
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Justin R. Erenkrantz
Univ. of California, Irvine
jerenkra@ics.uci.edu

Richard N. Taylor
Univ. of California, Irvine
taylor@uci.edu

Supporting Distributed and Decentralized Projects:
Drawing Lessons from the
Open Source Community

June 2003

ISR Technical Report # UCI-ISR-03-4

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Supporting Distributed and Decentralized Projects:
Drawing Lessons from the Open Source Community

Justin R. Erenkrantz, Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{jerenkra,taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-4

June 2003

Abstract:

Open source projects are typically organized in a distributed and decentralized manner.
These factors strongly determine the processes followed and constrain the types of tools that can
be utilized. This paper explores how distribution and decentralization have affected processes and
tools in existing open source projects with the goals of summarizing the lessons learned and iden-
tifying opportunities for improving both. Issues considered include decision-making, accountabil-
ity, communication, awareness, rationale, managing source code, testing, and release
management.

Supporting Distributed and Decentralized Projects:
Drawing Lessons from the Open Source Community

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425

{jerenkra,taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-4, June 2003

Justin R. Erenkrantz, Richard N. Taylor

Abstract

Open source projects are typically organized in a distributed
and decentralized manner. These factors strongly determine the
processes followed and constrain the types of tools that can be
utilized. This paper explores how distribution and decentrali-
zation have affected processes and tools in existing open
source projects with the goals of summarizing the lessons
learned and identifying opportunities for improving both.
Issues considered include decision-making, accountability,
communication, awareness, rationale, managing source code,
testing, and release management.

1. Introduction

Organizational distribution and decentralization alter criti-
cal factors in the software development process. Historically,
centralized organizational structures have prevailed. A single
organization, or part of an organization, has been fully respon-
sible for a project, bearing the ultimate responsibility for shap-
ing the deliverables and selecting the tools and processes used
in development. Communication and consensus building
within the organization has been facilitated by physical prox-
imity.

For numerous business reasons, over the past decade and
more, many organizations have moved to

distributed

 develop-
ment � a single administrative authority operating over physi-
cally distributed subgroups. This change has been supported by
improvements in communication and networking technologies.
Nonetheless, with participants no longer physically collocated,
the processes and tools of development have had to change to
attempt to cope with the difÞculties so incurred.

Development of applications by

decentralized

 organizations
adds an additional wrinkle into the problem. By decentralized
development we mean that no single organization controls the
project; rather that all decisions related to the goals and objec-
tives for the project must be made multilaterally. The motiva-
tion for decentralized development is akin to the motivation for
participation in standards bodies: the common weal can be
advanced while independence is retained. Each organization
holds ultimate authority for its internal processes and tools. To
the extent that interaction between participating organizations
occurs, selection of the involved tools and processes must also
be done multilaterally.

The premise of this paper is that we can gain some insight
into how to effectively meet the challenges that face decentral-

ized and distributed development organizations by examining
the practices of the open source community, as these projects
are most often both distributed and decentralized. The intended
beneÞciaries of this work is, largely, new open source projects,
through several of the observations have applicability outside
the open source domain.

Some work along this line has already taken place. Progres-
sive open source[6], for instance, has been introduced in some
commercial entities. This model is primarily geared towards
applying open source practices within the community of inter-
nal employees or speciÞc strategic partners rather than the pub-
lic. This model is not fully decentralized, however. Implicit in
the notion of progressive open source is a controlling authority
that can dictate development.

There has also been a large body of work related to distrib-
uted software development. One particular area that has been
carefully studied by Herbsleb,

et.al.

 is the communication
between participants in a distributed software project[15]. In
this case study, participants were spread across several coun-
tries and developed a project collaboratively. One of the signif-
icant results was that there was a clear bias towards
communicating with people in proximity, rather than commu-
nicating with remote peers, even when supported by good com-
munication technology. This study does not fully explore the
effects of decentralization on development, however, as all of
the participants essentially worked for the same organization
and were clustered in relatively large groups at a small number
of sites. In a highly decentralized and distributed software
project, few developers may be in proximity and belong to the
same organization.

Another body of work has focused on enhancing technolo-
gies speciÞcally for supporting distributed development.
CSCW technologies Þt into this category, as well as enhance-
ments to the web. In [7], for instance, enhancements were dis-
cussed that could make the current web tools better facilitate
collaboration. However, it limited itself to web-based artifacts
and does not lay out a guideline for the processes best suited to
these tools.

It almost goes without saying that not all projects require
heavyweight processes and tools due to their limited scope or
participation. Introducing unnecessary processes and tools may
stiße a small project. It is also possible that participants do not
desire expansion beyond a speciÞc threshold. These classes of
projects do not truly Þt the distributed and decentralized crite-
ria. In the following discussion, therefore, we will only con-
cern ourselves with projects that are sizeable or complex

enough to warrant tool and process support and which are
developed in a collaborative, distributed, and decentralized
fashion.

We begin the remainder of the paper with discussion of
a survey of open source projects, showing similarities that
have arisen in tool usage. Discussion then turns to charac-
terizing the ways distribution and decentralization can con-
strain processes and tools. We then begin to summarize
lessons from the open source experience, starting with
identifying the management and coordination needs. We
continue with an examination of techniques for satisfying
these various needs. We conclude with a discussion of
potential future work.

