4,14,16]. Stevens, Collins, and Goldin (1979) report that
the best teachers tend to use a Socratic tutoring style. A
follow-up analysis of the BEE corpus [9] demonstrates a
significant correlation between ratio of student words to
tutor words and learning, underscoring the importance of
encouraging students to talk more during tutorial dialogue.
In support of this, an analysis of the WHY2 human tutoring
corpus has demonstrated a significant correlation between
average student turn length and learning [21]. In further
support of the importance of students expressing

34

themselves through language as part of their learning, Chi
et al. (2001) demonstrate that students in a pure self-
explanation condition performed no worse than students in
a human tutoring condition.

These results have spawned an optimistic view about the
potential for building highly effective tutorial dialogue
systems, capable of combining the advantages of both
individualized instruction and interaction in natural
language. Significant progress has been made with respect
to this research agenda. Many tutorial dialogue systems
have been built and have been evaluated with students,
often in realistic educational settings [1,18,10,13,3,11].
These formative evaluation studies demonstrate that state-
of-the-art computational linguistics technology is sufficient
for building tutorial dialogue systems that are robust
enough to be put in the hands of students and to provide
useful learning experiences to students. A number of these
studies show that tutorial dialogue systems have advantages
over instructional treatments that do not involve dialogue.
At times, however the comparison results were
inconclusive, demonstrating that the field is still young and
that there is much room for growth.

An evaluation of the AutoTutor system, a tutorial dialogue
system in the domain of computer literacy, showed an
advantage over re-reading of the textbook of about 0.5
standard deviations [15]. The textbook re-reading condition
itself was no better than a no-treatment control condition.
Similarly, a recent evaluation of WHY-AutoTutor, a system
based on the same architecture as the original AutoTutor
but applied to the domain of qualitative physics,
demonstrates a significant advantage of this system over a
textbook reading control [12]. However, in a different
experiment the learning results obtained with WHY-
AutoTutor were no better than those in a control condition
in which students read targeted “mini-lessons,” short texts
that covered the same content as that presented in the
dialogue [11]. The mini-lesson condition is different from
reading textbook text in that mini-lessons tend to be
focused specifically on the knowledge and potential
misconceptions involved in a specific exercise. It appears to
be a high standard against which to compare. Even human
tutors are not always more effective a mini-lesson control,
although human tutors are significantly more effective than
a mini-lesson control condition with students who have no
prior background with the subject material [21].

An evaluation of Andes-Atlas, a tutorial dialogue system
for the domain of physics, which leads student through
directed lines of reasoning, implemented by means of
Knowledge Construction Dialogues (KCDs), demonstrated
a significant advantage of Andes-Atlas without a significant
increase in time-on-task, compared to an otherwise
equivalent version of Andes which provided hints rather
than dialogues [18]. The results of this study are however
somewhat difficult to interpret due to a very high dropout
rate (57%).[VA1] While Atlas’ KCDs were shown to be
more effective than hints in this evaluation of Andes-Atlas,

in a different experiment they were not more effective than
mini-lessons of the same kind as were used in the
evaluation of WHY-AutoTutor, mentioned above [20,23].

A third tutorial dialogue system, the Geometry Explanation
Tutor, which is still under development, was evaluated in
two classroom studies. As students solve geometry
problems, the system helps them through a restricted form
of dialogue to state general explanations for their problem-
solving steps. In the two evaluation studies, this system was
compared against a version that was the same in all
respects, except that students explained their steps by
means of a simple menu instead of in a dialogue. In the first
study, the students who explained in a dialogue had higher
learning gains than students who explained by means of a
menu [1]. However, the detailed pattern of results was
difficult to interpret, in terms of the underlying knowledge
that the students may have acquired, rendering the results
somewhat inconclusive. In the second classroom study,
carried out in a different school with better-prepared
students, there was little difference between the two
conditions [2].). The inconclusive result is likely to be due
the fact that the students already had significant geometry
knowledge.

Thus, tremendous progress has been made in the tutorial
dialogue community in the past few years. Tutorial
dialogue systems have been shown to lead to improved
learning, compared to such as controls as textbook reading.
At the same time, we know of no studies that have
demonstrated conclusively that tutorial dialogue systems
provide more effective or efficient instruction than some of
the alternatives to which they have been compared,
including an otherwise equivalent targeted “mini-lesson”
based approach [11,20,23] and a “2nd-generation”
intelligent tutoring system with simple support for self-
explanation [1]. However, the situation sketched here does
present a challenge. How does one develop a tutorial
dialogue system that is more effective than the ones
developed so far, especially where many of the systems
built so far have a solid basis in empirical studies of human
tutors and/or results in the cognitive science literature?

CYCLETALK
Our current research focuses on the hypothesis that
negotiation-style dialogue will lead to better learning
because (1) it motivates students to explain more in order to
justify their thinking, and (2) it supports the students’ meta-
cognitive ability to ask themselves the right questions about
the choices they make. Furthermore, we hypothesize that a
more effective tutorial dialogue system would move beyond
engaging students in understanding science into actually
doing science and using science. In order to test that
hypothesis, we are developing a novel style of tutorial
dialogue system that pushes beyond the limitations of
current tutorial dialogue technology by engaging students in
negotiation dialogues in a design context. Specifically, we
propose to develop CycleTalk, a tutorial dialogue system

35

that builds on an existing “articulate simulator” in the field
of thermodynamics. Building upon this foundation, the
CycleTalk tutorial dialogue system will engage students in
dialogues in which they negotiate the pros and cons of
alternative designs for thermodynamic cycles, such as those
that form the foundation for steam power plants or
refrigerators.

Thus, CycleTalk will support students in understanding
science by engaging them in discussions about how
principles of thermodynamics play out in simulations of
thermodynamic cycles. It will support them in actually
doing science, by encouraging students to construct and
defend predictions about how changes to example cycles
would affect the cycle’s efficiency or effectiveness and then
testing those predictions using the simulator. Furthermore,
it will engage students in using science by asking them to
apply their understanding of thermodynamics to make and
defend design decisions.

Design skills are essential and yet are difficult for students
to acquire. Beyond understanding thermodynamics
concepts and how and why individual factors can affect the
efficiency of a cycle, design requires students to weigh and
balance alternative choices in order to accomplish a
particular purpose. Furthermore, design requires not only a
theoretical understanding of the underlying science
concepts but also a practical knowledge of how these
concepts are manifest in the real world under non-ideal
circumstances. Because of the intense demands that design
places on students, we hypothesize that design problems
will provide the ultimate environment in which students
will be stimulated to construct knowledge actively for
themselves.

For example, for each of the thermodynamic cycles that
students explore with CycleTalk, the system will engage
them in a discussion of the pros and cons of one or more
alternative designs, such as changing the temperature or
pressure within (certain) components of the cycle, adding
components (e.g., a condensor, feedwater heater, re-heater),
or changing the working fluid. Typically, the effect of such
changes on thermodynamic efficiency will be considered,
but the effect on other desirable characteristics (such as low
cost of building the cycle or maintaining it) may be
considered as well. As discussed, CycleTalk will employ a
negotiation style of dialogue to encourage exploration of
the space of alternative design choices.

Tutor: How do you think you could improve the efficiency
of a simple Rankine cycle?

Student: Wouldn’t it be possible to introduce a second
turbine in series with the first one since the steam leaving
the original turbine is still hotter than what enters the
Boiler?

Tutor: A second turbine would improve the efficiency, but
what about the possibility of some steam condensing on the

blades of the second turbine as it continues to cool? Can
you see a problem with this?

Student: No, I am not sure what you are getting at.

Tutor: What happens when steel continues to come into
contact with water?

Student: it could rust?

Tutor: very good. Condensed water on the blades of the
turbine would damage the blades. Can you think of a way
to avoid this?

Student: A reheating unit could heat up the steam coming
out of the first turbine so that it is not likely to condense
onto the blades of the second turbine.

Tutor: Good idea! That solves the condensation problem,
but what is the downside?

Student: Reheating requires an additional input of energy.

Tutor: True, so we should test the extent to which we
would come out ahead of the game by doing this. But
before we do that, can you think of any other
disadvantages? Higher efficiency saves money, but does
this come for free?

Student: No, the reheating unit costs money - between that
and the additional turbine - not to mention additional
maintenance. I wonder if it would be worth it in the long
run...

This example illustrates that in CycleTalk, the point of the
negotiation is to teach students to ask themselves the right
questions, considering general issues such as efficiency,
maintainability, durability, cost of parts, time, etc.

ACKNOWLEDGMENTS
This project is supported by ONR Cognitive and Neural
Sciences Division , Grant number N000140410107. The
authors would like to thank Ken Forbus for providing the
CyclePad simulator to build on as a foundation for this
work.

REFERENCES
1. Aleven V., Koedinger, K. R., & Popescu, O. (2003). A

Tutorial Dialogue System to Support Self-Explanation:
Evaluation and Open Questions. Proceedings of the 11th
International Conference on Artificial Intelligence in
Education, AI-ED 2003.

2. Aleven, V., Popescu, O., Ogan, A., & Koedinger, K. R
(2003). A Formative Classroom Evaluation of a Tutorial
Dialogue System that Supports Self-Explanation.
Supplemental Proceedings of the 11th International
Conference on Artificial Intelligence in Education, AI-
ED 2003. Volume VI.

3. Ashley, K. D., Desai, R., & Levine, J. M. (2002).
Teaching Case-Based Argumentation Concepts Using

36

Dialectic Arguments vs. Didactic Explanations. In S. A.
Cerri, G. Gouardères, & F. Paraguaçu (Eds.),
Proceedings of Sixth International Conference on
Intelligent Tutoring Systems, ITS 2002, 585-595. Berlin:
Springer Verlag.

4. Brown, A. L., & Kane, M. J. (1988). Preschool children
can learn to transfer: Learning to learn and learning
from example. Cognitive Psychology, 20, 493-523.

5. Chi., M. T. H., Siler, S., Jeong, H., Yamauchi, T.,
Hausmann, R. (2001). Learning from human tutoring.
Cognitive Science, 25(4), 471-533.

6. Chi, M. T. H. (2000). Self-Explaining Expository Texts:
The Dual Processes of Generating Inferences and
Repairing Mental Models. In R. Glaser (Ed.), Advances
in Instructional Psychology, (pp. 161-237). Mahwah,
NJ: Erlbaum.

7. Chi, M. T. H., de Leeuw, N., Chiu, M. H., LaVancher,
C., (1994). Eliciting self-explanations improves
understanding. Cognitive Science, 18:3, 439-477.

8. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P.,
and Glaser, R., (1989). Self-explanations: How students
study and use examples in learning to solve problems.
Cognitive Science, 13:2, 145-182.

9. Core, M. G., Moore, J. D., Zinn, C., (2003) The Role of
Initiative in Tutorial Dialogue, Proceedings of the 10th
Conference of the European Chapter of the Association
for Computational Linguistics, Budapest, Hungary.

10. Graesser, A. C., Bowers, C. A., Hacker, D.J., & Person,
N. K. (1998). An anatomy of naturalistic tutoring. In K.
Hogan & M. Pressley (Eds.), Scaffolding of instruction.
Brookline Books.

11. Graesser, A., VanLehn, K., the TRG, & the NLT (2002).
Why2 Report: Evaluation of Why/Atlas,
Why/AutoTutor, and Accomplished Human Tutors on
Learning Gains for Qualitative Physics Problems and
Explanations, LRDC Tech Report, University of
Pittsburgh.

12. Graesser, A. C., Jackson, G. T., Mathews, E. C.,
Mitchell, H. H., Olney, A., Ventura, M., Chipman, P.,
Franceschetti, D., Hu, X., Louwerse, M. M., Person, N.
K., and the Tutoring Research Group, (2003).
Why/AutoTutor: A Test of Learning Gains from a
Physics Tutor with Natural Language Dialog.
Proceedings of the Cognitive Science Society.

13. Heffernan, N. T., & Koedinger, K. R. (2002) An
intelligent tutoring system incorporating a model of an
experienced human tutor. In S. A. Cerri, G. Gouardères,
& F. Paraguaçu (Eds.), Proceedings of the Sixth
International Conference on Intelligent Tutoring
Systems, ITS 2002 (pp. 596-607). Berlin: Springer
Verlag.

14. Lovett, M. C. (1992). Learning by Problem Solving
versus by Examples: The Benefits of Generating and

Receiving Information. In Proceedings of the
Fourteenth Annual Meeting of the Cognitive Science
Society (pp. 956-961). Hillsdale, NJ: Erlbaum.

15. Person, N., Bautista, L., Graesser, A., Mathews, E., &
The Tutoring Research Group (2001). In J. D. Moore, C.
L. Redfield, & W. L. Johnson (Eds.), Artificial
Intelligence in Education: AI-ED in the Wired and
Wireless Future, Proceedings of AI-ED 2001 (pp. 286-
293). Amsterdam, IOS Press.

16. Pressley, M., Wood, E., Woloshyn, V. E., Martin, V.,
King, A., Menke, D. (1992). Encouraging mindful use
of prior knowledge: Attempting to construct explanatory
answers facilitates learning. Educational Psychologist,
27, 91-109.

17. Renkl, A. (2002). Learning from worked-out examples:
Instructional explanations supplement self-explanations.
Learning & Instruction, 12, 529-556.

18. Rosé, C. P., Jordan, P., Ringenberg, M., Siler, S.,
VanLehn, K., & Weinstein, A. (2001a). Interactive
Conceptual Tutoring in Atlas-Andes, In J. D. Moore, C.
L. Redfield, & W. L. Johnson (Eds.), Artificial
Intelligence in Education: AI-ED in the Wired and
Wireless Future, Proceedings of AI-ED 2001 (pp. 256-
266). Amsterdam, IOS Press.

19. Rosé, C. P., Moore, J. D., VanLehn, K., Allbritton, D.,
(2001b). A Comparative Evaluation of Socratic versus
Didactic Tutoring, Proceedings of the Cognitive
Sciences Society.

20. Rosé, C. P., Bhembe, D., Siler, S., Srivastava, R., &
VanLehn, K. (2003a). Exploring the Effectiveness of
Knowledge Construction Dialogues, Proceedings of the
11th International Conference on Artificial Intelligence
in Education, AI-ED 2003.

21. Rosé, C. P., VanLehn, K., & the Natural Language
Tutoring Group (2003b). Is Human Tutoring Always
More Effective Than Reading: Implications for Tutorial
Dialogue Systems, Proceedings of the AIED 2003
Workshop on Tutorial Dialogue Systems: With a View
Towards the Classroom.

22. Rosé, C. P., Bhembe, D., Siler, S., Srivastava, R.,
VanLehn, K. (2003d). The Role of Why Questions in
Effective Human Tutoring, Proceedings of the 11th
International Conference on Artificial Intelligence in
Education, AI-ED 2003.

23. Siler, S., Rosé, C. P., Frost, T., VanLehn, K. &
Koehler, P. (2002). Evaluating Knowledge Construction
Dialogues (KCDs) versus minilessons within Andes2
and alone, ITS Workshop on Empirical Methods for
Tutorial Dialogue Systems, San Sebastian, Spain.

24. Stevens, A. L., Collins, A., Goldin, S. E., (1979)
Misconceptions in Student's Understanding,
International Journal of Man-Machine Studies, 11, 145-
156.

37

Designing for, with, and by Reflective Practitioners

Finn Kensing
The IT University of Copenhagen

kensing@itu.dk

Donald Schön’s thinking has influenced my research, teaching, and consulting since I
first met him now more than twenty years ago. I was then a young researcher having
just finished reading “The Reflective Practitioner”. I traveled to Oslo to interview him
during his visit there. He refused to let me interview him, but suggested instead to
conduct an experiment through which I would learn about his approach. He arranged
for me to interview three of his hosts about their ideas for new computer support to
run their institution. He recorded the interview and stopped four times to conduct his
now well known debriefing sessions.

It was the strongest learning experienced I ever had. He helped me become aware of
the assumptions and pre-constructed figures of thought that guided my interviewing
and thus my evolving local theory of the institution and the three people’s perception
of its computer needs. Ten years later we had him over to conduct a PhD course based
on his thinking and the responses we got from many of the participants were as
enthusiastic as my own.

My teaching and especially my supervision of projects owe much to Schön’s line of
thinking. Paying attention to the evolving categories and local theories developed by
the students and assisting them in revealing and making active use of these is indeed a
powerful teaching device.

Further, the idea of organizing activities through which practitioners are prompted to
reflect on their own and others behavior as well as on their own and others conceptual
constructs were instrumental in my coming up with the Prompted Reflection
technique for understanding complex work (Kensing, 1998).

Last, but not least, when designing and disseminating the MUST method – a method
for professional IT design (Kensing, Simonsen and Bødker, 1998a; Bødker, Kensing
and Simonsen, 2004) – a Schönian approach was very helpful in many ways. When
working as designers in more or less participatory projects we were designing for and
with reflective practitioners (Kensing, Simonsen, and Bødker, 1998b; Bødker and
Kensing, 1994; Simonsen and Kensing, 1997). When engaged in coaching IT
designers using our method we were dealing with design by reflective practitioners
(Kensing, 1999; Bødker, Kensing, and Simonsen, 2002).

38

Currently I am engaged in setting up a laboratory for the study and development of
innovative design competence at the IT University of Copenhagen. The lab will be a
70 m2 room equipped with video and a repertoire of gradually evolving tangible
design materials. We plan to conduct the first session in the lab when we move to our
new building May 2004.

Bødker, K. and F. Kensing (1994): Design in an Organizational Context - an

Experiment. In Scandinavian Journal of Information Systems, vol. 6, no 1, 1994.
Bødker, K., F. Kensing and J. Simonsen (2002): Changing Work Practices in Design.

In Dittrich, Y. et al.: Social Thinking - Software Practice. MIT Press, 2002.
Bødker, K., F. Kensing and J. Simonsen (2004): Participatory IT Design. Designing

for Business and Workplace Realities. MIT Press 2004.
Kensing, F. (1998): Prompted Reflections - a technique for understanding complex

work. In ACM interactions, vol. 5, no. 1, 1998.
Kensing, F., J. Simonsen and K. Bødker (1998): Participatory Design at a Radio

Station. In Computer Supported Cooperative Work - The Journal of Collaborative
Computing, vol. 7, no 3-4, 1998.

Kensing, F., J. Simonsen and K. Bødker (1998): MUST - a Method for Participatory
Design. In Human-Computer Interaction, vol. 13, no 2, 1998.

Kensing, F (1999): Method Design and Dissemination. In J. Pries-Heje et al (eds):
Proceedings of The Seventh European Conference on Information Systems,
Copenhagen, Denmark, 1999.

Simonsen, J. and F. Kensing (1997): Using Ethnography in Contextual Design. In
Communications of the ACM, vol. 40, no. 7, July 1997.

39

 1

The Reflective Information Systems Practitioner Approach as a
Research and Learning Expedient

A Position Paper by

Ari Heiskanen, University of Oulu
(Ari.Heiskanen@Oulu.Fi)

In this position paper the author relates his experiences of combining practical information systems
(IS) development work and scholarly research to other research and learning approaches. The
overall framework, reflective information systems practice (RISP), is a development of Donald
Schön’s (1983, 1987) notion of the reflective practitioner. The specific research problems are drawn
from the development history of administrative systems of Helsinki University from the early
1980’s up to the present. The idea of RISP as a research approach grew gradually during the
dissertation work of the author (Heiskanen 1994, 1995). The research began in 1987 as a positivistic
inquiry to the implementation process of a new student record system of the University. In the early
1980’s the author was a senior analyst developing the software and later a project leader for the
decentralisation of the system functions to the departments of the University. During the process he
also became the Chief Information Systems Officer of the University. Gradually during the late
1980’s and the early 1990’s the positivistic approach was replaced with a more hermeneutic or
phenomenological view. Later the scope of research was enlarged to other fields, like in personnel
and economic administration (Heiskanen and Assinen 2003; Heiskanen and Newman 1998;
Heiskanen, Newman and Similä 2000), and cooperation between several universities when
developing a common student record system (Heiskanen, Newman and Saarinen 1998).

Reflection is the practice of periodically stepping back to ponder on the actions of oneself and others in
one’s immediate environment (Raelin 2001; Seibert 1995). The object of reflection may be in three
areas. First, content reflection is about how a practical problem was solved. Second, process reflection
examines the procedures and sequence of the events. Third, premise reflection questions the
presuppositions attending to the problem. The timing of reflection may be anticipatory,
contemporaneous, or retrospective. Originally, Schön (1983, p. 163) characterised the work of design
as a reflective conversation with the situation where the practitioner functions as an agent and an
experimenter who is at the same time also a target or part of this experiment. He coined the term
“reflection-in-action” to describe this.

Our RISP aims at instrumental organisational learning: how to successfully develop information
systems for the University community. The main audience for learning are the managers, project
leaders, and systems analysts of the University. Organisational learning involves a process that
enables the acquisition of, access to, and revision of organisational memory, thereby providing
direction to organisational action (Robey, Boudreau and Rose 2000).