2. Basis Projects

Since most open source projects display signiÞcant
degrees of distribution and decentralization in their organi-
zation, they provide a good foundation for study. Some
prior examinations have been conducted into the tool usage
of open source projects[12]. While most open source
projects are not directly related to each other in terms of the
subject of their production, a commonality of supporting
tools has emerged in many cases.

In [12], eleven open source projects were surveyed to
determine what tools are used to support the development
model of the project. The survey was conducted to deter-
mine the quality aspects of open source projects and deter-
mine how to improve the project deliverables. The
surveyed projects are spread across several different
domains - including compilers, web servers, programming
languages, and desktop environments.

The surveyed projects are among the most successful
open source projects available. The Apache HTTP Server is
currently in use by about sixty percent of all websites[20].
Servers shipping with the Linux kernel amounted for four-
teen percent of all servers shipped in the Þrst quarter of
2003[11]. Tomcat is the ofÞcial reference implementation
for the Java Servlet and JavaServer Pages technologies[2].
Therefore, these projects provide a reasonable basis for
examining how successful distributed and decentralized
open source projects should be conducted.

As Figure 1 depicts, these projects also represent a wide
range of source code size. One project had as little as 55
thousand lines of code (Tomcat), while another surveyed
project supports 2.5 million lines of code (Linux).

Each project has independently chosen the tools and
processes that best Þt it. Most of the surveyed projects do
not have any common developers, so there is no direct rela-
tionship. However, in some areas, a consensus appears to
have been reached concerning the proper tools to use.

In the survey, all of the projects shared the same source
control system, CVS. However, since the publication of the
survey, Linux has adopted BitKeeper as its source control
system[4]. While there does currently appear to be a con-
sensus regarding CVS, a number of other replacements to
CVS are actively being developed. These include such

tools as Arch[1] and Subversion[5]. Therefore, this consen-
sus may not be stable over the long-term as newer products
attempt to replace CVS.

In other areas, there is no single tool that predominates;
rather, a small number of tools are commonly used. One
such area is in mailing list software; two tools currently
dominate - ezmlm[3] and Mailman[10]. While two of the
surveyed projects used other tools, the rest used one of
these two tools.

In yet other areas, such as web portals, there is extreme
variations in the tools used. No two projects shared the
same tool for updating their website. At this point, most
projects are creating customized tools for their website that
Þt their individual needs rather than relying upon a pre-
built solution for content management.

The variations of tool similarity across problem
domains presents an interesting statement. In some areas,
open source projects have found a particular tool that seem-
ingly Þts their development model well. This is evidenced
by consensus concerning a particular tool. This consensus
may be due to an inherent property of the way the project is
organized whereby this tool is the only obvious choice. Or,
perhaps the adoption of a particular tool is a matter of his-
torical accident. If the adoption is related to historical acci-
dent rather than a solid Þt, the introduction of tools that are
better suited to a distributed and decentralized development
model may be able to replace the current consensus. How-
ever, in order to encourage better tools and processes, we
must understand the constraints placed upon an open
source project by decentralization and distribution.

3. Constraints

The presence of decentralization and distribution in a
software project places a number of new constraints on
what processes and tools can be effectively utilized. In
order to obtain a clearer picture of what may work in these

Figure 1: Lines of Code in Basis Open Source Projects

0 500 1000 1500 2000 2500 3000

XFree86

Python

Perl

NetBeans

Mozilla

Linux Kernel

KDE

Tomcat

GCC

GNOME

Apache HTTP Server

Li f C d (Th d)

environments, we need to be able to identify these con-
straints.

3.1. Decentralization

The decentralization aspect of development requires
processes to consider multiple interested parties. The
involved developers may act towards their own goals,
rather than the goals of the entire project. Therefore, not all
developers will necessarily be aligned on all items and
tasks. Yet, the processes and tools used should try to pro-
mote working towards a common beneÞcial goal while
meeting the individual goals.

Due to decentralization, developers may not all work for
the same physical organization. However, one organization
may fund a portion of the developers on a project. If this
organization removes its funding, their associated develop-
ers may leave the project. Therefore, the project needs to be
able to withstand such losses or risk having the project
abandoned. This risk promotes processes and tools which
maintain continuity and shared communal knowledge.

When the individual goals of organizations collide, care
should be taken in resolving these concerns. If these con-
cerns are not met to everyone�s satisfaction, dissatisÞed
organizations may leave the project. Depending upon the
inßuence of the departing subset, it may place the project in
jeopardy. Therefore, processes promoting compromises
should be strongly emphasized to minimize such depar-
tures.

3.2. Distribution

Distributed software development places a strain on the
project�s communication mechanisms. When developers
are not collocated, it is no longer possible to have frequent
face-to-face meetings. Therefore, other communication
mechanisms and tools must be deployed to Þll this void.

As noted earlier, prior studies into the nature of distrib-
uted software development have indicated that it is hard to
facilitate communication to the right person at the right
time across site boundaries[15]. In order to address this
problem, processes and tools need to be in place to allow
timely identiÞcation of key contacts. Herbsleb,

et.al.

, for
instance, identiÞes needs in the areas of awareness, rich
interpersonal interaction, and support for Þnding experts.

Since developers are not physically collocated, it may
cause problems with synchronous communication as devel-
opers may be scattered across timezones. If synchronous
methods are used, some participants may not be able to
contribute to a discussion. Therefore, asynchronous com-
munication mechanisms are usually preferred.

4. Management and Coordination Needs

This section identiÞes management and coordination
needs that decentralized and distributed project organiza-
tion imposed. If these needs are not properly addressed at
the outset, then repercussions may arise as the project

matures.

4.1. Goals

Before embarking on a project, there is usually a need
for a clear statement of goals that the project needs to
accomplish in order to be successful. Upfront identiÞcation
of goals allows for examination by prospective partici-
pants. It may be that the initial goals may not suit all inter-
ested parties. Therefore, they may need to be altered to
support other interests. A consensus about the end result
can then be built by the new participants. If the interests are
thus made to correspond, the groups can begin to proceed
to coordinate development tasks. If their interests are irrec-
oncilable, the parties may proceed separately. A confronta-
tion may occur later if an implicit differences in goals is
later revealed.

Furthermore, if only a few parties wish to participate,
the potential cost of decentralization may not add sufÞcient
value to the project. It may be that the project does not have
enough outside attraction to reach a critical mass to support
a viable community. Unnecessarily adding the overhead of
decentralization may end up harming the viability of the
project.

4.2. Coordination of Initial Development

Once a goal has been determined, the interested parties
need to identify how to reach these objectives. This road-
map can be valuable in planning development activities. A
project may have an initial donation of code to build upon,
or the new project needs to start the development process.

Inherited code

A project may inherit code based upon a prior effort that
has decided not to further development, or, one of the inter-
ested parties may be willing to donate code to begin the
development effort. In either case, interested parties should
be aware of the implications of the decision.

When using inherited code, the primary task becomes
enhancement and evolution. At Þrst, the project may be
able to bypass the design stage of the software life-cycle.
The majority of tools and processes will be geared towards
maintenance. Depending upon completeness of the dona-
tion, design artifacts may need to be reproduced to promote
understanding of the inherited code.

As the project matures, limitations may be found in the
initial design that require substantial refactoring. The initial
developers may desire a reasonable expectation that the
inherited code allows for ample extensibility. Otherwise,
efforts to evolve the code may encounter an early road-
block that forces reconsidering the usage of this code.

Initial code

When a project begins afresh, the initial processes and
tools will primarily be design-oriented rather than mainte-
nance-oriented. In order to work in a distributed environ-
ment, the processes and tools must be able to support
collaborative design. As the project evolves, the processes

may alter to primarily supporting implementation and
maintenance tasks.

A common occurrence in open source projects is that a
publicly documented standard is implemented. These doc-
uments are typically written by a separate standards organi-
zation. These documents serve as the initial requirements
and often specify interoperability characteristics of the
deliverable. Once agreeing upon a standard to implement,
developers can then devise a plan to carry out the architec-
tural design and implementation.

By minimizing the requirements stage of the software
life cycle by leveraging pre-existing standards, more effort
can be directed towards the design and implementation.
However, many projects implementing public standards
also provide feedback to the standards committee based on
real-world implementation experience.

Effect on design and requirements

Since some of the most prominent open source projects
inherited code which implements a public or well-known
standard, it may stand to reason that the processes involved
with design and requirements gathering are not as well
developed as maintenance and extensibility of code in open
source projects.

However, in these particular cases, the requirements and
initial design have already been determined in a very rigor-
ous manner. In the case of projects which implement Inter-
net RFCs, these requirements have been created in a very
decentralized fashion. However, once these requirements
have been established, various parties will form groups to
implement the standard.

Therefore, while it may seem that some open source
projects lack an emphasis on requirements and design, we
may be able to rationalize that on the strict division of
requirements and implementation in the traditional stan-
dard-making bodies of the Internet.

4.3. Common procedures

In decentralized communities, the interested parties may
establish a common set of rules for running the project.
These rules will take the place of a controlling authority
which dictates such rules. Furthermore, this will allow all
parties to operate within stated organizational parameters.

The parties should have already agreed on the goals and
may have agreed on the initial design, but they must now
also agree how to reach the desired result in a formal man-
ner. If a conßict between members of the project arises,
there needs to be a predetermined mechanism for resolving
these conßicts.

If these steps are ignored and such a process does not
exist, it may introduce tension between parties. By creating
and following these guidelines, the belief is that most con-
ßicts will be resolved peacefully. These procedures should
also attempt to not introduce unnecessary overhead in the
development process.

If these mechanisms fail and an impasse develops, then

the community may be

forked

. One of the most prominent
examples of the forks of open source projects are among
the BSD-derivatives[17]. Despite having a common ances-
try, the vision of each BSD-derivative is slightly different.
In essence, each BSD-based platform has the goal of creat-
ing a Unix-like operating system. However, each of these
derivatives has a different technical or procedural vision of
how this goal should be accomplished.