The learning in RISP typically consists of consecutive cycles. Each cycle begins with a reflective
comprehension of the situation that demands the action of the practitioner. Actions taken produce
results that we call in the Schönian (Schön 1983) style organisational back-talk, indicating that the
results of the action may be different from the planned ones. Back-talk leads to reflection, which, in
turn, is a predecessor of new actions. We have illustrated our framing by presenting the histories of
University systems development in a graphical format (Heiskanen 1995, Heiskanen and Assinen
2003; see an example in Figure 1). Our interpretation of the history is based on the interplay
between issues and events, problems, and action strategies. An issue or an event describes an

40

occurrence that needs a reaction. The problem defines our comprehension of the situation. The
strategy defines the way the problematic situation is solved.

Many large information systems evolve through generations. The time taken may be several
decades (e.g. Lasher et. al 1991; Short and Venkatraman 1992; Mason et al. 1997). In these long
processes the learning cycles are also long. In our case, the development of the student records
system contained four learning cycles during the years 1981-1993 (Heiskanen 1995), and the data
warehouse development process 1990 – 2002 contained third learning cycles (Heiskanen and
Assinen 2003).

As a research and learning expedient, RISP can be related to and compared with several approaches.
First, as the practitioner stays within her organisation for an extended period of time, she is like an
ethnographer in this respect (Heiskanen and Newman 1997). Second, as the practitioner is supposed
to act in a meaningful way, she is like an action researcher (Heiskanen and Newman, forthcoming; cf.
also Coghlan and Brannick 2002). Third, one aim of the reflective practitioner is organisational and
individual learning; therefore this approach can meaningfully be compared (Heiskanen and Assinen
2003) to action learning (e.g. Revans 1980) and action science (Argyris et. al 1987). Fourth, as the
reflective practitioner is an actor in the development history of the ISs of her organisation, she in a
way is also a historian (cf. Mason et. al 1997). Table 1 contains a brief presentation of how to
position these approaches with each other.

Research approach Key idea
RISP A versatile approach for anticipatory, contemporary or retrospective

reflections and interpretations over work-life situations by a (single)
practitioner, targeted for individual and organisational learning.

Ethnography A participatory but typically non-obstructive way of research in which the
researcher is long and deeply involved with the daily work life of the
organisation under investigation.

Action research A theoretically informed intervention approach, typically led by a researcher
who has a client in the target organisation.

Action learning A personnel development approach, used in group settings, that seeks to
apply and generate theory from real work situations.

Action science An intervention approach to help participants increase their effectiveness in
social situations through heightened awareness of the assumptions behind
their actions and interactions.

IS historian An outsider researcher aims to tell a convincing story, often for learning
purposes, based on documents and other sources describing the flow of
events.

Table 1. Positioning RISP.

41

 3

Time Event or Problem Action strategy
issue

1990 No management UHMIS-project

information system

 How to define UHMIS Indicator
1991 New management functionality? calculation
 procedures introduced
 by the Finnish State

1992 HURBS specification project

 No clear action strategy Failure of the UHMIS
 for continuing UHMIS project

1993 Five IS development streams:
 Departmental accounts reporting
 Payroll prognoses
 Personnel cost reporting
 Budgeting system development
 Data warehouse prototyping
 Poor service level
 of reporting systems

1996 Memorandum by the internal
 auditor that suggests to

develop an integrated
 set of information systems

1998 Data warehouse development project

 User management involvement Accounting part of the data warehouse

perceived too low and attitude is developed by EDP personnel
indifferent towards data warehouse without deep participation of user
by the EDP personnel representatives

2000 Performance problems in Active user participation from
 personnel and payroll personnel department in

 systems and ongoing data warehouse development
 poor service level

in reporting

2002 Data warehouse eventually
 successful

Figure 1. The Learning cycles in reporting systems development (Heiskanen and Assinen 2003;
UHMIS is University of Helsinki Management IS, HURBS is a Reporting and Budgeting System.)

First learning cycle 1990-1993: No immediate learning.
In hindsight it seems that the UHMIS project only faded
away but it should have been closed openly. Scars were
left in the relationships of organisational actors. A rather
cautious reporting system development strategy ensued.

Second learning cycle 1993-1998: It is
possible to proceed with provisional systems
and wait the technology (and organisation)
mature for more ambitious systems.

Third learning cycle 1998-2002: Substance area
expertise can be sought and obtained from various
sources and because of indirect reasons.

42

REFERENCES

Argyris, C., Putnam, R. and Smith, D. (1987). Action Science. San Francisco: Jossey Bass.
Coghlan, D. and Brannick T. (2002) Doing Action Research in Your Own Organization. London:

Sage Publications.
Heiskanen, A. (1994). Issues and Factors Affecting the Success and Failure of a Student Record

System Development Process, a Longitudinal Investigation Base on Reflection-in-Action.
Doctoral Dissertation at the University of Tampere. Helsinki: the University of Helsinki.

Heiskanen, A. (1995). "Reflecting over a Practice, Framing Issues for Scholar Understanding."
Information Technology and People, Vol. 8, pp. 3-18.

Heiskanen, A., Assinen, P. (2003). ”Learning Cycles, Organisational Back Talk, and the Persistence
of Theories in Use: Lessons of Information Systems Development in a University
Administration Context.” Knowledge and Process Management, Vol. 10, No 3, pp. 183-193.

Heiskanen, A. and Newman, M. (1997). ”Bridging the Gap Between Information Systems Research
and Practice: The Reflective Practitioner as a Researcher”. Proceedings of the Eighteenth
International Conference on Information Systems, Kumar, K. & DeGross, J.I. (Eds.),
Atlanta, Georgia, December 15-17, pp. 121 - 131.

Heiskanen, A. and Newman M. (1998). ”The Dynamics of IS Procurement, Case Study of a
Budgeting and Financial Reporting System”. Proceedings of the 6th European Conference
on Information Systems, Baets, W. R. J. (Ed.), Aix-En-Provence, 3-6.6.1998, pp. 839-852.

Heiskanen, A. and Newman, M. (forthcoming). “The Reflective Information Systems Practitioner
as a Researcher”

Heiskanen, A., Newman, M. and Saarinen, V. (1998). ”Innovations in Fiefdoms: Developing a
Common Student Record System in Six Finnish Universities.” Proceedings of the IFIP WG
8.2 and 8.6 Joint Working Conference on Information Systems, Larsen, T. J., Levine, L. and
DeGross, J. I. (Eds.), pp. 455- 469.

Heiskanen, A., Newman, M. and Similä, J. (2000).”The Social Dynamics of Software
Development”. Accounting, Management and Information Technologies, Vol. 10, No 1, pp.
1-32.

Lasher, D. R., Ives, B., and Jarvenpaa, S. L. (1991). “USAA-IBM Partnerships in Information
Technology: Managing the Image Project.” MIS Quarterly, Vol. 15, No. 4, pp. 551-565.

Mason, R. O., McKenney, J. L., and Copeland, D. G. (1997). “Developing an Historical Tradition in
MIS Research.” MIS Quarterly, September, pp. 257-278.

Raelin, J. A. (2001). “Public Reflection as the Basis of Learning”, Management Learning, Vol. 32,
No. 1, pp. 11-30.

Revans R. (1980). Action Learning. London: Blond & Briggs.
Robey D, Boudreau M-L, Rose G M. (2000). Information technology and organizational learning: a

review and assessment of research. Accounting, Management and Information Technologies,
Vol. 10, No 2, pp. 125-155.

Schön, D. (1983). The Reflective Practitioner, How Professionals Think in Action. New York: Basic
Books.

Schön, D. (1987). Educating the Reflective Practitioner, Toward a New Design for Teaching and
Learning in the Professions, San Francisco: Jossey-Bass.

Seibert, K. W. (1995). “Reflection-in-Action: Tools for Cultivating On-the-Job learning Conditions.”
Organizational Dynamics, pp. 54-65.

Short, J. E. and Venkatraman, N. (1992). “Beyond Business Process Redesign: Redefining Baxter’s
Business Network.” Sloan Management Review, pp. 7-21.

43

 4

REFERENCES

Argyris, C., Putnam, R. and Smith, D. (1987). Action Science. San Francisco: Jossey Bass.
Coghlan, D. and Brannick T. (2002) Doing Action Research in Your Own Organization. London:

Sage Publications.
Heiskanen, A. (1994). Issues and Factors Affecting the Success and Failure of a Student Record

System Development Process, a Longitudinal Investigation Base on Reflection-in-Action.
Doctoral Dissertation at the University of Tampere. Helsinki: the University of Helsinki.

Heiskanen, A. (1995). "Reflecting over a Practice, Framing Issues for Scholar Understanding."
Information Technology and People, Vol. 8, pp. 3-18.

Heiskanen, A., Assinen, P. (2003). ”Learning Cycles, Organisational Back Talk, and the Persistence
of Theories in Use: Lessons of Information Systems Development in a University
Administration Context.” Knowledge and Process Management, Vol. 10, No 3, pp. 183-193.

Heiskanen, A. and Newman, M. (1997). ”Bridging the Gap Between Information Systems Research
and Practice: The Reflective Practitioner as a Researcher”. Proceedings of the Eighteenth
International Conference on Information Systems, Kumar, K. & DeGross, J.I. (Eds.),
Atlanta, Georgia, December 15-17, pp. 121 - 131.

Heiskanen, A. and Newman M. (1998). ”The Dynamics of IS Procurement, Case Study of a
Budgeting and Financial Reporting System”. Proceedings of the 6th European Conference
on Information Systems, Baets, W. R. J. (Ed.), Aix-En-Provence, 3-6.6.1998, pp. 839-852.

Heiskanen, A. and Newman, M. (forthcoming). “The Reflective Information Systems Practitioner
as a Researcher”

Heiskanen, A., Newman, M. and Saarinen, V. (1998). ”Innovations in Fiefdoms: Developing a
Common Student Record System in Six Finnish Universities.” Proceedings of the IFIP WG
8.2 and 8.6 Joint Working Conference on Information Systems, Larsen, T. J., Levine, L. and
DeGross, J. I. (Eds.), pp. 455- 469.

Heiskanen, A., Newman, M. and Similä, J. (2000).”The Social Dynamics of Software
Development”. Accounting, Management and Information Technologies, Vol. 10, No 1, pp.
1-32.

Lasher, D. R., Ives, B., and Jarvenpaa, S. L. (1991). “USAA-IBM Partnerships in Information
Technology: Managing the Image Project.” MIS Quarterly, Vol. 15, No. 4, pp. 551-565.

Mason, R. O., McKenney, J. L., and Copeland, D. G. (1997). “Developing an Historical Tradition in
MIS Research.” MIS Quarterly, September, pp. 257-278.

Raelin, J. A. (2001). “Public Reflection as the Basis of Learning”, Management Learning, Vol. 32,
No. 1, pp. 11-30.

Revans R. (1980). Action Learning. London: Blond & Briggs.
Robey D, Boudreau M-L, Rose G M. (2000). Information technology and organizational learning: a

review and assessment of research. Accounting, Management and Information Technologies,
Vol. 10, No 2, pp. 125-155.

Schön, D. (1983). The Reflective Practitioner, How Professionals Think in Action. New York: Basic
Books.

Schön, D. (1987). Educating the Reflective Practitioner, Toward a New Design for Teaching and
Learning in the Professions, San Francisco: Jossey-Bass.

Seibert, K. W. (1995). “Reflection-in-Action: Tools for Cultivating On-the-Job learning Conditions.”
Organizational Dynamics, pp. 54-65.

Short, J. E. and Venkatraman, N. (1992). “Beyond Business Process Redesign: Redefining Baxter’s
Business Network.” Sloan Management Review, pp. 7-21.

44

Session: Integrating Problem Framing and Problem Solving

45

46

Corson Associates

The Non-denominational Design Studio : Lessons for the Proficiency of Organizations
CHI Workshop Submission – 1/25/04

Design : the intentional transformation of an existing situation into a preferred situation.

From this definition of design, we (as individuals and as organizations) understand most of
our daily life activities -- both professional and personal -- to be related to design. If we
care about the quality of our life, we desire these daily efforts -- our intentional
transformation of the situations we encounter -- to be as effective as possible. We want to
accomplish the most possible with the resources available. When this involves familiar
situations, we are comfortable. We find familiar problems and we solve them by applying
familiar tools. If we are accomplished and creative, our solutions are very good.

The real world, however, tends to present itself not as familiar well-formed problems, but
rather as messy, indeterminate situations. If we respond to these invariably unique
situations by trying to see in them only conventionally familiar problems, our efforts will
prove either lacking or completely useless. We all have found ourselves in this position. We
have gone back and started over, we have re-doubled our efforts, we have checked our
math again and again -- and the answer is still wrong. Regardless of how creative we are
as problem solvers, we fail. This is inevitable. In our haste to find a familiar answer, we
have “named” -- and are trying to solve -- the wrong problem.

What we learn from such failures -- if we desire to learn from them -- is that true creativity
is based not in the solving of the problem, but in the naming of the problem we will apply
ourselves to solving. The recognition of this distinction leaves most of us uneasy. Although
we have excelled at solving known problems, we have had little experience with -- and even
less encouragement for -- reflecting on whether we are solving the “right” problem. While
we can see that to be the best designers possible we must develop this ability, we have no
solid idea how to proceed to do so.

We need a new set of principles and perspectives to guide us in exploring this larger
context - this realm of messy, indeterminate situations. We need a new set of principles and
perspectives that are “non-denominational” -- that are broader than those of any specific
discipline, that are owned by no one discipline and which can belong to and be understood
and mastered by each and every one of us.

 I have worked for many years in a wide range of cross-disciplinary design collaborations -- in the built
environment, in curriculum development, in public policy, in the delivery of services and in the
augmentation of organizational capabilities. These collaborations have always been conducted with
intelligent, enthusiastic people who are eager to share their expertise. In nearly every experience, the
dynamic of the working process has tended toward quickly deconstructing the "messy, indeterminate

47

situation" into comfortably known problems. These processes are driven by the participants’s
eagerness to contribute their expertise. They begin, in effect, with the solution and then edit the
situation to yield problems that fit their tools and techniques. This is not a path to systemic
effectiveness, nor is it a path to the elegant expenditure of resources.

While I hold graduate degrees in both engineering sciences and architecture, my most important role
in these collaborations has invariably been that of generalist: translator, facilitator and integrator. In
this role, I have struggled to find a comprehensive and effective way to check this headlong rush to the
“known” and redirect the collective enthusiasm and ability into a conscious and fruitful exploration of
the “unknown.”

I have become intrigued with how organizations -- both permanent and temporary -- sense and explore
the messy, indeterminate situations in which they exist and how they extract from those situations the
problems they choose to confront.

My work has become the development of a broad and integrated range of perspectives and principles
that can be understood to underlie and precede traditional higher-order discipline-based design. These
perspectives and principles are necessarily “non-denominational” -- that is, they are not restricted to or
claimed by, nor solely comprehensible to any specific group or discipline. For that reason, I call them
and the practice derived from them “non-denominational design.” It is a practice accessible to each
and every one of us and to each and every organization in which we participate.

I have found non-denominational design to be an effective foundation for robust collaborative
practice. Its strength and effectiveness are supported from complementary sources: one internal:
reflective practice, and the other external: Universal Design. The former, through reflection-in-action,
fosters the continuous broadening of the designers’s appreciation of both the situation with which they
are struggling and the nature of their process for engaging in that struggle. The latter -- also a process
of continuous awareness and interaction -- brings to the designers’s assistance the interests,
perspectives and experiences of the world external to their own.

I work with organizations to develop their non-denominational design capabilities. This effort begins
with the creation of an in-house “non-denominational design studio” -- a space that enables collective
exploration of systemic relationships and change. This design studio exists simultaneously as a
physical, a virtual, an intellectual and a cultural space. It is a shared set of perspectives on the critical
importance of designing robust design processes and is a shared awareness of behaviors that are
congruent and incongruent with the effective pursuit of good design. Most importantly, and most
problematically for its initiation, it is a space free of the roles and responsibilities and the hierarchies
and accountabilities of the day-to-day “implementation organization.” It is a set of activities that
function laterally across the traditionally vertical process of conventional organizations. Through its
purpose being “doing the right thing,” the non-denominational design studio complements and
significantly strengthens the conventional process-- whose primary purpose is “doing the thing right.”

48

From this foundation, these organizations are able to undertake productive –- and otherwise
unimaginable -- explorations of critical, but previously undetected or consciously avoided, “messy,
indeterminate situations.”

I have explored cross-disciplinary collaborative design, based in these practices of the non-
denominational design studio, with undergraduate and graduate students from many disciplines,
NASA personnel, and public and corporate organizations and their leaders. Most have found the
approach to be highly appropriate, highly engaging and highly beneficial.

49

Application of Collaborative
The Case of the New

Mark Bergman
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3425 USA

mbergman@uci.edu

HETEROGENEOUS SYSTEM DESIGN PROBLEM
Most organizations do not develop systems from scratch.
Instead, to deal with economic constraints, organization
demands, and customer needs, they often: a) identify
possible problems that represent customer demand [10, 16],
b) consider which possible technologies are useful to
address these problems, e.g. commercial off-the-shelf
software (COTS) [8] or open source software [12], c) select
which problems to address, and d) implement a project to
solve these problems. The initial choices for problem
selection, in turn, involve a process of balancing and
negotiating requirements from multiple sources [11, 13, 14,
17].

In some views, the hardest part of project design is
identifying the problem to be addressed [9, 10]. As March
(1994) [16] describes, there is rarely only one clear problem
to choose to address. Indeed, problems, and their respective
technology choices, co-exist in competition with one
another. A problem-technology choice can be viewed as a
prospective project for possible funding by an
organization’s principals. Principals are those who have the
power and resources to authorize and fund a project [4].
Each problem-technology set represents a different (yet
sometimes overlapping) group of stakeholders. Each
stakeholder group has its own set of requirements that
underlie their project choice. This set may overlap with
other stakeholder groups’ sets, but usually not with all of
them. Each project represents one or more choices of
technologies. Based on the requirements of all of the
stakeholders, there are hundreds of different project
possibilities. How does an organization choose which
project to do?

Bergman and Mark (2002) [5] conducted an empirical field
study to examine in detail the issues faced by practitioners
in forming and stabilizing requirements during project
selection and the procedures they created to overcome
them. In this paper, we examine how the practitioners
applied collaborative conflict as part of the process by
which they selected system projects.

THE NEW MILLENNIUM PROGRAM (NMP)
The New Millennium Program (NMP) was started in 1994.
It is located within the Jet Propulsion Laboratory (JPL). The

5

 Conflict in System Design:
 Millennium Program

Gloria Mark
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3425 USA

gmark@uci.edu

Jet Propulsion Laboratory has been in existence for over 40
years. It had been involved in the design and development
of technologies used in nearly all of the NASA (National
Aeronautics and Space Administration) outer space and
Earth based missions during that time, including landing on
the moon and the Mars rover.

The main mission of the NMP is to perform space flight
validation of new technologies [15]. It was created to
address a problem of the lack of new technology utilization
in space science missions. The primary reason science
missions need new technologies is to reduce mission cost,
allow a measurement, or enable a new function or
capability. However, new technology is considered too
risky for space use, and hence off-limits to science
missions. By performing space flight validation on new
technologies, these technologies become available for use
in future space missions.

We studied the “NMP Formulation” process. This process
deals with how the NMP selects the technologies for space
flight validation. We found the formulation process to be in
fact a project selection process. There are thousands of
possible technologies that need space flight validation,
hundreds of which are considered important by NASA
directors and science mission technologists at any one time.
The technologies tend to cluster into sets of related
functionality, such as propulsion, communications, sensors
and control systems. Each new technology was viewed by
the NMP as a possible project choice. The NMP selection
process has been developed and evolved over the last nine
years to address this issue of project-technology choice.

COLLABORATIVE CONFLICT AS SYSTEM DESIGN
SENSEMAKING
The general results of the study are presented in a variety of
papers from Bergman and Mark [5-7] and Bergman and
Buehler [1-3]. In this discussion, we focus on how the NMP
applied reflective methodology during initial system design.

The NMP customers are called NASA theme technologists.
They represent different ongoing space programs, such as
studying the sun-earth connection, planets and other
heavenly bodies. They represent a variety of diverse
missions that want to use new technologies. Specifically
they want the new technologies for their capabilities and,

0

when possible, reduced costs. The missions they represent
and work on have very diverse needs. All of these needs
cannot be satisfied with a single or small set of
technologies. There are ongoing needs for hundreds of
different technologies. In addition, the relative needs of the
different theme technologists are organizationally equal.
Hence, there is no easy answer as to what technology to
choose. Indeed, the NMP found they could not apply
quantitative decision support methods due to the
complexity of the problem [1]. They had to create and
implement a repeatable method of selecting technologies
that all of the stakeholders would support or the NMP
program would fail.

The observed NMP selection process is quite complex. It is
performed in two distinct phases: Pre-phase-A and Phase A.
Pre-phase A focuses on determining what the NMP
customers want, what new technologies are being
developed and which of these technologies can address a
subset of the customer requirements. Phase A is used to
first gather external (to the NMP) technology and project
proposals, review and rate them, and then select which
proposals move on to implementation.

In both Pre-phase A and Phase A, we observed the
application of collaborative conflict as a key methodology
used in the selection process. We define collaborative
conflict as 1) isolating specific, reoccurring predictable
conflicts that occur during the selection process and 2)
letting those either most directly affected by the conflicts or
impartial to them engage the conflicts in a procedurally
bounded manner. It is the application of preplanned,
procedurally bounded, same-time conflict analyses in order
to determine hidden or “tacit” information about
technologies and their related project plans. We observed
this information if difficult to obtain because is tends to
represent the negatives (i.e. downsides) of a technology or
project proposal. This is the information proposers do not
include since it would very likely compromise their chance
of the proposal being accepted.

Applied Collaborative Conflict Analysis
The NMP broke down and isolated repeatably observed
conflicts in their processes. The main conflicts that needed
to be addressed in the NMP selection were: customer
demands as expressed through requirements; technology
selection during a) technology concept areas (TCA)
development b) external technology proposal review and
selection, and c) project review and selection; application of
the NMP filters to the technologies in a TCA; and authority
level (organizational, project, technical) disagreements over
which TCAs (and their technologies) to support.

In Pre-Phase A, the NMP focused first on the framing
technical issues: determining customer requirements and
finding available technologies. With this information, the
NMP technologists pulled formed viable system designs to
address common sets of requirements. They call the
resulting early system designs technology concept areas

(TCAs). At the end of Pre-phase A, the NMP selects which
TCAs are going to be supported for an open technologies
call.

Phase A begins with the technology call. It contains the
requirements of the various TCAs that are being funded for
the current NMP selection cycle. Any United States base
supplier of technology (industry, government, university)
can submit a technology proposal to the call. This is similar
to a call for papers to a conference. Phase A uses review
panels to rate and rank each proposal, first technical, and
then project proposals. It ends with a final project selection
and hence, selection of the technologies included in the
project.

We now discuss how the NMP applied collaborative
conflict in addressing their issues. We focus on there
specific applications of collaborative conflict: 1) theme
technologists and their requirements, 2) NMP technologists
and the NMP filters, and 3) the technology and project
proposal review panels.

Theme Technologists – The NMP technologists gave their
customers, i.e. the theme technologists, proposed TCAs to
examine. Each theme technologist was given a week to
review and initially rate each TCA. The ratings were based
on how well or poorly an individual TCA fit their perceived
needs. After that time, the theme technologists were
brought together in a meeting to discuss their ratings with
one another.

These meetings were procedurally bounded by time,
activity and outcome. The meetings were only one to two
hours long,. They met once a week until they finished the
task of considering all of the TCAs. They used a 1-3 rating
system (3 being highest). They added a “silver bullet” to a
specific TCA indicating each technologist’s highest
importance. They also stayed confined to the technologies
presented to them, although suggestions about other
technologies were allowed. Discussion was quick, detailed
and precise. The whole task never took more than 3
meetings.

During these meetings, the theme technologists learned
about each other’s ratings and enquired as to each rating’s
rationale. They made sense of each other’s positions and in
so doing, improved their own sense of their ratings. This is
seen by their working together to change ratings on various
TCAs based on newly discovered mutual interests or lack
thereof. The theme technologists used their a priori
positional conflicts over requirements and technologies to
discover more about each other positions and the
technologies themselves. They applied and clarified their
own (technical, economic and political) requirements as
they worked through the various different technologies. In
so doing, they addressed their own as well as the groups’
technical, economic and political positions, which are
represented in the final ratings. Furthermore, some of the
feedback from this process was used to modify the TCAs to
make them better fit the theme technologists’ needs.

51

NMP Technologists – Another application of collaborative
conflict was performed by the NMP technologists
themselves. Each NMP technologist is an engineering
expert within a specific domain. These domains include
sensors, propulsion, communications, software control
systems, and so forth. They oversee the technologies and
proposals that fit their area of expertise. Over the years,
they have learned to trust the expertise of the other
technologists when discussing technologies that are not in
their engineering domain.

The NMP has a set of “filters,” i.e. ongoing requirements
that are used to determine which technologies are
appropriate for space flight test validation [1]. The NMP
technologists apply these filters to each proposed
technology to determine whether it can be consider by the
NMP from selection. These filters bound the discussion
about the technologies, i.e. a determination about how well
each technology met or failed these filters.

These discussions occur in formal meetings or informal
gatherings (especially over lunch) of the NMP
technologists. A technologist presents his or her rationale to
the colleagues and then they intensely engage the issue. The
presenter describes how a technology they are considering
should be accepted by the NMP, often by comparing the
technology with similar technologies selected by NMP in
the past. If there is not a general quick consensus (which we
rarely observed happen), the other NMP technologists
would point out specific instances in which the technology
fails one or more filters. The most observed filters
discussed were a) did the technology have to be space, or
could it tested on earth, b) was the technology mature
enough in its development to merit consideration and c)
why this technology deserved consideration over other
competing technologies. These discussions can last for days
or weeks, especially on those technologies that may be
testable on earth.

By considering each TCA and its component technologies
against the NMP filters, the representing technologist must
reaffirm their views as to why this technology should be
tested. These discussions usually uncover new underlying
issues about a technology that was not originally
considered. These issues lend further insight to the
strengths and weaknesses of the TCA system designs.
Hence, the NMP filter discussions produced a better
understanding of the TCAs (and the technologies therein)
by the NMP technologists individually and as a whole. It
helped to produce NMP team consensus on which
technologies pass the filters as well as fostered better
system designs.

Review Panels – In Phase A, the NMP forms independent
review panels to rate and rank the technology proposals. At
this point in the selection process, there has been a general
call for technology proposals, based on the requirements set
forth for each selected (in Pre-Phase A) TCA. Those
proposals that survive the initial technology review process

are invited to submit project proposals. These are also
reviewed and ranked by another independent panel of space
system design experts.

There are many procedural boundaries for the review
panels. First, the review panels are made up of technology
and system engineering experts. They are selected to cover
the different engineering areas defined by the TCAs in the
call for technologies. They cannot be part of any active
proposals. Next, each proposal is first only considered
against other proposals in the same technical domain, i.e.
addressing the same TCA. The best of these are selected for
the project proposal stage. The, the project proposals are
compared at the level of full NASA missions, i.e. at a
project level. Technical specifics are only discussed at this
level if they have a direct impact on project execution and
outcome. In addition, there are specific rating and ranking
forms for each technology the panelists need to fill out.
This standardizes the comparison results per panel.

The technology panels consider first how well each
proposal meets the stated (TCA) requirements. Those that
fail this are dropped from consideration. They then discuss
the relative weaknesses of each proposal. They look for
unwanted, yet unavoidable issues with the technologies.
Examples include high cost, uncertain support, excessive
mass, power, size, chemical or biological hazards,
insufficient shielding to work in space, and so forth. We
call these negative requirements. In other words, what
stakeholders want, need, or desire to constrain are positive
requirements, while that which they do not want, need, or
cannot or overly constrain are negative requirements. No
technology is perfect. Each has positive (wanted, desired,
need) and negative capabilities and constraints.

Upon reflection, we assert the panels mainly exist to allow
the managed, bounded conflict of engineering expert
opinions on each technology to be expressed a rapid,
focused manner. There was a desire to learn as much about
a technology as is possible without seeing the technology
first hand. This is based on a combination of examining
what is written in the proposals in conjunction with the
history of the technology and the reputation of the business
team producing it. All of this was taken into consideration
during the panel discussions. Individual panelists often
shared insight on the history of a specific technology and its
project team, which gave added depth to a proposal.

The outcome of these panel discussions was deeper and
richer insights into the positives and negatives of each
proposal. The panelists were able to compare and contrast
proposals to find even more strengths and weaknesses. We
found that proposals tend to focus on the positive, i.e. how
the met stated TCA requirements and their technical
capabilities within constraints. The panels tended to balance
these proposals by identifying the negative requirements
and undesired technical attributes and constraints.
Altogether, collaborative conflict fostered an improvement

52

in the information accuracy and dept of each technology
and project proposal.

CONCLUSIONS
Proponents present the positive view of their technologies,
requirements and project specifications. Via conflict, an
informed opposition uncovers the negative aspects of the
technologies, requirements, and projects. During planned,
procedurally bounded collaborative conflict, the proponents
and opponents are afforded a space to work together to
defend the strengths and uncover weaknesses of their
positions. This is performed in an attempt to better
understand all of the issues that are part of initial system
design.

Collaborative conflict in system design is similar to other
proceedings, for instance legal trials, journal peer review,
and quality assurance. Key similarities are a) the existence
of known or expected conflicts (during a process), although
the specific nature of the conflicts is not known in advance,
b) predefined rules and procedures by which these conflicts
are addressed, c) an expectation that bringing in opposing
view will produce hidden and tacit “truths” about the
situation, d) an acceptance of the outcomes by the involved
parties, and e) only those parties with direct interest or
organizationally endowed power are part of the process.
The main difference is that the outcomes of early system
design are far from concrete. Whereas a trial’s outcome is
(reasonably) clear, systems design can change as the
development process progresses. Much of the activity in
initial design is making sense of the choices available and
the implications of each choice. Also, the early rules and
procedures of conflict engagement are as not well defined.

The NMP incorporates collaborative conflict in many
aspects of its selection process. This indicates that it is a
useful tool for reflective design practice. Yet, the challenge
is to determine in general where collaborative conflict is
useful throughout the system design and diffusion process.
We propose that further research needs to be done to
determine and understand how these apply in other system
design situations, such distributed software systems,
information systems, collaborative work systems, and alike.

REFERENCES
1. Bergman, M. and Buehler, M.G., Addressing an
Inadequacy in Quantitative Analysis: Examining NMP
Technology Selection. in IEEE Aerospace 2003, (Big Sky,
MT, 2003), IEEE press.

2. Bergman, M. and Buehler, M.G., Analysis of the New
Millennium Program (NMP) Flight Validation Process
Using PTAM. in Aerospace 2002, (Big Sky, MT, 2002),
IEEE Press.

3. Bergman, M. and Buehler, M.G., Applying the
Authority-Activity Model to the New Millennium

Program's Technology Selection Cycle. in IEEE Aerospace
2004, (Big Sky, MT, 2004), IEEE Press.

4. Bergman, M., King, J.L. and Lyytinen, K. Large Scale
Requirements Analysis Revisited: The need for
Understanding the Political Ecology of Requirements
Engineering. Requirements Engineering Journal, 7 (3).
152-171.

5. Bergman, M. and Mark, G., Exploring the Relationship
between Project Selection and Requirements Analysis: An
Empirical Study of the New Millennium Program. in RE
2002, (Essen, Germany, 2002), IEEE Press, 247-254.

6. Bergman, M. and Mark, G., In Situ Requirements
Analysis: A Deeper Examination of the Relationship
between Requirements Formation and Project Selection. in
RE 2003, (Monterey, CA, 2003), IEEE Press.

7. Bergman, M. and Mark, G., Technology Choice as a
First Step in Design: The Interplay of Procedural and
Sensemaking Processes. in DIS 2002, (London, UK, 2002),
ACM Press, 224-234.

8. Boehm, B. Requirements that Handle IKIWISI, COTS,
and Rapid Change. IEEE Computer, 33 (7).

9. Brooks, F.P. The mythical man-month: essays on
software engineering. Addison-Wesley Pub. Co., Reading,
Mass., 1995.

10. Carroll, J.M. Making use: scenario-based design of
human-computer interactions. MIT Press, Cambridge,
Mass., 2000.

11. Davis, A.M. Software requirements: objects, functions,
and states. PTR Prentice Hall, Englewood Cliffs, N.J.,
1993.

12. DiBona, C., Ockman, S. and Stone, M. Open sources:
voices from the open source revolution. O'Reilly, Beijing ;
Sebastopol, CA, 1999.

13. Karlsson, J. and Ryan, K. A Cost-Value Approach for
Prioritizing Requirements. IEEE Software, 14 (5). 67-74.

14. Lamsweerde, A.v., Darimont, R. and Letier, E.
Managing Conflicts in Goal-Driven Requirements
Engineering. IEEE Transactions on Software Engineering,
24 (11). 908-926.

15. Li, F.K. New Millennium Program Plan, NASA, JPL,
Pasadena, CA, 2000.

16. March, J.G. and Heath, C. A primer on decision
making: how decisions happen. Free Press, New York,
1994.

17. Mylopoulos, J., Chung, L., Liao, S., Wang, H. and Yu,
E. Exploring Alternatives during Requirements Analysis.
IEEE Software, 18 (1). 92-96.

53

Gerhard Fischer 1 CHI’2004 Workshop “Reflective Practitioners”

Reflective Practitioners and Unselfconscious Cultures of Design

Gerhard Fischer
University of Colorado, Center for LifeLong Learning and Design (L3D)

Department of Computer Science, 430 UCB
Boulder, CO 80309-0430 – USA

gerhard@cs.colorado.edu

INTRODUCTION
The Center for LifeLong Learning & Design at the
University of Colorado in Boulder [L3D, 2004] has focused
its research over the last two decades on conceptual
frameworks and system building efforts characterized by
the following global objectives:
ß not building expert systems, but systems for experts;
ß supporting reflective practitioners by increasing the

back-talk of the design artifacts;
ß putting owners of problems in charge by supporting

human problem domain interaction;
ß creating open, evolvable systems facilitated by meta-

design and the seeding, evolutionary growth, reseeding
process model; and

ß supporting social creativity among reflective design
communities.

My workshop contribution will try to put these efforts into
perspective, assess where our research efforts are today,
and analyze specifically the mutually defining roles of
reflective practitioners in unselfconscious cultures of
design.

A CONCEPTUAL FRAMEWORK FOR DESIGN
The Nature of Design Problems. The primary challenge
for designers is how to make sense out of “situations that
are puzzling, troubling, and uncertain” [Schön, 1983].
Design requires reflective practitioners. Simon’s
description of a painter provides an example of design as a
conversation with the materials of the situation: “in oil
painting every new spot of pigment laid on the canvas
creates some kind of pattern that provides a continuing
source of new ideas to the painter. The painting process is
a process of cyclical interaction between the painter and
canvas in which current goals lead to new applications of
paint, while the gradually changing pattern suggests new
goals.” [Simon, 1996].
Integration of Problem Framing and Problem Solving.
Design problems are not analyzed in one step and then
enacted in the next. The process of problem framing and
problem solving has to be intertwined, and therefore the
role of designers cannot be restricted to solving problems
but needs to include the framing of problems. One cannot
understand a problem without having a concept of the
solution in mind: “one cannot gather information

meaningfully unless one has understood the problem but
one cannot understand the problem without information
about it” [Rittel & Webber, 1984]. If one cannot begin one
without the other, then the only way to proceed is with both
simultaneously.

UNSELFCONSCIOUS CULTURES OF DESIGN
Large-scale design projects are inherently collaborative,
ongoing, and evolving. The artifacts produced in these
projects must function for years, long after the initial design
phase is complete. During this time, the environment in
which the artifact functions may change in ways that were
not anticipated by the original designers. If the artifact
cannot be adapted or evolved by design-in-use to its
changing environment, it will cease to be useful
[Henderson & Kyng, 1991].
Alexander [Alexander, 1964] introduced the distinction
between an unselfconscious culture of design and a self-
conscious culture of design. In an unselfconscious culture
of design, the failure or inadequacy of the form leads
directly to an action to change or improve it. This closeness
of contact between designer and product allows constant
rearrangement of unsatisfactory details. In unselfconscious
design, breakdown and correction occur side by side; the
knowledge to repair breakdowns comes from the
knowledge of the user, who is best able to recognize a lack
of fit, and how the artifact should be changed to improve its
fit to the environment. Table 1 summarizes some of the
major distinction between self-conscious and unself-
conscious cultures of design.
Putting Owners of Problems in Charge. Ill-defined
problems cannot be delegated; therefore the owner(s)
of a problem need to be present in incrementally
frame the problems, because they have the
“authority” to change the problem. If owners of
problems are in charge, then background assumptions
do not need to be fully articulated to avoid to achieve an
impossible task [Suchman, 1987]. It is a strength of
human experts that they know the larger problem
context, which enables them to solve ill-defined
design problems, to learn while solving problems, to
notice similarities between design problems, and to
know when design rules can and should be broken.

54

Gerhard Fischer 2 CHI’2004 Workshop “Reflective Practitioners”

Table 1: Comparing Self-conscious and Unself-conscious Cultures of Design
self-conscious unself-conscious

definition an explicit, externalized description of a
design exists (theoretical knowledge)

process of slow adaptation and error reduction
(situated knowledge)

original
association

professionally dominated design, design for
others

primitive societies, handmade things, design
for self

primary goal solve problems of others solve own problems
examples designed cities: Brasilia, Canberra

Microsoft Windows
naturally grown cities: London, Paris
Linux

strengths activities can be delegated; division of labor
becomes possible

many small improvements; artifacts well suited
to their function; copes with ill-defined
problems

weaknesses many artifacts are ill-suited to the job
expected of them

no general theories exist or can be studied
(because the activity is not externalized)

requirements externalized descriptions must exist owners of problems must be involved because
they have relevant, unarticulated knowledge

evaluation
criteria

high production value; efficient process;
robust; reliable

personally meaningful; pleasant and engaging
experience; self-expression

relation with
context

context required for the framing of the
problem

both problem framing and solving take place
within the bigger context

Supporting Unselfconscious Cultures of Design with
Domain-Oriented Design Environments. Domain-
oriented design environments (DODEs) [Fischer, 1994]
put owners of problems in charge by supporting
human problem-domain interaction rather than just
human-computer interaction. The breakdowns users
of DODEs will experience include gaps in design
knowledge, lack of support for new domain elements,
and new rules and guidelines that were not part of
the original DODE. These breakdowns cannot be
avoided; they are a consequence of the fact that
design domains change with time. DODEs support
unselfconscious cultures of design with the following
tools and mechanisms:
ß they support the co-evolution of problem framing and

problem solving [Nakakoji, 1993];
ß they increase the back-talk of design situations with

critics [Fischer et al., 1998];
ß they support reflection-in-action by making

argumentation serve design [Fischer et al., 1996]; and
ß the support the seeding, evolutionary growth,

reseeding process model to incrementally refine and
evolve systems as living entities [Fischer et al., 2001].

Increasing the Back-Talk of Design Artifacts. The core of
Schön’s framework for reflective practitioner can be
summarized as follows: the designer acts to shape the
design situation by creating or modifying design
representations, and the situation “talks back” to the
designer, revealing unanticipated consequences of the
actions. The designer reflects on the actions and
consequences by listening to the situation’s back-talk, and
then plans the next course of action.
Therefore: design materials and the externalized
representations are essential to design as a reflective
conversation. Externalized representations uncover implicit,
tacit, and emergent dimensions of design tasks that

designers may not have considered. Externalizing ideas is
not a matter of emptying out the mind but of actively
reconstructing it, forming new associations, and expressing
concepts while lessening the cognitive load required for
remembering them [Bruner, 1996].
Critics. While representations can make our thoughts more
accessible, it is important to recognize the relationship
between the skill and experience of designers and the
“back-talk” they receive from the situation. The fact that
“buildings do not speak for themselves” [Rittel, 1984]
reminds us that the meanings and intentions that are
“designed into” an artifact are not always self-evident,
either to the designer or other observers. Critiquing systems
[Fischer et al., 1998] monitor the design process and
attempt to detect problematic situations. When such a
situation is detected, critics notify users and make further
information available to help users understand the situation.
Critiquing systems allow users to work in a self-directed
manner and interrupt only when the users’ plans, actions, or
products are considered potentially problematic. The role of
critics is to inform reflective practitioners, to make them
aware of potential problems and help make trade-offs,
rather than to design for them.

TRANSCENDING SCHÖN
Schön [Schön, 1992] ends one of his papers with the
following challenge: “The design of design assistants is an
approach that has not in the past attracted the best minds
in AI. Perhaps the time has come when it can and should
do so”. Schön was interested in developing a descriptive
account of design activities, illustrating and explaining
what designers do, identifying the importance of human
collaborations in this process, and arguing for educational
changes. He did not design and/or build more powerful
socio-technical environments that would empower

55

Gerhard Fischer 3 CHI’2004 Workshop “Reflective Practitioners”

reflective practitioners beyond the possibilities provided by
pencil and paper technologies..
But design never was and never will be independent of the
media used to support the creation of artifacts. What has
been true on a very global scale that “the story of the
human race is one of increasing intellectual capability; our
brain have gotten no bigger, our bodies no stronger, but
there has been incremental creation and evolution of new
tools for physical and intellectual work to support more
effective ways of distributed work and cognition”, is true
for design. Socio-technical environments will empower
reflective practitioners to be more effective, to avoid and
overcome problems, and learn new things as they go along.
Our research has be grounded in Schön’s theory in the
following way:
ß we have build objects-to-think-with in the form of

demonstration prototypes (e.g. DODEs, critiquing
systems);

ß we have developed process innovations (e.g., meta-
design, seeding, evolutionary growth, reseeding
process model);

ß we have deployed, used, and evaluated these
prototypes [Bonnardel & Sumner, 1994; Sumner et al.,
1997].