Therefore, we suggest that decentralized projects are
self-correcting though at a cost of wasted resources. When
a difference of vision occurs between developers and orga-
nizations, projects can be forked to maintain the integrity
of the private goals. In the end, each constituency retains
their private goals, and may be willing to separate from
other participants if an impasse is reached. Only when their
private goals are being met will participation continue.

4.4. Tool requirements

When multiple parties participate in decentralized
development, special attention should be made to the
requirements of the tools that support the processes. The
selection of tools should recognize that not all developers
have equal resources to acquire specialized tools. Open
source projects may not be directly funded, but when all
participants are funded, these requirements may not be as
stringent.

Since open source projects are traditionally open to all
developers regardless of organizational afÞliation, the tools
used are commonly open source as well. By relying on free
tools, this alleviates Þnancial barriers to participation as not
all developers may receive direct compensation for their
work on a project. It may be unreasonable to expect devel-
opers to purchase tools in order to work on a project.

Due to the variety of developer preferences, most
required tools need cross-platform support. In the open
source community, a good tool will not require developers
to switch their operating system to use a special tool. This
allows developers to work on platforms with which they
are most comfortable.

Since a project may attract developers of different
skillsets, it may be unreasonable to expect developers to
have special training in a tool or a technique. To offset this,
projects may need to provide clear documentation on tech-
niques that will help unfamiliar developers. Furthermore,
since the participants are self-selecting, not all participants
may have formal computer-science backgrounds, so some
more advanced techniques may not be accessible to all par-
ticipants.

5. Process and Management Tools and Tech-
niques

This section describes process and management tech-
niques that may be used in distributed and decentralized
projects. These techniques attempt to satisfy the needs dis-
cussed previously. We will examine how open source

projects are solving these constraints and identify potential
areas of improvements for each concern. Table 1, at the end
of the paper, will summarize these techniques.

5.1. Delegation and Decision-Making

A concern for distributed and decentralized projects is
delegation of assignments and leadership. Since the partici-
pants do not necessarily share the same reporting structure,
traditional management techniques may not apply.

Similarly to other management models, there may either
be a ßat or hierarchical structure within this decentralized
organization. Ultimate authority may rest with a speciÞc
individual, or decision-making responsibility may be
shared by the interested participants. In the case of a single
authority, this individual may set policies unilaterally.
However, these policies must still promote participation by
others. This requires the creation of a benevolent dictator-
ship where participants are willing to yield authority to a
central authority � explicitly backing away from decen-
tralization.

A prominent example of this central authority organiza-
tional model is seen in the Linux kernel. Linus Torvalds
was the initial designer and developer of the Linux kernel.
The rest of the participants have allowed him to maintain
control over the project. Linus has the ultimate say on what
changes make it into the kernel.

Designating a single individual with ultimate authority
may create an organizational bottleneck. Therefore, a hier-
archical organizational structure usually accompanies these
structures. In Linux, most substantial components of the
kernel have an associated maintainer. Rather than submit-
ting a change directly to Linus, changes should be submit-
ted to the responsible maintainer. If the maintainer agrees
with the patches, the patches can then be submitted to
Linus.

Linus places a certain degree of trust in his maintainers
that they will follow his process for submitting patches to
him and deal with most of the overhead for that component
Yet, due to the supreme nature of Linus�s role, he can over-
rule the maintainer of a component. It is possible to cir-
cumvent a maintainer and send a patch directly to Linus. If
he decides to apply the changes without receiving prior
input from the maintainer, he retains that right.

Another model commonly used by open source projects,
one more in tune with decentralization, is the meritocracy
model. This is exempliÞed by the Apache HTTP Server
Project[9]. All members share equal power, so there is no
direct leader of the project. Under this ßat organizational
model, people gain power by sustained contributions over
time. The power of the developer is enabled by grants of
write access to the shared repository and the ability to veto
changes.

Until a developer gains commit access, they are consid-
ered a contributor. While they may participate freely on the
mailing lists, an intermediary with appropriate access must
review and commit their suggested changes. They may also

cast non-binding votes on issues before the community.
Since these votes are non-binding, developers with binding
votes may choose to disregard such votes.

As the voting developers are exposed to a new partici-
pant, they are examining the quality of the contributions
and how the participant works within the community. Then,
one voting developer will nominate the contributor for vot-
ing privileges to the rest of the voting developers on a pri-
vate discussion list. If the group considers the contributions
beneÞcial and the participant trustworthy, voting privileges
will be offered.

While no single person can control the project, each vot-
ing developer has

veto

 authority to stop undesired changes
from being merged into the shared repository. While these
vetoes can be cast on any patch, there must be a valid tech-
nical reason for stopping this change. There is also no way
to override a veto - this organizational model enforces con-
sensus-building.

5.2. Accountability

Accountability may become an issue in a decentralized
organization. If there is a problem with the software, users
may desire a contact to resolve this problem. Open source
projects have typically addressed this concern in two fash-
ions: creating for-proÞt corporations that provide commer-
cial support or creating non-proÞt foundations that provide
a perpetual point of contact. These solve the issue by a
direct step away from decentralization.

Some organizations that participate in open source
projects provide for-fee support as a source of revenue. For
example, this is common in the relational database domain.
Two open source databases, PostgreSQL and MySQL, both
have strongly related corporations that sell support to end-
users.

These commercial entities will often provide support
plans that assist users in setting up the product. These com-
panies may also respond to direct support questions con-
cerning the product. By having a revenue stream, these
companies are able to fund development of the associated
open source project by directly Þnancing developers. These
developers may add enhancements that the organization�s
client base has requested, or Þx problems that have been
identiÞed by support personnel.

As an alternative to providing a commercial support,
some open source projects have established non-proÞt
foundations. These foundations are the owner of the code
and do not have any explicit commercial interests. There-
fore, it is expected that these foundations will be able to
oversee and maintain accountability for the code. Two
prominent examples of this are the Free Software Founda-
tion and FreeBSD Foundation.

In these cases, a non-proÞt foundation is usually respon-
sible for providing the infrastructure of the project. They
will typically provide the services that allow development
to occur. These foundations do not usually provide end-
user support or directly fund developers. However, the

foundation is expected to be eternal, while a for-proÞt cor-
poration may be forced to dissolve due to Þnancial consid-
erations.

5.3. Communication

Due to the introduction of distribution, there may be
varying degrees of developer collocation. Since the projects
are also typically decentralized, developers may not work
for the same physical organization. Therefore, the develop-
ment process must allow for communication between peo-
ple not at the same location and not belonging to the same
physical organization. Therefore, the majority of communi-
cation should be at the virtual organization level, rather
than the physical organization. By relying upon asynchro-
nous forms of communication rather than synchronous
communications, a higher proportion of global developers
can be supported. Yet, relying upon asynchronous commu-
nication introduces a delay factor[8,15].

In order to facilitate communication to the right person
at the right time, mailing lists are commonly used. This
reduces the number of contacts that are required. Almost
every open source projects uses public mailing lists to pro-
mote subscription by non-developers and to encourage
contributions by new developers.

Multiple mailing lists may also be used to further seg-
ment the mail trafÞc. These mailing lists may be dedicated
to a particular sub-topic. By reducing the scope of a mail-
ing list, it allows for separate communities to form within
the same project. This may be beneÞcial for encouraging
growth in large projects. It also moves discussion away
from a more generic mailing list where there may not be as
many interested people in the discussion.

It has been stated that email is predominately used
because it is the least common denominator[8]. One prob-
lem with email is that it requires a common language to be
used. Mechanical translation services have not yet proved
to be sufÞcient to address technical translations. This may
promote developers who are only ßuent in the main lan-
guage of the developers.

A possible avenue to research would be to investigate
projects where developers do not share a common lan-
guage. In these cases, it would be useful to analyze how
developers communicate when they do not share a lan-
guage. This may promote islands of developers that do not
often communicate.

In addition to relying upon asynchronous communica-
tion, some projects use a variety of synchronous communi-
cation (such as real-time chats or instant messaging). Yet,
this is only effective when developers are located in similar
time zones. If not all developers can participate in synchro-
nous communications, it is essential that some archival of
the communications be made. Otherwise, key participants
may be left out of a critical discussion.

5.4. Awareness

Awareness is an understanding and coordination of what

participants are doing. Since the personnel of a decentral-
ized and distributed community may be rapidly changing,
it may be hard to even identify who is currently active. This
aspect of development processes has been remarkably
underdeveloped. Most coordination efforts remain ad-hoc
and short-term.

However, mailing lists provide a rudimentary tool for
coordination. A developer can post on the mailing list indi-
cating that they are planning to perform some activity. But,
there is no enforcement of this plan. This leads to a prob-
lem when a participant says they are going to accomplish
some task, but does not complete it.

Some projects may also use shared information reposi-
tories for awareness information. For example, the Apache
HTTP Server Project relies on a STATUS text Þle that lists
outstanding issues; this Þle is emailed weekly to the main
developers mailing list. Participants may make a notation
as to which issues they are addressing. However, it may
require frequent refreshing of this Þle to ensure that the
information is not stale.

Many open source projects also require that large
changes be discussed before implementation starts. This
allows other developers to provide feedback on proposed
implementation strategy. Leveraging the feedback of devel-
opers may allow potential design problems to be detected
earlier than if review occurs after implementation.

5.5. Historical Rationale

Since turnover may be high in decentralized projects, a
collective history should be maintained and documented.
By examining past communications and activities, new
developers can begin to understand decisions made at a
certain point in the past. It also allows developers to learn
from prior decisions.

It is essential to use communication mechanisms that
allow for long-term archival. Most asynchronous forms of
communication lend themselves well to archiving - such as
public mailing list archives. Therefore, the delay factor
introduced by asynchronous communication has an advan-
tage of allowing capture of historical rationale.

However, spontaneous synchronous communications
are often not archived. This may often be seen in projects
where a number of developers are physically co-located. In
these environments, face-to-face communications may
have an unusually strong bias[15]. In addition to not allow-
ing full participation of the group, these sorts of communi-
cation may be detrimental to distributed projects because
artifacts of these conversations are rarely recorded.