With DODEs, we have investigated the following
questions:
ß How can computational media change the nature of the

reflective conversation between designer and the
materials of the situation [Redmiles, 2002]? Unlike
paper, computational media can provide active design
materials that allow the situation to talk back to the
designer in an explicit manner.

ß How can computational media support the integration
of problem framing and problem solving? By partially
externalizing the framing in explicit computational
representations such as specification components
[Nakakoji, 1993], new ways of supporting design are
possible. If the designer’s framing of a problem is
interpretable by the computer, it allows the computer
to detect conflicts between the current design and the
framing [Shipman, 1993].

ß How can computational media support designers in
dealing with breakdowns? First, they can help
designers to identify breakdowns that they may not be
aware of. Second, the occurrence of breakdowns
provides an opportunity for learning on demand and
reflection-in-action, facilitated by making
argumentation serve design [Fischer et al., 1996].

From Reflective Practitioners to Reflective Design
Communities. Complex design problems require more
knowledge than any single person possesses because the
knowledge relevant to a problem is usually distributed
among stakeholders. Bringing different and often
controversial points of view together to create a shared
understanding among these stakeholders can lead to new
insights, new ideas, and new artifacts. The challenge for the

future will be not only to develop new frameworks, new
media, and new social environments to support reflective
practitioners but to support reflective design communities
thereby extending the limitations of the individual human
mind. Simon [Simon, 1996] argued that when a domain
reaches a point at which the knowledge for skillful
professional practice cannot be acquired in a decade,
specialization increases, collaboration becomes a necessity,
and practitioners make increasing use of media supporting
distributed cognition. Design is a prime example of such a
domain [Arias et al., 2000].
Issues for further Investigation. More than ten years ago,
we articulated the following issues for further investigation
[Fischer & Nakakoji, 1992]:
ß Are there differences in the performance and quality of

the product if the system is used with and without
critics?

ß What are the tradeoffs between running the system in a
critiquing mode or a constraint mode, where the latter
prevents certain problems from arising, whereas the
former provides designers with opportunities of
dealing with breakdowns?

ß What are the tradeoffs between different intervention
strategies, e.g. the balance between displaying enough
information versus the disruption of the work process?
When are designers willing to suspend the construction
process to access relevant information? Does making
information relevant to the task at hand prevent
serendipity?

ß If an environment can always supply the information
that the situation demands, why will users bother to
learn the information?

ß Under which conditions will designers challenge or
extend the knowledge represented in the system? How
can they be motivated to do so?

ß Should the 'back talk' be embedded directly into the
artifact, or handled by a separate discourse? It is
conceivable that diving into hypermedia focuses users
on other tasks, and takes them out of the situation?

ß If information is plentiful, what is scarce? How can
information delivery systems be created that make
information more relevant to the task at hand?

ß To what extent are situations and reflective
conversations controlled by media properties?

ß How can a balance be achieved between technical
rationality (e.g. the use of plans and rules) and
reflective action?

It is the author’s hope that the CHI workshop will provide
many new answers from all the participants to the issues.

ACKNOWLEDGEMENTS
The ideas, framework, and systems briefly presented in this
contribution have been developed collaboratively by the
reflective design community of past and current members of
the Center for Lifelong Learning and Design.

56

Gerhard Fischer 4 CHI’2004 Workshop “Reflective Practitioners”

REFERENCES
Alexander, C. (1964) The Synthesis of Form, Harvard

University Press, Cambridge, MA.
Arias, E. G., Eden, H., Fischer, G., Gorman, A., &

Scharff, E. (2000) "Transcending the Individual
Human Mind—Creating Shared Understanding
through Collaborative Design," ACM
Transactions on Computer Human-Interaction,
7(1), pp. 84-113.

Bonnardel, N., & Sumner, T. (1994) "From System
Development to System Assessment:
Exploratory Study of the Activity of
Professional Designers." In Proceedings of the
7th European Conference on Cognitive
Ergonomics (Bonn, Germany), pp. 23-36.

Bruner, J. (1996) The Culture of Education, Harvard
University Press, Cambridge, MA.

Fischer, G. (1994) "Domain-Oriented Design
Environments," Automated Software
Engineering, 1(2), pp. 177-203.

Fischer, G., Grudin, J., McCall, R., Ostwald, J.,
Redmiles, D., Reeves, B., & Shipman, F. (2001)
"Seeding, Evolutionary Growth and Reseeding:
The Incremental Development of Collaborative
Design Environments." In G. M. Olson, T. W.
Malone, & J. B. Smith (Eds.), Coordination
Theory and Collaboration Technology,
Lawrence Erlbaum Associates, Mahwah, NJ,
pp. 447-472.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A.
(1996) "Making Argumentation Serve Design."
In T. Moran, & J. Carrol (Eds.), Design
Rationale: Concepts, Techniques, and Use,
Lawrence Erlbaum and Associates, Mahwah,
NJ, pp. 267-293.

Fischer, G., & Nakakoji, K. (1992) "Beyond the Macho
Approach of Artificial Intelligence: Empower
Human Designers - Do Not Replace Them,"
Knowledge-Based Systems Journal, Special
Issue on AI in Design, 5(1), pp. 15-30.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., &
Sumner, T. (1998) "Embedding Critics in Design
Environments." In M. T. Maybury, & W.
Wahlster (Eds.), Readings in Intelligent User
Interfaces, Morgan Kaufmann, San Francisco,
pp. 537-559.

Henderson, A., & Kyng, M. (1991) "There's No Place
Like Home: Continuing Design in Use." In J.
Greenbaum, & M. Kyng (Eds.), Design at Work:
Cooperative Design of Computer Systems,
Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ, pp. 219-240.

L3D (2004) Center for LifeLong Learning and Design ,
University of Colorado, Boulder, Available at
http://www.cs.colorado.edu/~l3d/.

Nakakoji, K. (1993) Increasing Shared Understanding
of a Design Task Between Designers and

Design Environments: The Role of a
Specification Component, Ph.D. Dissertation,
University of Colorado at Boulder.

Redmiles, D. (2002) "Supporting the End Users’
Views," Proceeding of Advanced Visual
Interfaces Conference (AVI 2002, May), Trento,
Italy, pp. 34-42.

Rittel, H. (1984) "Second-Generation Design
Methods." In N. Cross (Ed.), Developments in
Design Methodology, John Wiley & Sons, New
York, pp. 317-327.

Rittel, H., & Webber, M. M. (1984) "Planning
Problems are Wicked Problems." In N. Cross
(Ed.), Developments in Design Methodology,
John Wiley & Sons, New York, pp. 135-144.

Schön, D. (1992) "Designing as reflective conversation
with the materials of a design situation,"
Knowledge-Based Systems Journal, Special
Issue on AI in Design, 5(1), pp. 3-14.

Schön, D. A. (1983) The Reflective Practitioner: How
Professionals Think in Action, Basic Books,
New York.

Shipman, F. (1993) Supporting Knowledge-Base
Evolution with Incremental Formalization,
Ph.D. Dissertation, University of Colorado at
Boulder.

Simon, H. A. (1996) The Sciences of the Artificial,
third ed., The MIT Press, Cambridge, MA.

Suchman, L. A. (1987) Plans and Situated Actions,
Cambridge University Press, Cambridge, UK.

Sumner, T., Bonnardel, N., & Kallak, B. H. (1997) "The
Cognitive Ergonomics of Knowledge-Based
Design Support Systems." In S. Pemberton
(Ed.), Proceedings of CHI 97 Conference on
Human Factors in Computing Systems,
ACM/Addison-Wesley, pp. 83-90.

57

The use of cognitive causal mapping as
an aid to professional reflection
Robert T.Hughes, Abdullah Al Shebab, Marian Eastwood
School of Computing, Mathematical and Information Sciences,
University of Brighton, Brighton, BN2 4GJ United Kingdom

Email r.t.hughes@bton.ac.uk

Our background is broadly in software engineering, typically but not exclusively within information
systems domains. Our individual research interests have included software effort estimation, software
project risk, and development process models which may reduce risk. Two of us are committed to
teaching students at undergraduate and graduate levels. As busy academics, we like research
challenges that have the potential to enrich our students’ learning experiences, as well as, in the
longer term, being of interest in the wider world.

Schön’s work resonates with those teaching vocational subjects such as software engineering, but is
also frustrating. The observation of professionals at work can offer some insights into practice, yet
much remains concealed or unclear. As it says in one case study: ‘…the Resident discerns in the
Supervisor’s performance a knowing-in-practice that he values, but is frustrated in his attempt to
grasp it’. Schon (1983). One of us (Hughes 1996) felt a similar frustration during an attempt to elicit
how software developers produced estimates of development effort.

As teachers we would like in some way to capture practitioners’ expertise so that it can be presented
as ‘professional knowledge’ to our students. One recent emphasis in the UK has been on ‘life-long
learning, a term often difficult to interpret in practice, but generally held to be a ‘good thing’. Our
interpretation is that one aspect of this is that students ought to be taught to learn from their
experience, as well as from pre-packages modules of learning material, and that this will require them
to be able to reflect on their practical experiences.

To this end, as educators, we have recently focussed on the production of software prototypes by
students as a vehicle for learning (Eastwood and Hughes, 2004). In industry, prototypes are long-
established as a way of learning and reducing uncertainty in the context of a specific project (see, for
example, Lichter et al. 1997). This type of ‘industrial’ learning needs to be focussed and fast.
However, at the same time, practitioners are acquiring skills and knowledge that can be applied to
later projects. This longer term learning is unlikely to be a concern of the project manager who has
more immediate anxieties. One can therefore idealise a number of learning cycles of different lengths
progressing concurrently.

Higher education ought to have more concern with the longer cycle learning. The use of prototyping in
this context should allow the student to exercise some short cycle skills in software development and
also, one hopes, learn some more abstract, long cycle, lessons about design and project
management.

The use of a prototype to solve a particular local problem is a process that is very visible, not just to
tutors in an academic environment who may wish to assess it, but to users in the ‘real world’. A more
difficult problem is to assess long cycle learning. A ‘traditional’ way has been to compel the student to
complete a reflective report describing the way that the particular problem was solved. Our experience
is, however, that the ‘better’ students will often respond by describing the process which they believe

58

the tutors want to hear, normally about the slavish following of some standard methodology, rather
than genuinely reflecting on their actual experience.

If one turns to the ‘real world’ of software development a striking feature is the prevalence of failed
projects (see, for example Flowers, 1996). Part of the reason for this may be the innate difficulties of
software, as identified by Brooks (1995), namely its relative invisibility, its complexity, the flexibility that
makes it have to conform to the whims of clients, however illogical, and also make it subject to
constant change. Despite this, one can still sometimes think that if, in this field, the ‘professionals’ are
building up Schonian ‘repertoires’ based on past experience, then the process does not seem to be
overwhelming successful. We suspect that one reasons for this prevalence of failure is that all types
of large organisation are likely at some point to be subject to information systems implementation
projects, and we cannot expect all managers in all organizations to turn themselves into project
management professionals at a moment’s notice. We also suspect that there is often a lack of longer
cycle organizational learning. In such environments we suspect that project failure is often caused by
influential stakeholders having preconceptions about the factors at work that will influence the
success or failure of the project, and then these preconceptions not being matched by reality.

Our proposal for ameliorating this mismatch between the preconceived and the actual is to attempt to
make more explicit to stakeholders the nature of these preconceptions by employing collaborative
cognitive causal mapping techniques. These are influenced by Kelly’s constructivist model of human
motivation (Kelly, 1955). This sees the being in the world trying to predict and control the outcome of
events by using past experience to identify those variables that are likely to dictate the future course
of events.

These variables are perceived as dichotomous indicators that reflect the degree to which a concept
has a value between two extremes, for example, large and small, cheap and expensive, fast and
slow. These variables are represented as nodes in a network, and directed arcs between the nodes
indicate that one variable can influence the value of another. For example, Figure 1 reflects the
thinking that incomplete requirements may lead to the functionality of an application being increased
to cover the missing requirement when found. This in turn increases the overall cost

Figure 1 A simplistic causal model

What might happen is that in order to overcome this unwelcome chain of events, a prototype is
planned, which it is hoped will help elicit a full set of requirements from the users - see Figure 2.

incomplete…
complete
requirements

greater…less
scope creep

increased
…decreased
cost

+ +

incomplete…
complete
requirements

greater…less
scope creep

increased
…decreased
cost

+ +

use of
prototype…
non-use

additional
development
…

-

+
+

59

Figure 2 Adding the use of a prototype

The use of the prototype, while reducing the possibility of incomplete requirements, will also contribute
to cost as it requires additional effort to create the prototype. Where there is a negative, inhibiting, link
in a causal chain then, unless there is a compensating second negative link, the causal chain
between two nodes will be a negative. Thus the causal chain between ‘use of the prototype’ via
‘incomplete requirements’ to ‘increased…decreased cost’ is a negative one, that is, the use of
prototypes should decrease costs. However, the second causal chain between ‘user of prototype’ and
‘increased…decreased cost’ is a positive one: the prototype will add to costs. This is an example of an
unbalanced causal map. Unbalanced causal maps indicate that some outcomes are uncertain, which
indicates that there is an element of risk. Another diagnostic feature of causal maps is that they can
detect feedback loops and also unstable systems where an increase in an external variable can
cause some of the variables to grow in an uncontrolled manner. For example, a stream of changes,
where there is no effective change control mechanism, might cause runaway development costs.

The production of causal maps can be done retrospectively, at the post-mortem stage of a
development project, in order to diagnose the reasons for unsatisfactory and satisfactory outcomes of
the project. It can also be used at the beginning of a project to help stakeholders identify potential
difficulties and possible policies to reduce those difficulties. Clearly using the output from post
mortems from previous projects to inform the risk analysis for future projects could facilitate learning,
at both the level of the individual professional and at the organizational level.

Cognitive mapping approaches are well established - one early use (Axelrod, 1976) was to analyse
how diplomats and government officials decided and applied policies, particularly in the field of foreign
policy. In the field of project management and operational research, they have been used extensively
- see, for example, Eden 1988, Eden et al. 1992, Brown 1992, Williams et al 1995.

Often cognitive maps are used as a preliminary stage to the creation of a quantitative systems
dynamics model (see, for example, Abdel-Hamid and Madnick 1986, Williams et al 1995). The
addition of quantitative data could, for example, resolve whether the use of a prototype in the
fragment in Figure 2 would be worthwhile. Quantitative considerations can enrich the causal models
by reflecting the strength of the influence of one variable upon another; they can also indicate the
presence of time delays in the influence of one variable being felt by another. Senge (1990) has
advocated the use of animated, quantitative models as a means of fostering systems thinking in
organizations. The ability of such models to demonstrate the long term effects of policies is
particularly stressed by such advocates. We are, however, rather cautious about attempting to
enhance the modelling to take on quantitative aspects, despite our computer science backgrounds.
Partly this is because we are aware of the pitfalls associated with measurement (Hughes 2000). It is
also because we have a suspicion that showing that a computer model produces the results it was
programmed to produce might demonstrate skilful programming rather than any underlying new
knowledge.

We are currently using these techniques in research into project risk, by carrying out retrospective
mapping of industrial projects, as an aid to the diagnosis of project short-comings. We are also
planning to train our undergraduate and graduate students in the technique so that the can apply the
approach both at the planning and reflective stages of their student projects as an aid to learning.
Masters students in information systems and software engineering have, for example, to conduct a
project for an outside client as the last element of their courses. We would like to require these
students to produce cognitive maps as a way of justifying their planned approach to the project and
also at the end of the project to support their reflection on the project.

References

60

Abdel-Hamid, T.K. and S.E.Madnick. 1986 Impact of schedule estimation on software project

behavior. IEEE Software 34(4) 70-5
Axelrod, R. (ed.) 1976 Structure of decision: The cognitive maps of political elites. Princeton

University Press, Princeton, NJ
Brooks, F.P. 1987. No silver bullet, essence and accidents of software engineering. IEEE Computer

April 10-19
Brown, S. 1992. Cognitive mapping and repertory grids for qualitative survey research: some

comparative observations. Journal of Management Studies 29(3) 287-307
Eastwood, M. and Hughes R.T. 2004. Software prototyping as experiential learning. SQM/Inspire

conference. Canterbury, Kent. April
Eden, C. 1988 Cognitive mapping European Journal of Operational Research 36 1-13
Eden, C., F.Ackermann, and S.Cropper. 1992. The analysis of causal maps. Journal of Management

Studies 29(3) 309-324
Flowers, S., 1996 Software failure, management failure. Wiley and Sons, Chichester
Hughes, R.T. 1996 Expert judgement as an estimating method Information and Software Technology

38(3) 67-75
Hughes, R.T. 2000. Practical software measurement. McGraw-Hill, Maidenhead
Kelly, G.A. 1955 The psychology of human constructs. Volume 1. W.W.Norton and Co. New York
Lichter et al 1997. Prototyping in industrial software projects - bridging the gap between theory and

practice. Proceedings of the 15th International Conference on Software Engineering May 1997
221-229

Schon. D.A. 1983. The reflective practitioner: how practitioners think in action. Basic Books
Senge, P.M. 1990. The fifth discipline. Random House, London
Williams, T., C. Eden, F. Ackermann. and A.Tait. 1995 The effect of design changes and delays on

project costs. Journal of the Operational Research Society. 46 809-18

61

Designing for Reflective Practitioners
Kumiyo Nakakoji

University of Tokyo
4-6-1 Komaba,
Meguro, Tokyo,
153-8904 Japan

kumiyo@kid.rcast.u-tokyo.ac.jp

62

63

64

Session: New Methods and Techniques for Software
Development

65

66

ABSTRACT
In this paper, we identify meta architecture of the
Intelligent Information Systems as an open research
problem addressing some of the big challenges that the
Information Technology industry is now facing in the
environment of current trends on the turbulent global
market. As the foundation of future research, the proposed
metamodel is to be evaluated against different application
areas as well as related information technologies, starting
with the area of social computing.

Author Keywords
Meta architecture, social computing.

ACM Classification Keywords
H.5.3 Group and Organization Interfaces

INTRODUCTION
Advancements in the Information Technology (IT) are
rapidly becoming leading force in human society
development. As a consequence, the mutual impact is more
and more evident where IT not only changes the way
humans live and work (including businesses, social life,
government, entertainment, etc.) but it also suffers
tremendous pressure to deliver human-oriented value that is
actually needed. We have witnessed last years how big the
expectations for IT could be: “.com” bubble spectacularly
raised immediately after emergence of first signs of the
great value that Internet, as the global IT infrastructure,
brings along.

Intelligent Information Systems (IIS) represent the next
generation of information systems embodying knowledge
that allows them to exhibit intelligent behavior, cooperate
with users and other systems in problem solving, discovery,
access, retrieval and manipulation of a wide variety of
multimedia data and knowledge, and reason under
uncertainty 6. The IIS is no more only passive (collecting

information, processing and presenting it in a structured
w as a classical information system does) but also open,
gl al, interactive and reflective (it is an integral part of a
gl
co
m
ch
cl
op
w
ad
w
be

Meta Architecture for Intelligent Information Systems
- Possition paper -

Milorad Tošić
University of Niš, Faculty of Electronics Engineering

18000 Niš, Serbia & Montenegro
e-mail: mbtosic@elfak.ni.ac.yu

In
fr
w
co
bu
al
pr
se
in
th
(I
to

A
Fo
th
a
th
hi
pr
co
an
co
cr
e-
en
M
IT
ap

Te
th
co
co

67
ay
ob

obal environment, it reasons about behavior,
mmunicates and collaborates, has the purpose and
ission, etc.). This new setting presents fundamentally new
allenges to the IT research community that is no more
osed and “elitistic” but expected to provide pervasive
en platforms for heterogeneous and multi-disciplinary

ork. Having a historical perspective, we can see IT
vancing in a predictable sequence of five “mega waves”,
here we currently are at the end of the third and at the
ginning of the emerging fourth mega wave 5.

 this paper we present the vision of what the value-add
ontier of IT development will be on the forth “mega
ave”. We identify IIS as the central point in the world of
ntent, systems, organizations, communities, and
sinesses converging into a global virtual infospace. We

so argue that the meta architecture of the IIS is the most
omising approach to provide necessary “virtualness”,
paration of concerns, and value-add in the global
fospace environment. Hence, we propose metamodel of
e Intelligent Information Systems Virtual Machine
ISVM) - a universal platform for transparent from-value-
-machine design.

SPECT ORIENTED IIS DESIGN
r design of the IIS systems we adopt best practices form

e Aspect Oriented Programming (AOP) 4 discipline, with
goal to generalize separation of concerns principle up to
e strategy level. The principle empower us to cope with
gh problem complexity by adopting approaches already
oven in the software systems design, (such as
mponent-based approach 9, meta-programming 1, etc.)
d applying them transparently across whole chain of
ncerns up to the highest abstraction levels (such as value
eation 12, resource planning 11 and coordination 14, and
Business models 13). As a result of the approach, we
vision the Intelligent Information Systems Virtual
achine (IISVM): A universal, transparent, and pervasive
 platform for development of reflective value-driven
plications.

chnology aspect of the IIS is increasingly correlated to
e areas such as 6: discovery of knowledge from large data
llections; providing cooperative support to users in
mplex query formulation and refinement; access,

mailto:mbtosic@elfak.ni.ac.yu

level M3: Meta meta classes

level M2: Meta classes

level M1: Classes

level M0: Objects information

model

metamodel

meta-metamodel
(MOF model)

Figure 1: MOF four layer metadata architecture

«metaclass»
mClass

«metaclass»
Agregation

«metaclass»
mComponent

1

*

1 *

«metaclass»
mActor

«metaclass»
mRole

«metaclass»
Communication

«metaclass»
Association

1

0..1

1

1..*

* 1..*

* 1..*

Generalisation together with Agregation
introduce composition over the set of

instances of the mComponent.