A common problem in open source projects is that new
developers often repeat or bring up old discussions. This
demonstrates a lack of tools that encourage review of past
discussions. If tools for reviewing prior discussions were
readily available, developer time spent rehashing prior top-
ics could be minimized.

To help with this, Perl has created Perl Design Docu-
ments (PDDs) which lay out the rationale for certain deci-

sions made in the development of Perl 6 and Parrot[28],
This allows new developers to annotate and reexamine
prior decisions in a central location. It may happen that a
new developer has added insight that was not noted in the
prior conversation. If post-mortem annotation of discus-
sions is allowed, it may achieve a balance between stißing
and encouraging reexaminations.

5.6. Design Rationale

In addition to allowing for discovery of important his-
torical conversations, it may be critical to understand the
design rationale of certain components. In a distributed and
decentralized environment, it may not be possible to con-
tact the original author of a section of code. Therefore,
mechanisms need to be in place to communicate rationale
to future participants.

One way to communicate rationale is by creating devel-
oper documentation. Some open source projects, such as
AbiWord[25], keep interface deÞnitions and notes in-line
with the source code. Documentation can then be published
with tools such as doxygen[14]. By synchronizing the loca-
tion, when major changes are made to the source code, the
belief is that the documentation will be updated. This
makes it easier to produce developer documentation which
reßects the current code.

Depending upon whether the project did the initial
design, other artifacts such as design documents and dia-
grams may be available. In projects that provide an extensi-
ble interface, it is also common to produce well-explained
and concise examples as a way to illustrate the interface in
action. This helps new developers of an interface under-
stand the code by looking at examples.

There has been research into encouraging software
reuse, but these tools have not yet been integrated into the
mainstream. There are tools available that provide relevant
interface information in a personalized manner[30]. There
has also been work towards harvesting the structural and
semantic information of code[19]. Encouraging adoption
of already existing tools may make capturing design ratio-
nale easier.

5.7. Participation

In projects where the personnel on a project may change
frequently, it is important to have a published set of devel-
oper guidelines. These guidelines allow familiarization
with the processes and tools used in a project. New partici-
pants can review them and contribute to the project in an
intelligent manner.

Sites such as the KDE Developer�s Corner provide a
wealth of information that allow new participants inter-
ested in KDE to learn how to contribute[18]. The site con-
tains introductory tutorials for developers new to the
internals of KDE. Information about the development tools
required to compile KDE and how to obtain the latest KDE
snapshots are also available.

It has been mentioned that having an established set of

guidelines shared by projects can reduce the redeployment
costs of developers[6]. If all projects shared the essential
guidelines, it would make it easier to contribute to new
projects. If each project had its own set of unique guide-
lines, it would be difÞcult to transition to new projects.
Therefore, it would be beneÞcial to encourage standardiza-
tion of participation guidelines across projects.

5.8. Controlling Participation

A corollary to encouraging participation in decentral-
ized and distributed software is that participation by new
people must be managed by the current participants.
Depending upon the access policies of the project, new par-
ticipants may only have limited access to making changes
to the project. Therefore, processes and tools need to be in
place to support facilitating such contributions.

Tools such as the SourceForge�s patch manager used by
the Python project can be extremely useful[21]. These tools
allows participants to submit patches to be applied, then
developers with the appropriate commit access can inte-
grate the changes. This particular tool also allows for anno-
tations to be stored.

However, these current tools suffer from a lack of inte-
gration with the rest of the development process. Some
projects enforce a policy where a certain number of posi-
tive reviews must be received before a change can be inte-
grated[26]. Contributions may also grow stale as the
project code base evolves. Furthermore, if none of the
active developers deem an issue important, it may be a
challenge to motivate integration. The tools used to control
participation should ease the burden of merging the
changes.

5.9. Managing Source

Since the developers are distributed, it is often a require-
ment to have a uniÞed view of the source code. If a uniÞed
view is not available, it may be possible for developers to
not be aware of the current state of affairs. Therefore, most
projects will adopt some sort of collaborative software con-
Þguration management system (SCM). The processes and
tools need to balance that each developer should be able to
work independently while allowing them to remain consis-
tent with the rest of the team.

As discussed previously in [12], the predominate SCM
in use by open source projects is currently CVS. There has
been a recent trend in seeking tools that can replace CVS[1,
4, 5]. CVS is based on a centralized repository model with
one repository holding all of the content. Some of the
newer SCM tools that have been introduced are keeping the
centralized model of CVS[5], while others are attempting
to decentralize the repository structure[1, 4].

However, depending upon the accountability structure
of the project, it may make sense to keep a centralized
repository even in a decentralized project. If a project has a
non-proÞt organization which holds the copyright, then this
organization should administer the master repository. How-

ever, if the project has a loose accountability structure, a
decentralized repository structure may be more efÞcient.

Most SCM tools currently in use also promote an opti-
mistic conßict resolution model rather than a pessimistic
conßict resolution mode[16]. An optimistic locking strat-
egy allows source conßicts to be resolved at commit-time,
while a pessimistic locking strategy uses locking to prevent
others from making changes while a change is being devel-
oped. A pessimistic locking strategy may interfere with
parallel development as it prevents two developers from
working on the same Þle at the same time. Only using pes-
simistic locking may have an impact upon the effectiveness
of distribution.