«metaclass»
Generalisation

1

*

1

1

Generalisation is represented
at the lower meta level (level 3)
by the same symbol (an arrow)

as in UML class diagrams.

The Communication is represneted
at the lower meta level (level 3)

by the same symbol that represents
binary association class in UML diagrams .

Figure 2: The IIS metamodel

retrieval, storage and management of large collections of
(multimedia) data and knowledge; information integration
from multiple heterogeneous data and knowledge sources;
behavior and information unity in virtual systems, and
reasoning about information under uncertain conditions.
Having in mind ultimate impact of the global network, the
emerging need for new tools and techniques for
management of these dynamic and evolving information
spaces existing on a global scale over the Internet is
evident.

Value (business and social) aspect of the IIS has evolved,
due to the global acceptance of the Internet, from very
limited impact (when computing centers were used for IT
support of big enterprises needs only) to increasingly high
(e-government, e-communities, e-business, e-learning,
etc.). Consequently, IIS is required not only to automate
information processing, storage and distribution but also to
reason about issues such as knowledge sharing 9,13, value
creation 12, and social impact 15.

Design aspect of the IIS includes interoperability, platform
independence, reusability, concurrency and abstraction.
This aspect has been in the focus of research in IT
community for a long time 8, resulting in emerging
technologies such as Model Driven Architecture 16 and
Service Oriented Architecture 20. Our belief is that the
design aspect will benefit the most from the proposed
approach by adopting mechanisms from other aspects as
design components (for example, applying auctions and
value-based formal business models to the collaboration of
software components and platforms, e.g. see 18) while
”borrowing” well-known proven design practices to other
aspects as well.

META ARCHITECTURE
We base meta architecture of the IISVM on the Meta
Object Facility (MOF) four layer metadata architecture
(Figure 1:) 3. We adopt the level M3 from the MOF model
and the reflection on the same level 1,3, while building the
proposed meta architecture on the M2 level.

The proposed metamodel is shown in Figure 2: . We may
distinguish “object” and “relation” meta meta objects
(instances of meta meta classes): mClass, mComponent,
mActor, and mRole may be interpreted as “object” meta
classes, while Generalization, Agregation,
Communication and Association as relation meta classes.

The metamodel facilitates unified approach to different
aspects of the IIS design (as previously described):
mClass, Aggregation and Generalization support the
technology aspect following object-oriented programming
approach; mComponent, Communication, and
Association support design aspect, while mActor, and
mRole support business and social aspect. The fact that all
that meta classes belong to the same metamodel enable us
to reason about the system in a transparent and unified way
across all aspects of the IIS.

Let us given the set of components and the set of classes of
objects from the set of components. Following well-
established theory of the object-oriented programming,
represented with the UML standardization initiative and the
MOF architecture 3, there is an inheritance relation (the
generalization meta class in Figure 2:) introduced in the set
of classes. For example, in a system where User,
Mediator, ServiceProvider are possible components, all
of IndividualUser, EnterpriseUser, and Administrator
classes may share the common base class User.

It should be noted that the mComponent is specialized
into two sub-classes: mRole and mActor. The idea is to
separate architectural concerns of behavior from the
interaction concerns: The only component that may have
associated actions and/or behavior is the mActor class,
while mRole component is the only one that may be
involved in an interaction by means of the associated
Communication. In this way, an actor that have specified
behavior and performs some actions may interact with the
rest of the system only if it is encountered in an interaction
by accepting some role in the system. An actor may have
multiple roles and multiple actors may “play” the same
role.

2
68

In the proposed architecture, the Communication is not a
component (it doesn’t inherit mComponent class). In this
way, we provide the crucially important flexibility for
dealing with reflectiveness and interaction. For example, let
us consider a simple client-server setting. Traditionally, we
have two roles (client and server) assigned to two
components (e.g. web browser and web server,
respectively) with implicitly assumed communication
capabilities. However, the proposed architecture enables us
to identify the third role: the client-server interaction role.
The client and server roles do not communicate directly,
but by means of the interaction role. In this way, we are
able to implement the interaction role by different
components that may act as a network communication
protocol 20, an auction based negotiation 18,2, or a very
complex social interaction 15,23.

SOCIAL COMPUTING: AN APPLICATION CASE STUDY
Social computing is an emerging inter-disciplinary research
area addressing synergy potential of social aspects in the
information society. It builds on the mass adoption of
information technologies: Current estimates of Internet
users hover around 200 million, with one billion users
anticipated by 2005, together with the ‘Net’s technology-
mediated communication services that provide unique
opportunities for extending many human pursuits 21.
Following the trend towards fully pervasive computing
where end-points of information streams may be humans as
well as machines, it is evident that the social dimension
becomes crucially important 22,24. Also, we are in a
transition from traditional understanding of computers as
“things that think” (what computers can do?) to much more
powerful “things that make us smart” (what people and
computers can do together?) 23.

We believe that the proposed IISVM architecture may
answer the challenge of achieving full power of the social
aspect of the computing in general. Particularly, it is
possible to develop solutions for efficient addressing of
social reflection of the computing in diverse application
fields, such as e.g. education 24, enterprise applications,
etc. Our current research is focused on development of the
concept of “recommendation” in the social computing
environment, as an application testbed for the proposed
architecture.

REFERENCES
1. Ira R. Forman, Scott H. Danforth, ”Putting metaclasses

to work: a new dimension in object-oriented
programming”, Addison Wesley Longman, Inc., 1999.

2. B. Wydrowski and M. Zukerman, ”QoS in Best Effort
Networks”, IEEE Communication Magazine, December
2002, pp.44-49.

3. Object Management Group, Meta Object Facility
(MOF), 1.4, http://www.omg.org/, (accessed Sept.
2003)

4. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. ”Aspect-oriented
programming”. In ECOOP'97---Object-Oriented
Programming, 11th European Conference, LNCS 1241,
pages 220--242, 1997.
http://citeseer.nj.nec.com/kiczales97aspectoriented.html

5. Kampas, P.J., ”Road Map to the E-Revolution”,
Information Systems Management, vol.17, no.2, Spring
2000. Reprinted in IEEE Engineering Management
Review, First Quarter 2001, pp.81-93.

6. Journal of Intelligent Information Systems: Integrating
Artificial Intelligence and Database technologies,
Mission and Scope,
http://www.isse.gmu.edu/JIIS/JIIS_Folder/Mission.Sco
pe.html (accessed Sept. 2003.)

7. M. McKinlay, Z. Tari, ”DynWES – A Dynamic and
Iteroperable protocol for Web Services”, Third
International Symposium on Electronic Commerce
(ISEC’02), October 18-19 2002, Research Triangle
Park, North Carolina, pp.74-83

8. Borghoff, U.M., Schlichter, J.H., ”Computer-Supported
Cooperative Work: Introduction to Distributed
Applications”, Springer, 2000.

9. McIlraith, S.A., Son, T.C., Zeng, H., ”Semantic Web
Services”, IEEE Intelligent Systems, March/April 2001,
pp.46-53.

10.Szyperski, C., ”Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley, Harlow,
UK, 1998

11.Ghallab, M., et al., ”PDDL: The Planning Domain
Definition Language, Version 1.2”, Tech. Report CVC
TR 98 003/DCS TR 1165, Yale Center for
Computational Vision and Control, Yale Univ., New
Haven, Conn., 1998.

12.Gordijn, J., "e-Business Model Ontologies",
contribution to "Value creation from e-business
models", Wendy Curry,
http://www.math.vu.nl/~gordijn/research.htm, to appear
(accessed Sept. 2003)

13.Osterwalder, A., Pigneur, Y., ”Towards Strategy and
Information Systems Alignment through a Business
Model Ontology”, to appear in the Proceedings of the
23rd Annual International Conference of the Strategic
Management Society (SMS) 2003, Baltimore

14.Fan. M., Stallaert, J., Whinston, A.B., ”Decentralized
Mechanism Design for Supply Chain Organizations
Using an Auction Market”, Information Systems
Research, Vol. 14, No. 1, March 2003, pp.1-22.

15.Miranda, S.M., Saunders, C.S., ”The Social
Construction of Meaning: An Alternative Perspective
On Information Sharing”, Information Systems
Research, Vol. 14, No. 1, March 2003.

69

http://www.omg.org/
http://citeseer.nj.nec.com/kiczales97aspectoriented.html
http://www.isse.gmu.edu/JIIS/JIIS_Folder/Mission.Scope.html
http://www.isse.gmu.edu/JIIS/JIIS_Folder/Mission.Scope.html
http://www.math.vu.nl/~gordijn/research.htm

16.OMG Model Driven Architecture,
http://www.omg.org/mda/

17.Fan, M., Stallaert, J., Whinston, A.B., "The Adoption
and Design Methodologies of Component-Based
Enterprise Systems," European Journal of Information
Systems, 9 (1), 2000, 25-35.

18.Wellman, M.P., Market-Oriented Programming: Some
Early Lessons, In S. Clearwater (ed.), Market-Based
Control: A Paradigm for Distributed Resource
Allocation. World Scientific, 1996.

19.Lars Marius Garshol, Living with topic maps and RDF,
Ontopia, (accessed Dec. 2003)
http://www.ontopia.net/topicmaps/materials/tmrdf.html

20.W3C, ”Web Services Architecture”, W3C Working
Draft 8 August 2003, http://www.w3.org/TR/2003/WD-
ws-arch-20030808/

21.Patsy Clarke, If the Internet is the solution – what is the
problem?, http://
www.und.ac.za/users/clarke/phd/p@c1.pdf

22.Erickson, T., Halverson, C., Kellogg, W.A., Laff, M.,
Malkin, P., and Wolf, T. Loops: Designing a Web-
Based Environment for Persistent, Semi-Structured
Conversation (draft paper)
http://www.research.ibm.com/SocialComputing/Papers/
Loops_draft_Nov02.pdf (accessed 24. Dec. 2003)

23.Gerhard Fischer, "Communities of Interest: Learning
through the Interaction of Multiple Knowledge
Systems", Proceedings of the 24th IRIS Conference
(eds: S. Bjornestad, R. Moe, A. Morch, A. Opdahl),
August 2001, Ulvik, Department of Information
Science, Bergen, Norway, pp 1-14

24.Donald Schön, "Educating the Reflective Practitioner",
meeting of the American Educational Research
Association, 1987, Washington, DC (accessed 23. Dec.
2003.
http://educ.queensu.ca/~russellt/howteach/schon87.htm)

25.Ackerman, M., and Starr, B., "Social activity indicators:
interface components for CSCW systems," in
Proceedings of The 8th ACM syrnposiurn on User
interface and software technology, (Pittsburgh, PA,
USA), ACM Press, 1995.

70

http://www.omg.org/mda/
http://www.wspc.com/books/chaos/2741.html
http://www.wspc.com/books/chaos/2741.html
http://www.wspc.com/
http://www.ontopia.net/topicmaps/materials/tmrdf.html
http://www.ontopia.net/topicmaps/materials/tmrdf.html
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.und.ac.za/users/clarke/phd/p@c1.pdf
http://www.research.ibm.com/SocialComputing/Papers/Loops_draft_Nov02.pdf
http://www.research.ibm.com/SocialComputing/Papers/Loops_draft_Nov02.pdf
http://www.research.ibm.com/SocialComputing/Papers/Loops_draft_Nov02.pdf
http://www.research.ibm.com/SocialComputing/Papers/Loops_draft_Nov02.pdf
http://www.research.ibm.com/SocialComputing/Papers/Loops_draft_Nov02.pdf
http://educ.queensu.ca/~russellt/howteach/schon87.htm

Reflective practitioners in software design. Case study :Extreme programming
Cestmir Halbich, Department of information technologies, CUA Prague

Abstract: The position paper comes out from Donald Schoen’s ideas about reflective

practitioners and describes author’s experience in area of computer science. The software gap

is mentioned and methods for its overbridging too. At the case study is illustrated Schoen’s

approach to designer’s activity and benefit for improving effectiveness and efficiency of the

software design process by reflective practitioner’s approach. In the conclusion the

advantages and disadvantages are described.

Key words: reflective practitioner, extreme programming, software gap

By Schoen designers use design representations to create a virtual “design world”

[Schoen 1992] in which the objects and relationships of the design situation are named and

made explicit. The situation that the designer constructs with representations enables new

understandings of the design problem by allowing the designer to see ideas that before existed

only tacitly, and to understand implications of the design situation that did not exist before

constructing the representations. In accordance with some authors we can say that putting

ideas down on paper is not a matter of emptying out the mind but of actively reconstructing it,

then forming new associations, and expressing concepts in pictorial, linguistic, or any explicit

representational forms. Designers work mainly with matter, software developers work usually

with algorithms, but the analogy is evident.

Knowledge is constructed in programming through an interaction between the

programmer's understanding of the design situation and the representations the programmer’s

creates. Design theorist Donald Schoen characterises the relationship between the designer

and design representations as a “reflective conversation with the materials of the situation”

[Schoen 1983], in which the designer acts to shape the design situation by creating or

modifying design representations, and the situation talks back to the designer, revealing

unanticipated consequences of the design actions. By analogy the programmer reflects on the

actions and consequences to understand the situation's back-talk, and then plans the next

course of action. The software design process is driven by the interaction between the

programmer and design algorithms, rather than by following a pre-planned solution approach

(see Figure 1).

Knowledge is constructed in software design through repeated cycles of representing

and interpreting the design situation. Programmers construct the design situation that talks

back in the form of a breakdown. This back talk is interpreted, or reflected upon, to activate

71

Figure 1. Knowledge Construction in software Design

new understandings of the design situation. In this situation is very useful to use certain

formal methodology to improve the effectiveness and efficiency of the software design

process.

Already at the conference NATO 1968 the existence of the gap- “gap, between what

was hoped for from a complex software systems, and what was typically achieved.” There is

a widening gap between ambitions and achievements in software engineering. “This gap

appears in several dimensions: between promises to users and performance achieved by

software, between what seems to be ultimately possible and what is achievable now and

between estimates of software costs and expenditures. The gap is arising at a time when the

consequences of software failure in all its aspects are becoming increasingly serious.“ [NATO

1968, p.70]. Since this time amount of different methodologies was invented. One of these is

so called extreme programming [Beck 1999].

By author’s opinion the extreme programming is very closely joined with Donald

Schoen’s ideas about reflective practitioners. Contrary to some other programmer’s

techniques extreme programming closely collaborates with users in the all phases of software

design. Some features of extreme programming are discussed below.

Extreme Programming (XP) is actually a deliberate and disciplined approach to

software development. It has already been proven at many companies of all different sizes and

industries world wide. XP is successful because it stresses customer satisfaction. The

methodology is designed to deliver the software your customer needs when it is needed. XP

empowers your developers to confidently respond to changing customer requirements, even

late in the life cycle. This methodology also emphasises team work. Managers, customers, and

developers are all part of a team dedicated to delivering quality software. XP implements

a simple, yet effective way to enable groupware style development. XP improves a software

72

project in four essential ways; communication, simplicity, feedback, and courage. XP

programmers communicate with their customers and fellow programmers. They keep their

design simple and clean. They get feedback by testing their software starting on day one.

They deliver the system to the customers as early as possible and implement changes as

suggested.

Now we in short describe main features of all phases of software design by extreme

programming.

Features in Planning

User stories are written. Release planning creates the schedule. Make frequent small releases.

The project velocity is measured. The project is divided into iterations. Iteration planning

starts each iteration. Move people around. A stand-up meeting starts each day. Fix XP when it

breaks.

Features in Designing

Simplicity. Choose a system metaphor. Use CRC-cards for design sessions. Create spike

solutions to reduce risk. No functionality is added early. Refactor whenever and wherever

possible.

Features in Coding

The customer is always available. Code must be written to agreed standards. Code the unit

test first. All production code is pair programmed. Only one pair integrates code at a time.

Integrate often. Use collective code ownership. Leave optimisation till last. No overtime.

Features of Testing

All code must have unit tests. All code must pass all unit tests before it can be released.

When a bug is found tests are created. Acceptance tests are run often and the score is

published.

Now we describe some details about pair programming. All code to be included in

a production release is created by two people working together at a single computer. Pair

programming increases software quality without impacting time to deliver. It is counter

intuitive, but two people working at a single computer will add as much functionality as two

working separately except that it will be much higher in quality. With increased quality comes

big savings later in the project. The best way to pair program is to just sit side by side in front

of the monitor. Slide the key board and mouse back and forth. One person types and thinks

tactically about the method being created, while the other thinks strategically about how that

method fits into the class. It takes time to get used to pair programming so don't worry if it

feels awkward at first.

73

Conclusion

We have good personal experience with implementing of the extreme programming in

the practice. Reflective practitioner method improves added value of the collaboration in

software design process by iterations and feedback loops with customers and end users (see

Figure 2). The case study’s Czech company has good experience with software design of

small, medium and large information systems and work with small and medium work teams.

Figure 2. Iterations and feedback lops in extreme programming

References

NATO SOFTWARE ENGINEERING CONFERENCE 1968, Garmisch, 1968

SCHOEN, D.A. The Reflective Practitioner: How Professionals Think in Action, Basic

Books, New York, 1983, ISBN: 0465068782

SCHOEN, D. "Designing as reflective conversation with the materials of a design situation,"

Knowledge-Based Systems Journal - Special Issue on AI in Design, Vol. 5, No. 1, 1992, pp.

3-14

BECK, Kent: Extreme Programming Explained: Embrace Change, 224 pages ; Addison-

Wesley Pub Co; 1st edition,1999, ISBN: 0201616416

74

The Reflective Practitioner Perspective in Software Engineering
Position Paper

CHI 2004 One Day Workshop - Designing for Reflective Practitioners

Orit Hazzan1 and Jim Tomayko2
1Department of Education in Technology and Science, Technion - IIT, Haifa 32000, Israel

oritha@tx.technion.ac.il
2School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A.

jet@cs.cmu.edu

This position paper is based on our articles:

Hazzan, O. (2002). The reflective practitioner perspective in software engineering education, The
Journal of Systems and Software 63(3), pp. 161-171.

Hazzan, O. and Tomayko, J. (2003). The reflective practitioner perspective in eXtreme Programming,
Proceedings of the XP Agile Universe 2003, New Orleans, Louisiana, USA, pp. 51-61.

1. Introduction
This position paper focuses on the application of the Reflective Practitioner (RP) perspective to the

profession of Software Engineering (SE). The RP perspective, introduced by Donald Schön (1983,

1987), guides professional people (architects, managers, musicians and others) to rethink and examine

their professional creations during and after the accomplishment of the creation process. The working

assumption is that such a reflection improves the proficiency and performance within such professions.

Analysis of the field of SE and of the kind of work that software engineers usually accomplish,

supports the adoption of the RP perspective to SE.

Specifically, this position paper focuses on the construction of ladders of reflection that may

serve as a means that supports one's thinking in terms of different levels of abstraction. Indeed, one

message that is conveyed in this position paper is that the transition between levels of abstraction is an

important skill for software developers. It is proposed that developers' experience in the construction of

ladders of reflection may improve their performance in the process of software development.

2. Software Engineering as Reflective Practice
The importance of reflection as a habit-of-mind in the context of SE is derived mainly from two

factors: The first factor is the complexity involved in developing software systems, regardless of

whether one examines this complexity from an engineering, social or cognitive point of view; the

second factor is the crucial role of communication among teammates for the success of developing a

software system. The first factor suggests that one must improve one’s understanding about one’s own

mental processes. One way to do this is by adopting a reflective mode of thinking. The second factor

implies that in order to improve the communication within software development teams, one must

increase one’s awareness of one’s own mental processes as well as of the mental processes of others.

75

3. Ladders of Reflection
This position paper suggests adopting the reflective practice perspective as a cognitive tool which may

help software engineers in developing software systems. For this aim we propose to use what Schön

(1987) describes by the term ladder of reflection:

We can […] introduce another dimension of analysis [for the chain of
reciprocal actions and reflections that make up the dialogue of student and
coach]. We can begin with a straightforward map of interventions and
responses, a vertical dimension according to which higher levels of activity
are “meta” to those below. To move “up”, in this sense, is to move from
an activity to reflection on that activity; to move “down” is to move from
reflection to an action that enacts reflection. The levels of action and
reflection on action can be seen as the rungs of a ladder. Climbing up the
ladder, one makes what has happened at the rung below an object of
reflection. (Schön, 1987, p.114)

The ladder of reflection described in Schön's quote refers to the architecture studio in which a

coach guides his or her students. In what follows we attempt to explore how such a ladder of reflection

may be associated with software engineering processes. Section 4 presents two ladders of reflection.

4. The Reflective Practice Perspective in Extreme Programming
It seems that an RP approach fits very well to Extreme Programming (XP) (Beck, 2000), since XP

emphasizes learning through reflection processes. For example, the estimation of the team’s velocity is

improved from project to project based on a reflective process; when a pair is engaged in a pair

programming session, the navigator reflects on the drivers’ coding. Thus, it seems that one of the

implicit XP guidelines is reflection. Still, as far as we know, reflection is not outlined in the XP

practices themselves.

RP is not explicitly directed to code production but in the long term it may improve code

production and quality. As XP incorporates activities that are not directly oriented to code production,

yet may improve code development processes, we suggest that the RP perspective may be integrated

naturally in XP. In the description that follows, readers' familiarity with the XP practices is not

necessary.

Tables 1 and 2 present two ladders of reflection1. The first one (Table 1) presents a ladder of

reflection that is constructed during a pair programming2 session. The second ladder (Table 2) is

constructed during a Planning Game session.3 In the first case the idea is to illustrate how a pair of

programmers may increase the abstraction level of their thinking when reflection is interwoven within

the process of software development. In the second case we illustrate how the fact that the customer

1 Tables 1 and 2 illustrate the participants' thinking/discourse at each reflection-rung.
2 The practice of pair programming specifies that any piece of code should be written by two developers, each of

whom has a different role: the one with the keyboard and the mouse thinks about the best way to implement a
specific task; the other partner thinks more strategically. As the two individuals in the pair think at different
levels of abstraction, the same task is thought about at two different levels of abstraction at the same time.

3 The planning game defines a process in which the customer, together with the developers, defines his/her
requirements and priorities. One of the significant advantages of the planning game is that both the customer and
the entire team participate in it, and thus all know the development process. Furthermore, guidelines that lead to
decisions with respect to a specific release or iteration are clear to all.

76

and the team define together the next release/iteration makes it possible to introduce a reflective mode

of thinking.

Table 1: A ladder of reflection: The case of pair programming

Ladder rungs Pair dialogue

Designing [a process of reflection-in-
action]

A: Did we consider all the exceptions?

Description of designing [it takes the
form of description with: appreciations,
advice, criticism, etc.]

B: Good question. Let’s think about the best way to
search for exceptions. I’m trying to understand what to
think about when I’m looking for potential exceptions.

Reflection on description of designing
[reflection on the meaning the other has
constructed for a description he or she
has given]

A: I think that this is not such a simple task. I have never
thought about such systematic ways to look for
exceptions. OK. Let’s give it some thought. [Working on
formulating a systematic way for finding exceptions]

Reflection on reflection on description of
designing [the parties to the dialogue
reflect on the dialogue itself]

B: Now that we have developed a systematic way for
finding exceptions, I think we must analyze these
strategies and reflect on the path that led us to finding
these guidelines.

A: Yes, this may improve our ability to solve problems
of a similar nature in the future.

Table 2: A ladder of reflection: A Planning Game session

Ladder rungs A conversation during a planning game session

Designing [a
process of
reflection-in-
action]

Customer: In fact, I want this feature to behave this way [moves her hands to
illustrate].

Developer 1: Can you think about a similar feature you needed before?

Description of
designing [it
takes the form of
description
with:
appreciations,
advice,
criticism, etc.]

Customer: What do you mean? Would you like me to think about a similar case
in the past in which I wanted a similar feature? Interesting. I have never been
asked to do something like this before. But yes, I can think about a situation in
the past when we needed a new system for our inventory management. I wanted
the application to have this feature and only when we received the system I
realized that, in fact, what we need is something else, more … [illustrates with
her hands]. Let’s call it B. Wow! Does that mean that we should not have at all
the feature I described before?

Reflection on
description of
designing
[reflection on
the meaning the
other has
constructed for
a description he
or she has
given]

Developer 2: We do not know. We can check the two options. But, can you
please recall, what, in the case you just mentioned, led you at the end to realize
that what you need is B, and why you didn’t (or couldn’t) realize this before, I
mean, before you got the system and started working with it.

Customer: Truly, the problem was that we did not consider the full setting in
which the system would work. I think that we should consider the same issue
now, before I make the final decision.

[The customer and the developers think about the way the application will be
used, focusing on the specific considerations that were neglected in the
customer’s previous experience. At the end they decided about a third option that
should be applied for these specific circumstances.]

77

Reflection on
reflection on
description of
designing [the
parties to the
dialogue reflect
on the dialogue
itself]

Customer: It’s amazing. I must trace with you the full path we went through
together.

[The customer and developers dedicate the next 15 minutes for this purpose].

Customer: I do not want even to think about the catastrophe that could have
happened if you develop one of the first two options we talked about. I must learn
the lesson. First of all, I’d like to apologize for my resistance to take part in the
planning game. I must confess that only now I understand how I should manage
the all business with the new application.

Tracker: I think we also learnt something from this experience. First, we should
not be afraid to ask our customers difficult questions and to insist on getting
answers. Second, the specific circumstances you introduced us to may be useful
in our future projects. Finally, we should remember that before making final
decisions and moving on, sometimes it is worth checking whether we consider all
options. I believe that eventually, even if we stay with the first option, this would
not be considered a waste of time.

Looking at the various rows of Tables 1 and 2, one may find that the subjects of reflection on

each rung are objects of different levels of abstraction: While detailed elements are the focus on the

first rung, ways of thinking and heuristics are at the center of attention on the fourth rung. As can be

observed, the participants improve their understanding throughout the scenarios described in Tables 1

and 2.

5. Conclusion
This position paper describes a framework for adopting an RP perspective in general and the

construction of ladders of reflection in particular into software engineering processes. Specifically, we

illustrate how the awareness to the potential contribution of ladders of reflection to software

development processes may improve developers as well as customers' understanding of processes they

are engaged in.

We propose to discuss with the workshop participants the following questions:

o How to identify situations in software engineering in which a reflective mode of thinking

in general and a construction of ladders of reflection in particular may be suitable.

o How to assimilate a reflective mode of thinking into these situations for which it is

identified that a reflective mode of thinking may contribute.

o How to educate software developers to efficiently construct ladders of reflections.

6. References
Beck, K.(2000). Extreme Programming Explained: Embrace Change. Addison-Wesley.

Schön, D. A. (1983). The Reflective Practitioner. BasicBooks,

Schön, D. A. (1987). Educating the Reflective Practitioner: Towards a New Design for Teaching and
Learning in The Profession. San Francisco: Jossey-Bass.

78

On the Timing of Presenting Situational Talkback in
Support of Reflective Practitioners

Yunwen Ye1,2

1Center for LifeLong Learning and Design
Department of Computer Science

University of Colorado, Boulder, CO80309-0430
+1 303 492 3547

2SRA Key Technology Laboratory
3-12 Yotsuya, Shinjuku
Tokyo 160-0004, Japan

 +1 81 3 3347 9361
yunwen@cs.colorado.edu

INTRODUCTION
Design is an activity of making plans to inform the process
of making, in order to create artifacts we want to surround
us [5]or change the current situation to our satisfaction [9].
Since the primary goal is to inform making, certain
representations are bound to be produced during the
process of designing. Design could be logically regarded as
the repetition of making the representation (action), and
interpreting the partially finished representation (reflection)
in terms of its fitness with the ideal image in the mind of
the designer. The interpretation leads to further actions that
either change the current representations for better fit or
add more representations for better approximation of the
ultimate design goal.
If we view the design process as a goal-oriented cognitive
process in which the goal itself is sometimes not well
defined, each action during the design process could be
viewed as a decision-making one which is chosen from
possible candidates after deliberation. The decision-making
process, is dynamically determined by the knowledge that
the designer has in his or her mind and the information
presented in the workspace in which the designer is placed.
In other words, the design process is a continuous dialogue
between human minds and the interim representations [8]
Designers act to make representations, reflect upon the
information presented by the representations, and act
further after reflection.
Because the information contained in the workspace and
the representation is an important resource for reflection,
the important research questions for providing support for
reflective practitioners are: What information should be
presented? How should such information be presented?
And when should such information be presented? This
position paper describes some of my research efforts in
understanding the timing of presenting information in
support of reflective designer.

THE TIMING OF PRESENTING INFORMATION
Design is a knowledge intensive activity and result from
the design activity is a knowledge artifact that embodies
the knowledge of the designer. The knowledge that comes
from the designer could be acquired by the designer
through three different phases: before, in and after the
action.

The knowledge that has been acquired by the designer
before he or she starts design is the result of his or her
professional education and experience. In other words, the
knowledge is the result of previous learning or
interpretation of information presented to the designer long
before the design starts. The context in which learning
takes place is different from the context in which the
learned knowledge is applied.
The knowledge acquired after the action is finished is a
process of learning from previous experience, from the
feedback information of the action. To support reflective
designers to reflect on their finished action, feedback
information is presented when the action for which the
information is provided has been finished. Feedback can
create a situational backtalk of the action by pointing out a
potential breakdown the designer has not known or
noticed, or can augment the situational backtalk to help
designers reflect better on the action just completed.
Feedback can serve two roles. First, it creates a learning
opportunity for designers to improve work performance.
For example, the ACTIVIST system [4] teaches users the
corresponding key shortcut to replace a series of complex
keystrokes used in their previous action in a text editor.
Second, if the previous problematic action can be undone
or modified, it helps users reach a better solution, such as
the on-the-fly spell-checking mechanism in many word-
processing systems.
The knowledge acquired in the action is a process of
expanding the knowing-in-action. For each design
situation, there is a period of time called action-present in
which the designer remains in the “same situation.” This is
a period of time that the designer has made up his or her
plan of action but has not executed the necessary
operations to change the situation. Information presented in
the action-present period could be immediately acquired by
the designer and applied to change the designer’s original
design plan. Information presented in this period of time is
feedforward [9] information because it can make designers
change the course of action or assist designers in
accomplishing the action [10].
These three forms of knowledge acquisition could be
unified in terms of the temporal relationship between the
timing of the information being presented and the timing of
its application. In the first case, information is presented

79

without any advanced knowledge of its potential context.
In the second case, information is presented when the
context is still remembered or can be easily reconstructed
by the designers. In the third case, the information is
presented right into its application context.

OPPORTUNITIES FOR SUPPORTING REFLECTION-IN-
ACTION IN SOFTWARE DEVELOPMENT
Software development involves many design activities.
Software developers engage in many reflections-in-action.
However, few systems have been developed to provide
explicit support for reflective software developers. I want
to explore the opportunities of supporting reflection-in-
action by applying the framework described in the previous
section.
The goal of software development is to create
computational representations for problems to be solved.
Since the representations are computational already, some
might think that software should be the best domain for
augmenting situational talkback to support reflection-in-
action. Apparently, this is not the case. Except for a few
exceptions [3, 7], very little software engineering research
literature has brought up this issue. However, a careful
analysis of certain efforts in software engineering leads to
the conclusion that the research community has, all the
time, been trying to do that implicitly.
Brooks claimed that the invention of interaction
programming environment is the most significant
development in advancing our capability of software
construction [2]. If we analyze this observation from the
perspective of reflection-in-action, we can see it is simply
because the representational feedback information is
presented to the programmer much closer to its original
context, in terms of timing. It is well accepted that
interpretative programming language, though less efficient
performance-wise, is easier to use and easier to learn
because programmers can try their programs immediately
without going through the save-file and compilation phase.
Code review is a process in which project team come
together to review the code written by one member to find
bugs in the code or provide feedback to improve the code.
The representational talkback comes from the social
environment. Due to the difficulty of organizing reviewing
team and coordinating review process, program review is
often an expensive process and cannot be done right after
the code is written or at the needs of the software
developer. Computationally networked socio-technical
environment provides a new opportunity of coordinating
such social process of providing representation talkback.
For example, one of the success factors in Open Source
Software development is that “given enough eyeballs, all
bugs are shallow [6].” Support for reflective software
developers means not only providing computational
mechanisms that augmenting or presenting timely the
situational talkback, but also facilitating the timely
presentation of socially situational talkback.

Rapid prototyping, especially research on executable
specification, is yet another effort. There is a long
separation between the phase in requirement acquisition
(problem framing) and the development of executable code
(problem solution) that can provide situational talkback. To
make the initial specification executable is an effort of
shorten the time separation so that modification could be
made earlier and easier.
Extreme programming and agile development methodology
[1] has pushed this a little further by breaking down the
long separation between the framing of problems and the
solution of problems. Functionality is added incrementally
as a result of incorporating the feedback from the users.
Pair programming is an effort of providing immediate
socially representational talkback.
There are many tools developed for analyzing ripple effects
or test coverage or slicing. All those tools are supposed to
provide feedback information on certain software
development actions. For example, ripple effect analysis is
meant to identify the range of code that is affected by code
or design modification. However, the cycle of making
modification and getting the feedback is too long and too
cumbersome because the analysis is only available when
the modification is made final. Software developers can get
better tool support if the situational talkback of the
modification is presented immediately after the
modification is made. If the feedback is presented even
before the code modification is finally committed, software
developers can execute reflection-in-action better.
The above list is definitely limited, but serves as a starting
point of thinking how to support reflective software
developers with better development methodology and tools
that presents representational backtalk in a timely fashion.

CONCLUSION
This position paper describes my research efforts in
reframing some research problems in software
development from the perspective of the theory of
reflection-in-action, and in exploring the opportunities of
supporting reflective software developers. Most of the
thinking remains theoretical and will be evaluated further
in the near future with system implementation and
empirical studies.

REFERENCES
1. Beck, K. Extreme Programming Explained. Addison-

Wesley: Reading, MA, 2000.
2. Brooks, F.P.J. The Mythical Man-Month: Essays on

Software Engineering, 20th Anniversary edition.
Addison-Wesley: Reading, MA, 1995.

3. Fischer, G. Domain-Oriented Design Environments.
Automated Software Engineering, 1994. 1(2):177-203.

4. Fischer, G., Lemke, A.C., and Schwab, T. Knowledge-
Based Help Systems, in Human Factors in Computing
Systems (CHI'85): San Francisco, CA, 1985, 161-167.

80

5. Habraken, N.J. The Appearance of the Form: Four
Essays on the Position Designing Takes Between
People and Things. Awater Press: Cambridge, MA,
1985.

6. Raymond, E.S. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental
Revolutionary. O'Reilly: Sebastopol, CA, 2001.

7. Robbins, J.E., and Redmiles, D.F. Software
Architecture Critics in the Argo Design Environment.
Knowledge-Based Systems, 1998. 11:47-60.

8. Schön, D.A. The Reflective Practitioner: How
Professionals Think in Action. Basic Books: New York,
1983.

9. Simon, H.A. The Sciences of the Artificial, Third
edition. The MIT Press: Cambridge, MA, 1996.

10. Ye, Y., and Fischer, G. Supporting Reuse by Delivering
Task-Relevant and Personalized Information, in
Proceedings of 2002 International Conference on
Software Engineering (ICSE'02) (Orlando, FL., 2002),
513-523.

81

Interfaces that Reduce the Cost of Examining Alternatives������� ��� ���
	��
	������ ���������������
��� ����!"��#$��	%���%&������ '��$� �$'(� ����)��+*���,+��� -.�/�0�1�
,+��� ��� ���$�����32

Aran Lunzer
University of Copenhagen, Denmark

aran@bigfoot.com

Introduction4 576
8:9�;+<�= >@?A;�= 8:9 ;�8%B+?@C@CD8"<+;�= 9@E
<�FHGIF
6H;�= 8:9J= 97;�K@F�?@B+FL8"M�6
8:N%O
C@?A;�FH<�;�8�8:P B�P = F
B�= 9%QAF
B+= E:9@= 9@E�6
8:E:9@= ;�= R$F
P 5SP 8�TUOV6
8:B1;�NWF
63KIX"9@= B+NWB
MY8"<(<�F�Z�?@F
B1;�= 9@E[X"9IQ T\8"<�]�= 9@EWT^= ;�K_N[X"9�5 B+6
F
9IX.<�= 8:B�B+= N
?@P ;3X"9@FHO
8:?@B+P 5�`ba(X.;�K@FH<S;�KIX"9c>DF
= 9@EdB1;�?@63]eT^= ;�KfX"9c= 9�;�FH<+MgX"6
F ;�KIX.;WX"P O
P 8�T^B7N[X"9@= C@?@P X.;�= 8:9f8"MUh1?@B1; 8:9@F_6�X"B+FeX.;7Xe;�= NWF:i^Xb?@B+FH< 6�X"9
>A<�= 9@EWN[X"9�576�X"B+F
B/;�8:E:FH;�K@FH<�iDB+= QAFj>�57B+= QAF:ikX"9IQ7= B/;�K�?@B^K@F
P CDF�Q
= 97<�FHGIF
6H;�= 9@E%8:97;�K@F(<�F
P X.;�= 8:9@B+K@= C@B/>DFH;�T\F
F
9 ;�K@F
NJ`

l\K@F7T\8"<�]b<�F
CD8"<+;�F�QmK@FH<�F7>DF
E$X"9fX"BWNS5cn�K@opCA<�8.h1F
6H;[= 9c;�K@F
F�X.<�P 5_q�r:r:s"B
`�l\K@F(NW8";�= R:X.;�= 8:9%TUX"B�;�K@F/8:>@B+FH<�R:X.;�= 8:9[;�KIX.;�N[X"9�5
6
8:NWC@?A;�FH<�X"C@C@P = 6�X.;�= 8:9@B
tg= 9@6
P ?IQA= 9@E[B+F�X.<�63KdF
9@E:= 9@F
B
i�QA8�6
?@NWF
9�;
MY8"<�N[X.;+;�FH<�B
iLQAF
B+= E:9u;�8�8:P B3v3i�;�K@8:?@E:Ku8"w�FH<�= 9@EmE"<�F�X.;7GIFHxA= >@= P = ;�5
= 9y;�K@Fz<3X"9@E:F{8"M%<�F
B+?@P ;�BJ;�K@FH5|6
8:?@P Q}QAF
P = R$FH<�ijN[X:QAFz= ;dKIX.<3Q
MY8"<%?@B+FH<�Bj;�8J<�F�Z�?@F
B1;
X"9IQz6
8:NWCIX.<�F QA= w�FH<�F
9�;j<�F
B+?@P ;�B
`e~�8:9@B+FHO
Z�?@F
9�;�P 5�iA?@B+FH<�B^8"M�B+?@63K7;�8�8:P B^T\FH<�FjNW8";�= R:X.;�F�Q[;�8%B�X.;�= B1�I6
F:iI=g` F:` i
;�8eX"6
6
F
CA;
;�K@FW�@<�B1;S<�F
B+?@P ;
;�KIX.;%X"C@CDF�X.<�F�Q{X"6
6
F
CA;3X">@P F:i�<3X.;�K@FH<
;�KIX"9 ;�8%FHxAC@P 8"<�F(MY?A<+;�K@FH<U;�8%B+F
F�T^K@FH;�K@FH</X"P ;�FH<�9IX.;�= R$FLB+6
F
9IX.<�= 8:B
N[X
5�CA<�8�QA?@6
F�<�F
B+?@P ;�B0;�KIX.;kT\FH<�F�>DFH;+;�FH<�`0�DMYF
P ;0;�KIX.;�= M�;�K@F�6
8:B1;�8"M
N[X"]�= 9@E
B+?@63K FHxAC@P 8"<3X.;�= 8:9@B^6
8:?@P Q >DF(<�F�QA?@6
F�Q B+?A�W6
= F
9�;�P 5�i�;�K@= B
T\8:?@P Qb;�= C{;�K@F[>IX"P X"9@6
F7= 9{MgX�R$8:?A<
8"M(FHxAC@P 8"<3X.;�= 8:9ki\X"9IQbK@F
9@6
F
P F�X:Q ;�8%>DFH;+;�FH<+OV= 9AMY8"<�NWF�Q7QAF
6
= B+= 8:9@B
`

l\K@= B
CIX"CDFH<
B+?@NWN[X.<�= B+F
Bj;�K@F QAF
R$F
P 8:C@NWF
9�;�BSX"9IQe<�F
B+F�X.<�63KmQA= O
<�F
6H;�= 8:9@B(X.<�= B+= 9@E%M <�8:N�;�KIX.;/8"<�= E:= 9IX"P0NW8";�= R:X.;�= 8:9k`

Result-space reconnaissancel\K@F^MY8�6
?@B�8"MkNS5
n�K@o�t��k?@9@�
FH<�iIq�r:r:�$v�TUX"B�;�K@F^= QAF�XL8"M�� <�F
B+?@P ;+O
B+CIX"6
F�<�F
6
8:9@9IX"= B+B�X"9@6
F:����E:= R�= 9@E^;�K@F�?@B+FH<�X^63K@F�X"CjTUX
5�;�8/FHx@X"N%O
= 9@F
X%T^= QAFS<3X"9@E:FS8"M�B+6
F
9IX.<�= 8:B
ik>�5_QA= B+CIX.;�63K@= 9@EW;�K@Fj6
8:NWC@?A;�FH<
;�8eF
R:X"P ?IX.;�F[;�K@F
N�X"9IQb;�8d<�F
CD8"<+;(h1?@B1;WB+?@NWN[X.<+5zR:X"P ?@F
BS;�KIX.;
K@F
P C[T^= ;�K F
R:X"P ?IX.;�= 8:9JX"9IQW6
8:NWCIX.<�= B+8:9k`�l\K@F(]$FH5%MYF�X.;�?A<�F
BU8"M�X
<�F
B+?@P ;+OVB+CIX"6
FL<�F
6
8:9@9IX"= B+B�X"9@6
FjB+FH;�?@CJX.<�F�;�K@FH<�FHMY8"<�FSX"BUMY8:P P 8�T^B
�

�{� ?@B+FH<^B+CDF
6
= �IF
B\;�K@F�B+6
F
9IX.<�= 8:B^;�KIX.;^X.<�F�;�8
>DF�FHx@X"NW= 9@F�Q
�W= 9 ;�FH<�NWB\8"M�X"P ;�FH<�9IX.;�= R$F�B+FH;+;�= 9@E:BUMY8"<^R:X.<�= 8:?@BU= 9@C@?A;UCIX.O
<3X"NWFH;�FH<�B%�mX"9IQm;�K@FJNWF�X"B+?A<�F
NWF
9�;�B%;�8b>DFJ;3X"]$F
9mM <�8:N
F�X"63KJB+6
F
9IX.<�= 8A`

� l\K@Fj6
8:NWC@?A;�FH</F
R:X"P ?IX.;�F
B(X"P P�B+CDF
6
= �IF�QJB+6
F
9IX.<�= 8:B
i�N[X"]$F
B
;�K@F/<�F�Z�?@F
B1;�F�QWNWF�X"B+?A<�F
NWF
9�;�B�8:9[;�K@F
= <\<�F
B+?@P ;�B
i@X"9IQ[CA<�8"O
R�= QAF
B X"9u= 9�;�FH<3X"6H;�= R$FdR�= B+?IX"P = B�X.;�= 8:9u;�KIX.; 6
8"<+<�F
P X.;�F
B ;�K@F
CIX.<3X"NWFH;�FH<^B+FH;+;�= 9@E:B^T^= ;�K7;�K@F�NWF�X"B+?A<�F
NWF
9�;UR:X"P ?@F
B
`

� l\K@F%?@B+FH<LT\8"<�]�BLT^= ;�Ke;�K@F%R�= B+?IX"P = B�X.;�= 8:9z;�87�I9IQdB+6
F
9IX.<+O
= 8:B�T^= ;�K[= 9�;�FH<�F
B1;�= 9@ES6
8:N
>@= 9IX.;�= 8:9@B�8"MkCA<�8:CDFH<+;�= F
B
i@X"9IQ%;�8
<�F�Z�?@F
B1;U;�K@FjQAFH;3X"= P F�Q <�F
B+?@P ;�BUMY8"</;�K@8:B+FLB+6
F
9IX.<�= 8:B
`

l\K@FJ63K@8:B+F
9�QA8:N[X"= 9m8"MLB1;�?IQ�5bTUX"BW;�K@F MY8"<�N[X.;+;�= 9@Ez8"MjQA8�6
?AO
NWF
9�;�B�= 9[� �HlA�A�Si�E:= R$F
9%M <�F
F�QA8:N�8.R$FH<�B+?@63KWCIX.<3X"NWFH;�FH<�B�X"B�>IX"B+F
MY8:9�;/B+= �
F:iDP = 9@FLB+CIX"6
= 9@EAiI;�K@F�B+6�X"P = 9@E[8"M�F
N
>DF�Q@QAF�QW�IE:?A<�F
B
iDX"9IQ
B+8b8:9k`��@8"<[T^KIX.; 6
8:?@P Qf>DFdX.<�E:?@F�QmTUX"B XbB+N[X"P P(X:Q@QA= ;�= 8:9IX"P
= 9�R$F
B1;�NWF
9�;(= 9zFHw�8"<+;�ik?@B+FH<�BL6
8:?@P QdKIX�R$FS;�K@F
= <jQA8�6
?@NWF
9�;�B/MY8"<+O
N[X.;+;�F�Qf= 9uQA8:�
F
9@B 8"MSX"P ;�FH<�9IX.;�= R$F_TUX
5AB
i(X"9IQ�6
8:?@P Q�QA= B+6
8.R$FH<
T^K@= 63K <�F
B+?@P ;�B\KIX:Q QAF
B+= <3X">@P FLCA<�8:CDFH<+;�= F
BUB+?@63K7X"B\�@;+;�= 9@ES8:9�;�8
X
6
FH<+;3X"= 9b9�?@N
>DFH<L8"MUB+K@F
FH;�B
i�8"<SKIX�R�= 9@E ;�K@FWCIX"E:FW>A<�F�X"]�BL8�6
6
?A<
X.;^T^KIX.;^;�K@F�?@B+FH<^MYF
P ;^;�8%>DFL6
8:9�R$F
9@= F
9�;^C@P X"6
F
B^= 97;�K@F(;�FHx�;�`

l\K@F
8:?A;�6
8:NWFSTUX"BLNW= xAF�Q�` � P ;�K@8:?@E:KeB+8:NWFS;�F
B1;LB+?@>�h1F
6H;�B�MYF
P ;
;�KIX.;�;�K@= B�TUX"BUX(T\8"<+;�K�T^K@= P F/;+<3X:QAFHOV8"w78"MkFHw�8"<+;\X"E$X"= 9@B1;\;�K@F^CD8"O
;�F
9�;�= X"P�;�87?@9@6
8.R$FH<�FHxA6
F
P P F
9�;LMY8"<�N[X.;+;�= 9@E <�F
B+?@P ;�B
i08";�K@FH<�B�T\FH<�F
P F
B+B7NW8";�= R:X.;�F�Q�`���8:NWF_MYF
P ; ;�KIX.;JX"9�5�8:?A;�C@?A; 8"M
� �HlA�@��TUX"B
CA<�8:>IX">@P 5%E:8�8�QWF
9@8:?@E:Kk��;�8j>D8"<+<�8�Tf;�K@FUT\8"<3QAB�8"M��(FH<�KIX.<3QW��= B1O
63K@FH<StV�"s:s$�:v3iI;�K@FH5 B+= NWC@P 5 TUX"9�;�F�Q ;�8%>DFL6
8:9@B+?@NWFH<�B
`\�@?A<+;�K@FH<+O
NW8"<�F:i.;�K@F�FHx�;+<3X^FHw�8"<+;�TUX"B�B+CDF
9�;�8:9S?@B+= 9@E^;�K@F�NWF
63KIX"9@= B+NWBkMY8"<
<�F�Z�?@F
B1;�= 9@E%<�F
6
8:9@9IX"= B+B�X"9@6
F tgC@B+F
?IQA8"O�� �HlA�@�}N[X.<�]�?@CDv3i@X"9IQ7;�K@F
= 9�;�FH<3X"6H;�= R$F_CIX.<3X"P P F
P OV6
8�8"<3QA= 9IX.;�F
BJR�= B+?IX"P = B�X.;�= 8:9|8"ML;�K@FJ<�F
B+?@P ;�B
�{>D8";�Kc8"M(T^K@= 63K�X.<�FJQA= B1;+<3X"6H;�= 8:9@BWM <�8:N�Xd?@B+FH<�� BW6
8"<�F_X"6H;�= R�O
= ;�5_8"M\CA<�F
CIX.<�= 9@E7X QA8�6
?@NWF
9�;�`Ll\K@= BLB+= E:9IX"P P F�Qd;�K@FS9@F
F�Q_MY8"<jX
NW8"<�FS= 9�;�F
E"<3X.;�F�QdX"C@CA<�8$X"63Kd;�8[KIX"9IQAP = 9@E X"P ;�FH<�9IX.;�= R$F
B
ikF
N
>DF�Q�O
QAF�Q[T^= ;�K@= 97;�K@F�N[X"= 9 ;�8�8:PkMY8"</;�K@F�B+?@C@CD8"<+;�F�Q7X"6H;�= R�= ;�5�`

Subjunctive interfacesl\K@F{� B+?@>�h1?@9@6H;�= R$Fd= 9�;�FH<+MgX"6
F:�/X"C@CA<�8$X"63K�t��k?@9@�
FH<eq�r:r:��i%q�r:r:r��
�k?@9@�
FH<��c�(8"<�9�>I \]��"s:s:¡$vDTUX"B0= 9@B+C@= <�F�QL>�5(�(8"MYB1;3X:Q�;�FH<�� B�t1q�r$¢"r$v
= QAF�X/8"MDX/N[X"E:= 6�X"P�;�F
P F
R�= B+= 8:9S;�KIX.;�6
8:?@P QSB+K@8�TmX^R�= FHT\FH<�9@8";Ih1?@B1;
;�K@F^>A<�8$X:QA6�X"B1;�B�M <�8:N£XLB+= 9@E:P F^<�F�X"P = ;�5�i�>@?A;�M <�8:N£X"P ;�FH<�9IX.;�= R$F^<�FHO
X"P = ;�= F
BW;�KIX.;WQA= w�FH<�F�Qc= 9{TUX
5AB
M <�F
F
P 5m63K@8:B+F
9m>�5b;�K@F R�= FHT\FH<
�
B+?@63KfX"B%<�F�X"P = ;�= F
B[= 9�R$8:P R�= 9@EzQA= w�FH<�F
9�;
T\F�X.;�K@FH<[6
8:9IQA= ;�= 8:9@B
i\8"<
;3X"]�= 9@E[C@P X"6
FS8:9_F
9�;�= <�F
P 5_QA= w�FH<�F
9�;(C@P X"9@FH;�B
`(l\K@FS]$FH57MYF�X.;�?A<�F
B
8"M�X
B+?@>�h1?@9@6H;�= R$F�= 9�;�FH<+MgX"6
FjX.<�FSX"BUMY8:P P 8�T^B
�

� l\K@F7?@B+FH<W8"MLX"9�X"C@C@P = 6�X.;�= 8:9fB+K@8:?@P Qc>DFJX">@P F7;�8eB+FH;W?@C
N
?@P ;�= C@P F[B+6
F
9IX.<�= 8:BW;�KIX.;WQA= w�FH<%= 9fX.<�>@= ;+<3X.<+5bTUX
5AB
`c�@8"<
FHx@X"NWC@P F:i"T^K@F
9%8"w�FH<�F�Q
B+8:NWFU63K@8:= 6
FU= 9
;�K@F^X"C@C@P = 6�X.;�= 8:9k� B
= 9�;�FH<+MgX"6
F:i�;�K@FU?@B+FH<�B+K@8:?@P Q%>DF^X">@P FU;�8�B�X
5 � N[X
5A>DF\��TUX"9�;
R:X"P ?@F ¤zi�>@?A;%N[X
5A>DF[¥¦8"< §�`
`
`%B+8eP FH;WNWF B+FH;W?@CmX"P P
;�KA<�F
FLX"9IQ7B+F
FLK@8�T|;�K@= 9@E:BU;�?A<�978:?A;^= 9JF�X"63K76�X"B+F:� `

� l\K@F�B+6
F
9IX.<�= 8:B/B+K@8:?@P Q7>DF�R�= FHTUX">@P FLB+= N
?@P ;3X"9@F
8:?@B+P 5�iAB+= QAF
>�5WB+= QAF:iA= 97XjTUX
5W;�KIX.;UK@F
P C@B�;�K@F(?@B+FH<U;�8S6
8:NWCIX.<�F/;�K@F
N
X"9IQcX"P B+8d;�8d]$F
F
C{;+<3X"63]b8"M�X"P P\;�K@F R:X"P ?@F
Bj�bX"P P\;�K@F = 9AO
C@?A;�B
i\X"9IQ{;�K@F
= <W6
8"<+<�F
B+CD8:9IQA= 9@Ez<�F
B+?@P ;�BS�{>DF
P 8:9@E:= 9@Ee;�8
F�X"63KeB+6
F
9IX.<�= 8A`%l\K@FS<�F
B+?@P ;�BLB+K@8:?@P Qd>DF
B+K@8�T^9e?@B+= 9@E7F
B1O
B+F
9�;�= X"P P 5L;�K@F�B�X"NWF�QA= B+C@P X
5L;�F
63K@9@= Z�?@F
B09@8"<�N[X"P P 5L?@B+F�QLMY8"<
;�K@F�B+= 9@E:P FHOVB+6
F
9IX.<�= 8[R$FH<�B+= 8:9J8"M�;�K@FjX"C@C@P = 6�X.;�= 8:9k`

82

��� �����	��

����������������������� ���� !��"$#%� �'&
�(�*)+��,!-+�.�./��+� 0��1�2�3�4���	���
/���5���#.#%�2� �768�4&*�9"$&!6��7�:&
�(�+;��'<=� ��;3�>&
�(#.�	&7-4�7/��+�2� �7)
� �
�.�./�;��76����
�
�2�.)4�?�1;����
6�@A�2�.6�B?CD���+;��E)+� �+�����+� &��8)+;�&7@A��;����	��5��+;��E�.)4���>;��
)?/�;�&�)4�7�9�4&F/��	�����4�'"G�.� �+� #%� �H)+/��7������� &�)
,.�
)4�76I&��J6.� KL���	�7�3��07�
�2���7)G��&
�E�+;��*�
����� �*&
�M�+;��9� �
�.�./�;����GNO)4#=�7/P� Q%�76J,!�8#.�	�7)+)+�2������;�&
�DRTS
���8���G07����� &��.)G#=&��2�3�+)
6.�����2���F�+;��E6.� �	�7/��DRU"$�
�.� #%�.� ���+� &��O�
6�-+�.)4�	"$�7�3�A&
�:�+;����?�
����� ��B?��)A�'�	�7)+�.� ��5L�+;��	���'� �
�.�./�;�����)?��&7@V�� ��2)4�?�2��#.���	�
�2� �7��W
�+;��9�+;��	���*,.�
�2�2)')4���7�I;����	�9�2�X"E�26!RY<=� ��;3�'@Z���	�*� �
�.�./�;��76[)+�\"G�.� �4�
����&��.)+� �J�2�J�+;��9�+;��	���9)+/��7������� &�)$������@])4�7/�&��.6.)
�������2� ���^BZ_Z;����.)4���?/��
�9��&7@`�
6�-+�.)4�a@A�2�.6*)4#=���768bY�.)+�2���'�+;��G� ���	�
�G���	�	&7@c���a,=&
�4�4&3"d� ������e(�
�.6F#.�	&7-4�7/��+�2� �'"$�
)+)fbg�+;��
6.� �
�he��
�.6�&
,%)4���	0��1)+�\"G�.� �4�
����&��.)+� �8;�&7@i�+;��F� �
�.�./�;��7)f���	&3"j�+;��16.� KL���	�7�3�f�
����� �7)f@Z&��.�268,=�H�7KL�7/��4�76�B'CU�Z@Z�
�3�4�76�5
�+;��7)4�a#.���	��"$���4����)��4&3&>/��
�$���
/�;�,=�a��� 0��7�$"G�.� �+� #%� �A07�
�2���7)�W��+;.�2):@A�2�2��)+�\"$#%� �$"G�.� �+� #%� �G�+;��A�!�%"�,=���:&
�%,.�
�2�2)k� �
�.�./�;��76
&��*���
/�;1Q%���2����B
l?� ��;3���m�n�����76�,.�
/�S��4&3&��.��&
�Z��0��7;.�2/P� ��6��7)+� �������^5!)+;�&7@A�2���>�+;���)+�\"G�.� ���4�76E�	�7)4#=&��.)4�?&
���>)+�.)4#=�7�.)+� &��')4��)4�4��"o���.�.�.�2���
&70����Z�>,%�%"$#!�$�	&
�
6�B(_Z;���6��7)+� �������a;��
)(/�&��3�4�	&��=&70����(���!�%"�,=���Z&
�p07����� ��,%� �7)Z�2�H�+;��f)+�.)4#=�7�.)+� &��16��7)+� ����bY��&
�Z)+;�&7@A�
�2�F�+;.�2)(Q%�����	�
e+5.�
�.6F�2)M;����	�f�� !��"E�2�.�2���E;�&7@q�+;���/P���	�	�7�3�a)4���4�+�2����)Z@Z&��.�261#=���	��&
��"r�2�F�7� ��;3�M)+/��7������� &�)Z�	��#.�	�7)4�7�3�+�2���
�
� �4���������+� 0��*�	&
�
6J#.���4�4�����.)G�
�.6I)4#=���76.)�B�st�
/�;I&
�M�+;��F��&����'�	�7)4#=&��.)4�9"$���
)+���	��"$�7�3�+)Hbu"$&
�+� &��J#%� &
��5m�
/P/��7� ���	���+� &��
07�
�2���7)�5.���	�7v!���7�./��1)4#=�7/��4���%"15%�
�.6F�E"$&
�+� &��!RT)+�2/�S!���7)+)A"$���
)+���	�
em�2)a)+;�&7@A�2���E6�������"E�2/��
�2� �*��#�6����4�76F07�
�2���7)Z��&
�A���
/�;
&
�m�+;��1)+/��7������� &�)�5w���	�	�
���
�76��
)�x)	"$�
�2�:"G�.� �+� #%� �7)�yw6.�2)4#%� ����)��4&9;��7� #��+;��H�.)4����/�&
�	�	�7� ���4�1�+;��'07�
�2���7)�,=���U@Z���7�9�+;���"1B
��&
�M�� !��"$#%� ��5!�+;��f)+/��7������� &$���(�4&
#F� �����(@Z&��.�261)+��,!-4�7/��(#.�
)+)4�7���
����)(�4&G�
/P/��7� ���	���+� &��.)Z&
��zk{!B |35!�
�.61;��
)(�
�'�7)4�+�\"$���4�76
���
�.)4���$���
/��4&
��&
�(

B }�B

� l\K@F7?@B+FH<WB+K@8:?@P Q{>DF7X">@P F7;�8d6
8:9�;+<�8:PUB+6
F
9IX.<�= 8:B[= 9cCIX.<+O
X"P P F
PgiSMY8"<zFHx@X"NWC@P Fb>�5yX:Q.h1?@B1;�= 9@E|X"9�= 9@C@?A;dCIX.<3X"NWFH;�FH<
;�KIX.;/= B/B+KIX.<�F�Q7>�5 N[X"9�5 B+6
F
9IX.<�= 8:B�X"9IQ7B+F
F
= 9@EW= 9@B1;3X"9�;3X.O
9@F
8:?@B+P 5W;�K@F(FHw�F
6H;U8"Mk;�K@= BUX:Q.h1?@B1;�NWF
9�;\8:9 F�X"63K B+6
F
9IX.<�= 8A`
t�~(9@FW6
8:?@P QzB�X
5e;�KIX.;j;�K@FW6
?@F
BSX�R:X"= P X">@P F[MY8"<S<�FHGIF
6H;�= 8:9AO
= 9AO�X"6H;�= 8:9{QA?A<�= 9@EJB+?@63KbX:Q.h1?@B1;�NWF
9�;SX.<�F%;�K�?@BjN
?@P ;�= C@P = F�Q
>�5[;�K@F�9�?@N
>DFH<U8"M�B+6
F
9IX.<�= 8:B/>DF
= 9@EWX.w�F
6H;�F�Q�` v

l�T\8[FHx@X"NWC@P F
B^8"M�;�K@FLN[X"9�5 FHxACDFH<�= NWF
9�;3X"PkB+?@>�h1?@9@6H;�= R$FL= 9�;�FH<+O
MgX"6
F
B%;�KIX.;
KIX�R$F >DF
F
9c>@?@= P ;S;�8zQ@X.;�F7X.<�F B+K@8�T^9m= 9c��= E:?A<�Feq:`
l\K@F
B+FLX.<�F�FHx@X"NWC@P F
B\8"M�QAF
B+= E:97>IX"B+F�Q[8:97Q�5A9IX"NW= 6/B+= N
?@P X.;�= 8:9k`
��?@>�h1?@9@6H;�= R$F/= 9�;�FH<+MgX"6
F
BU6�X"97X"P B+8
>DF/?@B+FHMY?@PDMY8"<^QAF
B+= E:9 8"M�B1;3X.;�= 6
X.<+;�FHMgX"6H;�B��%B+?@63K X"BUX"97X.<�63K@= ;�F
6H;�?A<3X"PDNW8�QAF
P@;�KIX.;\= 9@6
8"<�CD8"<3X.;�F
B
T^KIX.;+OV= M�F
P F
NWF
9�;�B
iD8"<jX%5�F�X.<�C@P X"9@9@FH<(;�KIX.;LX"P P 8�T^BLF�X"63K_MY?A;�?A<�F
F
R$F
9�;U;�8W>DFLB+63K@F�QA?@P F�Q[MY8"<(B+F
R$FH<3X"P�X"P ;�FH<�9IX.;�= R$FjCD8:B+B+= >@P FSQ@X.;�F
B
`
��9[;�K@F
B+F�P X.;+;�FH</QA8:N[X"= 9@B�;�K@F�= 9�;�FH<+MgX"6
F(T\8:?@P Q K@F
P C ;�K@F(?@B+FH<U;�8
T\8"<�]bT^= ;�K{;�K@F >A<3X"9@63K@= 9@EdCD8:B+B+= >@= P = ;�= F
BWF
B1;3X">@P = B+K@F�Qc>�5z;�K@8:B+F
X"P ;�FH<�9IX.;�= R$F
B
i
MY8"<bFHx@X"NWC@P Fb8"w�FH<�= 9@Eu<�= 63K�<�FHGIF
6H;�= 8:9AOV= 9AO�X"6H;�= 8:9
T^K@F
9c;�K@F7?@B+FH<W6
8:NWF
B
;�8zX:Q@QbMY?A<+;�K@FH<WF
P F
NWF
9�;�B%X"9IQmQA= B+6
8.R�O
FH<�B\T^KIX.;UT\8:?@P Q >DF%tg= 9Dv�6
8:9@B+= B1;�F
9�;\T^= ;�K ;�K@F(FHxA= B1;�= 9@E
F
P F
NWF
9�;�B
= 9JF�X"63KJB+6
F
9IX.<�= 8A`