5.10. Issue Tracking

One of the stated advantages of open source projects is
that it is easier to Þx problems since the source code is
freely available[22]. However, it may still be difÞcult for
non-developers to Þx problems as they may not have the
appropriate background required to resolve a defect. There-
fore, processes and tools are required to report problems to
the people who can help resolve defects.

Due to the presence of decentralization, it may be difÞ-
cult to solicit participants who can resolve reported defects
in a timely manner. Some participants may be wary of
working with end-users, or are too busy to deal with
acquiring the relevant information from the reporter. There-
fore, the tools need to be able to support novice users and
expert developers efÞciently.

Standardizing on issue tracking tools, such as Mozilla�s
Bugzilla[27], may increase the familiarity of both users and
developers with these tools. However, as these tools are
adopted by more projects and enhancements requested,
feature creep must be resisted. If the issue tracking tool
becomes too complicated to use effectively, its usefulness
is diminished.

5.11. Documentation

Since not all users of a project are developers that can
understand code, a project must also be able to deliver
quality user documentation. Otherwise, users may Þnd the
product too complicated to use properly. A signiÞcant chal-
lenge for distributed and decentralized projects is to have
documentation at an equivalent quality to the code.

At best, documentation can be viewed as a form of
source code. Therefore, many of the processes that apply to
source code can also apply to documentation. Documenta-
tion may be written in a collaborative environment using
similar tools and processes as the ones used to write code.

A problem in any software project is how to keep the
end-user documentation synchronized with the current ver-
sion of the source code. Oftentimes, developers are hesitant
or reluctant to write user documentation. Therefore, when
they make a change that is visible to a user, the developer
may not update the relevant documentation. This leads to
the documentation becoming out of sync with the code.

Some open source projects have addressed this by hav-
ing separate documentation teams. One example of this
separation is in PHP�s documentation[29]. By isolating the
documentation process from the development process, it
enforces another perspective on the usability aspects of the
code. This may result in an increase of quality of both the
code and end-user documentation.

Another characteristic of the PHP documentation pro-
cess is that it allows users to annotate the documentation on
the website. As users spot errors in the documentation, they
may append a correction comment to the website. Then,
PHP documentation participants can harvest the changes
into the main documentation.

5.12. Testing

There is often a strong desire to ensure that a project
meets both the functional and reliability goals previously
established. Therefore, testing processes and tools should
be developed and encouraged throughout the life cycle of
the project. There are two classes of methods that are typi-
cally used in open source projects: code review and testing.

Since it is difÞcult to conduct regular meetings in a dis-
tributed workplace, it is not possible to conduct periodic
code review sessions. Therefore, code reviews must occur
as the changes are conducted. Developers are usually asked
to make small veriÞable changes rather than large changes.
By asking all developers on a project to review the changes
as they happen and asking for the most concise changes
possible, it may make it easier to identify problems sooner.

Besides relying upon manual inspection, some projects
have a suite of automated tests for the project. These auto-
mated tools allow all participants to run the same set of
tests at their discretion on their speciÞc platform. One such
project that utilizes automated tests is Subversion[5]. The
test suite in Subversion is extensive and tests almost all
functionality of the system. Furthermore, no releases can
be made without Þrst passing the automated tests. It may be
possible to integrate some recent research into optimizing
which regression tests are executed to improve the perfor-
mance of the test suites[13].

5.13. Release Management

Since users ostensibly wish to use the deliverables of a
project, quality releases must be produced. Therefore, a
viable release strategy must be determined. If the project
does not have a coherent process in place, it may have
problems attracting users or achieving a reputation for sta-
bility.

In order to achieve widespread distribution, an infra-
structure must be in place to allow public consumption.
Some projects rely upon mirrored servers to handle the
load of delivering releases to end-users. A critical concern
is how to select these mirrors - should they be self-selected
or should they be limited only to trusted individuals.

One such project that relies upon mirrors to deliver
releases is Debian[23]. Debian balances the load across

many geographically dispersed self-selected servers. How-
ever, Debian has several push-primary mirrors that are cho-
sen because of their reliability. Self-selected mirrors can
then pull releases from one of the pushed mirrors rather
than accessing the master site directly.

Projects may also place meanings on the versions that
deliverables are labeled with. This allows a shared under-
standing of the expected reliability. At times, it is helpful
for a project to have a development branch that is not
intended for widespread usage. These releases can also be
used to perform dry-runs of the release process. This can be
especially helpful when a project is trying a new release
process. By explicitly labeling a version as unstable or
development, it can help match the expectations of users
with the expectation of the developers.

For example, Debian always has at least three versions
that are actively maintained: stable, testing, and unsta-
ble[24]. The stable distribution is the one that is recom-
mended for widespread usage. Then, the testing
distribution consists of packages that are waiting to be
included in the next stable release. Then, the unstable dis-
tribution is meant for developers and not meant for produc-
tion quality.