� BWT\F
P PLX"B[B+8:NWF_?@B+FH<7B1;�?IQA= F
B[= 9|~�8:CDF
9@KIX"E:F
9|QAF
NW8:9@B1;+<3X.;+O
= 9@E�B+= E:9@= �I6�X"9�;�>DF
9@FH�@;�B0M <�8:N�X/B+?@>�h1?@9@6H;�= R$F\= 9�;�FH<+MgX"6
F^QAF
B+= E:9@F�Q
MY8"<U>A<�8�T^B+= 9@ESX"9IQW6
8:NWCIX.<�= 9@ELN
?@P ;�= O�X.;+;+<�= >@?A;�F^Q@X.;3XWt��k?@9@�
FH<\�
�(8"<�9�>I \]Di�;�8^X"C@CDF�X.<Hv3i"8";�K@FH<k<�F
B+F�X.<�63K@FH<�B0KIX�R$F�>DF
E:?@9�;�8^8:>A;3X"= 9
B+?@6
6
F
B+B1MY?@P�<�F
B+?@P ;�B/M <�8:N ;�K@F
= <�8�T^9_FHx�;�F
9@B+= 8:9@B(8"M�;�K@FL;�K@F
NWF(�
9@8";3X">@P 5
;�K@FU<�F
6
F
9�;�T\8"<�]
8:9WB+?@C@CD8"<+;�= 9@EjX"P ;�FH<�9IX.;�= R$F
B�= 9W= N[X"E:F
CA<�8�6
F
B+B+= 9@EAiA?@9IQAFH<�;�K@F^>IX"9@9@FH<\n�X.<3X"P P F
P�n�X.;�K@B/t�l0FH<+<+5G�U����� � ��;�8
X"C@CDF�X.<Hv3`

Future: Ingredient-Based Computing��= E:?A<�F7�7B+K@8�T^Bj;�K@F%�@<�B1;�i�B+= NWC@P FWFHx@X"NWC@P FW8"M/X7;�8�8:P\QAF
NW8:9AO
B1;+<3X.;�= 9@Ez��9@E"<�F�QA= F
9�;+Og�\X"B+F�Qf~�8:NWC@?A;�= 9@EJ�cXdB+CDF
6
= X"P = B�X.;�= 8:9u8"M
B+?@>�h1?@9@6H;�= R$Fb= 9�;�FH<+MgX"6
F
BeB+?@= ;�F�Qy;�8uX"C@C@P = 6�X.;�= 8:9@Bd;�KIX.;d6�X"9}>DF
63KIX.<3X"6H;�FH<�= B+F�Q_X"B/B+CA<�F�X:QAB+K@F
FH;+OVP =]$FjX"6H5A6
P = 6jE"<3X"C@K@B/8"M�6
F
P P B(X"9IQ
MY8"<�N
?@P X"B
`�l\K@= B�X"C@C@P = 6�X.;�= 8:9%NW8�QAF
Pgi"T^K@= 63KST\FU>DF
P = F
R$F\6�X"9
B+?@>AO
B+?@NWF7X_T^= QAF <3X"9@E:FJ8"M/;�8�Q@X
5�� BWX"C@C@P = 6�X.;�= 8:9@Bdtg= 9@6
P ?IQA= 9@EAi�9@8";
P F�X"B1;�i:B+CA<�F�X:QAB+K@F
FH;�B3v3i:8"w�FH<�B�8:C@CD8"<+;�?@9@= ;�= F
B0;�8^B+= NWC@P = M 5L;�K@F�KIX"9AO
QAP = 9@E[8"M�]�9@8�63]�OV8:9JFHw�F
6H;�B(8"M�X"P ;�FH<�9IX.;�= R$FSR:X"P ?@F
B^;�KIX.;/;�K@Fj?@B+FH<
X"B+B+= E:9@B^;�8%6
F
P P B^T^= ;�K@= 97;�K@FLQAF
CDF
9IQAF
9@6H5[E"<3X"C@Kk`

~(9@F�E:8$X"P:MY8"<�= 9@E"<�F�QA= F
9�;+OV>IX"B+F�Q�6
8:NWC@?A;�= 9@E\= Bk;�8U6�X.;�FH<0MY8"<�NW= xAF�Q�O
= 9@= ;�= X.;�= R$F
R:X.<�= X.;�= 8:9_�J=g` F:` ik;�87X"P P 8�T�X"P ;�FH<�9IX.;�= R$F
B(;�8 >DF
E:F
9@FH<+O
X.;�F�Qf9@8";[>�5mQA= <�F
6H; ?@B+FH<W<�F�Z�?@F
B1;[>@?A;WM <�8:N X"?A;�8:N[X.;�F�QmCA<�8"O
6
F
B+B+F
B
`W�@8"<LFHx@X"NWC@P F:ik6
8:NWC@?A;3X.;�= 8:9IX"P�CA<�8�6
F
B+B+F
BL;�KIX.;LCA<�8.R�= QAF
?@9@B+8:P = 6
= ;�F�Qm= 9AMY8"<�N[X.;�= 8:9cMY8"<[?@B+FH<W<�FHGIF
6H;�= 8:9ytgB+?@63KmX"BW6H<�= ;�= 6
B
i
6
8:9�;�FHx�;+OVB+F
9@B+= 9@E^<�F
6
8:NWNWF
9IQAFH<�B
i"8"<�8";�K@FH<�MY8"<�NWB�8"MDX"E:F
9�;Hv0N[X
5
6
8:NWF
?@C_T^= ;�Kz6
8:9AGI= 6H;�= 9@E7R:X"P ?@F
BLQAF
CDF
9IQA= 9@E 8:9d;�K@F%X"B+B+?@NWCAO
;�= 8:9@B%;�KIX.;%F�X"63KmF
N
>D8�QA= F
B
`ma(X.;�K@FH<
;�KIX"9c;+<+5b;�8eN
?IQ@QAP F7X"P P
;�K@F
B+FJF
P F
NWF
9�;�B%;�8:E:FH;�K@FH<�iU= ;[T\8:?@P QmN[X"]$F7B+F
9@B+FJ;�8z<�F
C@P = 6�X.;�F
B+6
F
9IX.<�= 8:B%X"?A;�8:N[X.;�= 6�X"P P 5b= 9cX7TUX
5z;�KIX.;SP FH;�Bj;�K@FW?@B+FH<
?@9IQAFH<+O
B1;3X"9IQJ;�K@FjR:X.<�= 8:?@B(8"w�FH<�= 9@E:B/�7= 9@6
P ?IQA= 9@E[K@8�T}F�X"63KdKIX"B�X.<�= B+F
9
� X"9IQ N[X"]$F�= 9AMY8"<�NWF�Q 63K@8:= 6
F
B(X">D8:?A;^T^K@= 63K ;�8WX.;+;�F
9IQ[;�8A`

4 57K@8:CDF
B^MY8"</;�K@= BUT\8"<�]�B+K@8:C_= 9@6
P ?IQAF��I9IQA= 9@E%X"9_8:C@CD8"<+;�?@9@= ;�5
;�8eQA= B+6
?@B+B
6
8:9@6H<�FH;�F = B+B+?@F
BS<�F
P X.;�= 9@Ed;�8dB+?@63K{NW= xAF�Q�OV= 9@= ;�= X.;�= R$F
B+?@C@CD8"<+;�i0X"9IQeX"P B+87<�F
P X.;�= 9@E7;�8 B+= ;�?IX.;�= 8:9@B�;�KIX.;LT\8:?@P Qd6�X"P P�MY8"<
F
B1;3X">@P = B+K@= 9@E7P 8:9@E"OVP = R$F�QdX"P ;�FH<�9IX.;�= R$F
B/�J=g` F:` ikB+6
F
9IX.<�= 8:B�;�KIX.;(<�FHO
N[X"= 9LB+F
CIX.<3X.;�F:i.5�FH;0= 9IQA= R�= QA?IX"P P 5(<�F
P F
R:X"9�;�i.MY8"<0T\F
F
]�B08"<�NW8:9�;�K@B
<3X.;�K@FH<U;�KIX"9Sh1?@B1;(QA?A<�= 9@ES;�K@F�6
8:?A<�B+FL8"M�XSB+= 9@E:P Fj?@B�X"E:FLB+F
B+B+= 8:9k`

83

��� �����	���3�a�o�4��� 0�� �
���� !��"$#%� �G&
�m�2���
�	�76.� �7�3�DRu,.�
)4�76�/�&3"$#%���+�2����5p)+;�&7@A�2���1�+;��$#%����)+�.� �?&
�m"G�.� �+� #%� �E#.���	�
�2� �7�t����0�� �
�7R
�+� &��.)�&����+;����O&
���26��`�26����O��,LB��a���+;��'� �����?�+;��'�.)4���>;��
)�)4������#��H/�&3"�,%�2�����+� &���&
�m/��7�2�2)f�2���H�4&3&��t/��
�2� �76	�M|
�
b��Z�2� #L5��(&��.���7/��m�
�.6
�Z� &����?��&
�Z�+;����O��,�e��+;����(�2)m,=�7�2���G6���0��7� &
#=�76E�2�H/�&��2� ��,=&
�	���+� &��F@A� �+;����.�'�.��-+�\"$�f�����f&�S!S��
�26�&
�f�.� 0�����)+� �U��� #.��#=���>)+��,="E� �4�4�76���&
�f�	��0�� ��@��uB�_Z;��7)4�E/��7�2�2)f/�&��3�4�
�2���
/��+� 0��$�7� ��"$�7�3�+)A�� !�4�	�
/��4�76����	&3" �+;��')4������/�;�)+� �4�
�
&3&
��� ��B ���^5w�
�.6�;��
�.6���5L�	�7)4#=�7/��+� 0��7� �
5p�+;��')4������/�;��2��#%����Q%�7�26�Ww�+;��')4@A� �+/�;��+;����f)4�7� �7/��+)�@A;����+;����f�+;��')4������/�;�)+;�&��.�26
/�&70������+;��$@A;�&�� ���O��,L5�-+�.)4�A#.���
�7)?�2�����	�7�./�;�5=&
�(-+�.)4�A#.���
�7)?�2�����	�
�./���W��
�.6��+;��$�4&
#��	�7)+�.� �$bY)+;�&7@A�2���1#.���
�E����"$�
�
�.6�S
���!@Z&
��6*/�&��3�4�� !��eZ���	&3"d�'/�&3"$#%� ���4�76��?&3&
��� �')4������/�;�B��a�9�+;��G��� ��;3�?�+;��$�.)4���f;��
)a�	��#%�2�2/����4�76��+;��E)4@A� �+/�;�/��7�2�
�4&�/��	�����4�F�+;��	���1�
� �4���������+� 0��7)�5k�
�.6I;��
)�)4�������
/�;8�4&���6.� KL���	�7�3��&
#.�+� &���W(,=�7/��
�.)4�1�+;��*)4������/�;!Ru�	�7)+�.� �$/��7�2�(6���#=�7�.6.)
6.� �	�7/��+� �H&��'�+;��f)4@A� �+/�;�bg�+;��	&�����;1�>#%)4�7�.6�&�Ru��&
��"G�.� ��@A;�&�)4�>x /��
�2/P�.� ���+� &���y%�2�30�&�� 0��7)m)+��,="E� �4�+�2���$��v!�����	�$�4&��?&3&
��� �
e+5
� �Z;��
)(,=���7�'�
���4&3"$���+�2/��
�2� �H�	��#%�2�2/����4�761�4&3&�B(s:�3�4�����2���E����@n)4������/�;HS
���!@Z&
��6.)m�2�3�4&G�+;��f�4&3&����2�H�+;.�2)Z)4�4���4��@A�2�2��� �
�.�./�;
�+;��	���$v!������� �7)�5%�
�.6*6.�2)4#%� ���F�+;��G�+;��	���G�	�7)4#=�7/��+� 0����4&
#9�	�7)+�.� �+)�B

References��= B+63K@FH<�i��S`�tV�"s:s$�:vS� ��FH5�8:9IQ��+~�8:?@63K{n�8";3X.;�8�F
B��A�%�A<�8:N¦~�8:9AO
B+?@NWFH<�B(;�8 o�F
B+= E:9@FH<�BjX"9IQ � 6H;�= R$F%~�8:9�;+<�= >@?A;�8"<�B
` ��� �"!$#T�&%�')(+*
, �)-�.�t1q.�:v3iIo�F
6
F
N
>DFH</�"s:s$��`
/102043 57626982828 :<;
=9>
?909@+A9B1CED)F�:<C)GH61=2?1?JIEKE?261=2?2?9IEK2L1M
N)O26

�(8"MYB1;3X:Q�;�FH<�i�o
` aj`\t1q�r$¢"r$v%� ��P8$QAF
Pgi � B+63K@FH<�i��\X"63Kk�[X"9 � ;�FH<�9IX"P
�(8:P QAF
9���<3X"= Q�� `p�\X"B+= 6Z��8�8:]�B
`

�k?@9@�
FH<�i � `�t1q�r:r:�$v�Q���R�')(H(��)�"#�#D�)(SRU�JT��VU�� , �D� -G�$W2W�� �XRT�2Y4� ���$WS*
W+!�'+�2R$Z>�$(SR�')[E!u�J\)�"(E\�Up�D�2� *X�"(J]^')!$_?� , R$Z
')�XRU�$#`�"(�R�')_aW+[��g�$!b*cYT�)#4� ,
���)#�d9#4�bn�Kk` o
`0;�K@F
B+= B
`zl\aU�Iq�r:r:���1eAiUo�F
CA;S8"M�~�8:NWC@?A;�= 9@Ee��6
= O
F
9@6
F:iHf(9@= R[8"M��(P X"B+E:8�TLi��@F
>eq�r:r:��`U�"�:�"C@Ck`

�k?@9@�
FH<�i � `It1q�r:r:�$v\� l08�TUX.<3QAB�;�K@F/��?@>�h1?@9@6H;�= R$FU��9�;�FH<+MgX"6
F:���(F
9AO
FH<3X"PU��?@C@CD8"<+;�MY8"<
n�X.<3X"NWFH;�FH< � xAC@P 8"<3X.;�= 8:9b>�5E~(R$FH<�P X
5A= 9@E � P O
;�FH<�9IX.;�= R$F � C@C@P = 6�X.;�= 8:9z��;3X.;�F
B
` �(��9�g����g�ih&!T�u�9d9�"(E\�j�'��lkS'$W+�XRb#
mn!�'JRU�T� , �"(E\)#�'7]po7q q qsrt�"#�[���� � u+���v�X')(xw y4z���a/F
B+F�X.<�63Kulk<�= X"9@E:P F
n�X.<�]DiH{(8"<+;�K_~\X.<�8:P = 9IX�i!~(6H;jq�r:r:��i+e1|
�1e$��`

�k?@9@�
FH<�i � `�t1q�r:r:r$v/� ~�K@8:= 6
FjX"9IQ7~�8:NWCIX.<�= B+8:9~}uK@FH<�F(;�K@Faf(B+FH<
}{X"9�;�B0l\K@F
NJ�0��?@>�h1?@9@6H;�= R$F���9�;�FH<+MgX"6
F
BkMY8"<�~�8:NWC@?A;�FH<+O1��?@C@CD8"<+;�F�Q
� xAC@P 8"<3X.;�= 8:9k` �%��9�mn!�'JRU�T� , �"(E\)#�'7]io7��o7m�kn�L�n�)��o�(��g�$!$(����v�X')(����
� ')(J]+�$!T�$(SRU�~')(�ja[E_A�)(+*�� ')_aW+[��g�$!�o�(��g�$!u�2RD�v�X')(��vo���ktq�Q`�l�`k
w y2yb�+� � QA= 9�>@?A<�E:KkiI��6
8";�P X"9IQ�i � ?@E q�r:r:r�iSe�¢9e.�1e$�$��`

�k?@9@�
FH<�i � `0X"9IQe�(8"<�9�>I \]Di��%`�tV�"s:s:¡$v
� ��= QAFHOg��5�O1��= QAF%o�= B+C@P X
5
X"9IQm~�8:9�;+<�8:PU8"ML47?@P ;�= C@P F_��6
F
9IX.<�= 8:B
�J��?@>�h1?@9@6H;�= R$F[��9�;�FH<+MgX"6
F
B
MY8"< � xAC@P 8"<�= 9@E_47?@P ;�= O � ;+;+<�= >@?A;�FSoLX.;3X�` �
��9�mn!�'JRU�T� , �"(E\)#�'7]M�"Z��
�`[E#T�v!u��� �h�)(�� ')(J]+�$!T�$(SRU�x')(�� ')_aW+[��g�$!b*vja[E_A�)(so�(��g�$!u�2RD�v�X')(
���n� ��j�oa�
�2�)�^�+����<�= B+>IX"9@F:i � ?@B1;+<3X"P = X�iIo�F
6S�"s:s:¡�i��"s$�
�A��q�s�`

�k?@9@�
FH<�i � `�X"9IQb�(8"<�9�>I \]Di �%`\tY;�8zX"C@CDF�X.<Hv%� f(B�X">@= P = ;�5m��;�?IQ�O
= F
B[8:9�X��(= B+?IX"P = B�X.;�= 8:9�MY8"<7n�X.<3X"P P F
P(o�= B+C@P X
5fX"9IQ�~�8:9�;+<�8:P/8"M
� P ;�FH<�9IX.;�= R$F[��6
F
9IX.<�= 8:B
` � ��9�mn!�'JRU�T� , �"(E\)#~'7]�k�Z��p�+�"Z�o�(��g�$!$(��4*
�v�X')(�������')!�d9�"(E\�� ')(J]+�$!T�$(SRU��')(�� ,)� �)(SRU� , rt�"#�[����no�(��g�$!"]4�2RU�$#
�v��r�o��
�2�b�4�+�0��X"P P = CD8:P =giD�V;3X"P 5�iD4JX
5_�"s:s)eA`

l0FH<+<+5�ij4e` ij4 5A9IX.;+;�i � ` i�{�X"]:X"]$8.h1=gi��%`/X"9IQ��\X"N[X"NW8";�8Ai��
`
tY;�8�X"C@CDF�X.<Hv_� ��X.<�= X.;�= 8:9�= 9 � P F
NWF
9�;_X"9IQ � 6H;�= 8:9k�|��?@C@CD8"<+;+O
= 9@E
��= N
?@P ;3X"9@F
8:?@B�o�F
R$F
P 8:C@NWF
9�;�8"M � P ;�FH<�9IX.;�= R$F���8:P ?A;�= 8:9@B
` ����9
mn!�'JRU�T� , �"(E\)#�'7]a�"Z��~�
o9����j�op� ')(J]+�$!T�$(SRU��')(�ja[E_A�)(����2RD�<')!$#
�"(�� ')_aW+[��v�"(E\~�H-)#T�g�$_�#p����j�ol�
�2�b�4�+���(= F
9@9IX�i � ?@B1;+<�= X�i � CA<�= P
�"s:s)eA`

84

Notes

85

86

87

88

	Law.pdf
	Law.pdf
	ABSTRACT
	INTRODUCTION
	THEORIES OF REFLECTION
	Dewey’s Social Pragmatic View of Reflection
	Vygotsky’s Sociolinguistic View of Reflection
	Schön’s Communicative View of Reflection
	Implications of the Three Views of Reflection to Design
	PROBLEM RESOLUTIONS

	In this section, the three question posed in the foregoing discussion will be examined. We point out that each of the questions touches upon a large scope of intricately related problems. While we cannot provide any conclusive answers, we aim to stimulat
	What Should Designers Reflect on?
	REFERENCES

	Bergman.pdf
	HETEROGENEOUS SYSTEM DESIGN PROBLEM
	THE NEW MILLENNIUM PROGRAM (NMP)
	COLLABORATIVE CONFLICT AS SYSTEM DESIGN SENSEMAKING
	Applied Collaborative Conflict Analysis

	CONCLUSIONS
	REFERENCES

	Tosic.pdf
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	ASPECT ORIENTED IIS DESIGN
	META ARCHITECTURE
	SOCIAL COMPUTING: AN APPLICATION CASE STUDY
	REFERENCES