6. Summary and Future Work

Adopting a decentralized and distributed organization
for developing software requires rethinking fundamental
process and tools. We have attempted to examine the con-
sequences of supporting decentralization and distribution
by seeing how open source projects have addressed these
concerns. Table 1 provides a summary of the issues, tech-
niques, and projects discussed in this paper. It also lists

avenues for enhancement that have been identiÞed where
the current processes and tools could be improved to better
support distributed and decentralized software projects.

If projects can create a clear line of accountability that is
separate from all of the participants, it may foster a sense in
the users that responsibility will be maintained. A decen-
tralized project should be able to withstand the departure of
organizations gracefully. If this is not present, then users
may become wary of the project falling out of active main-
tainership.

By limiting the scope of discussion lists, it makes it eas-
ier for participants to understand what is currently going on
in areas of the project. This level of granularity must be
balanced with having too many mailing lists that makes it
difÞcult to Þnd the appropriate forum for discussion. How-
ever, when the right balance is achieved, this allows partici-
pants to easily partition discussion based upon agreed
topical lines.

One concern for distributed software development is
that a set of standards is required in order to ease partici-
pants shifting from one project to another. This may mani-
fest itself as a common vocabulary shared between
projects. If participants do not share a common language, it
becomes hard to communicate effectively. The creation of
standards and accepted best practices can help ease migra-
tion between projects.

A common problem in a distributed software project is
understanding what other participants are currently work-
ing on. The creation of tools to promote awareness between
developers can address this need. Furthermore, tools that
promote capturing of historical rationale may make it eas-
ier for new participants to enter a project.

Table 1: Summary and Avenues for Enhancements

Issue Techniques Project Exemplar Avenues for Enhancements

Decision-Making Project leader, meritocracy Linux, Apache Understanding consequences

Accountability
For-proÞt support,
non-proÞt ownership

PostgreSQL, FreeBSD Introducing clarity

Communication Discussion lists, asynchronous All Balancing granularity

Awareness
Frequent status updates,
Discussion before implementation

Apache Creating better tools

Historical Rationale
Archival of communications,
design documents

Perl Creating better tools

Design Rationale Developer-centric docs, examples AbiWord Enforcing synchronization

Participation Clear tutorials, guidelines KDE Creating standards

Controlling Part. Feedback, annotating contributions Python Integrating into other processes

Source Code
Public source repository,
optimistic conßict resolution

All Investigating decentralization

Issue Tracking Soliciting developer assistance Mozilla Creating easy-to-use tools

Documentation Distinct personnel, annotations PHP Separation of code and docs

Testing Code reviews, automated tests Subversion Optimizing test executions

Release Management Mirroring, versioning Debian Managing distributions

Another area for tool improvement is introducing a way
to capture the rationale for a decision in the documentation.
Currently, it is hard to identify why a particular change is
made. The artifacts for determining this may not be central-
ized. Creating a tool that indicates relationships between
artifacts to encourage rationale understanding may be criti-
cal.

The current tools for controlling participation are ad hoc
and not well integrated. This makes it difÞcult to lower the
burden upon the participants in a project in dealing with the
contributions by casual participants. If the tools for han-
dling contributions were better integrated into the standard
processes, it would make this task signiÞcantly easier.

7. Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. 0205724.

8. References

[1]

Arch - Revision Control System

. <http://arch.Þfth-
vision.net/>, HTML, 2003.

[2] Apache Software Foundation.

The Jakarta Site -
Apache Tomcat

. <http://jakarta.apache.org/tomcat/>,
HTML, 2003.

[3] Bernstein, D.J.

ezmlm

. <http://cr.yp.to/
ezmlm.html>, HTML, 2000.

[4] Bitmover.

BitKeeper

. <http://www.bitkeeper.com/
>, HTML, 2003.

[5] CollabNet.

Subversion

. <http://subver-
sion.tigris.org/>, HTML, 2003.

[6] Dinkelacker, J., Garg, P.K., Miller, R., and Nel-
son, D. Progressive Open Source. In

Proceedings of the
International Conference on Software Engineering (ICSE).

p. 177-184, 2002.
[7] Fielding, R., Whitehead, E.J., Anderson, K.,

Oreizy, P., Bolcer, G.A., and Taylor, R.N. Web-based
Development of Complex Information Products

. Commu-
nications of the ACM.

 41(8), p. 84-92, 1998.
[8] Fielding, R.T. and Kaiser, G. The Apache HTTP

Server Project

. IEEE Internet Computing.

 1(4), p. 88-90,
1997.

[9] Fielding, R.T. Shared Leadership in the Apache
Project

. Communications of the ACM.

 42(4), p. 42-43,
1999.

[10] Free Software Foundation.

Mailman

. <http://
www.list.org/>, HTML, 2003.

[11] Fried, I. Sales Increase for U.S. Linux Servers.

CNet News.com

. February 10, 2003. <http://
news.com.com/2100-1001-984010.html>.

[12] Halloran, T.J. and Scherlis, W.L. High Quality and
Open Source Software Practices. In

Proceedings of the
Meeting Challenges and Surviving Success: 2nd Workshop
on Open Source Software Engineering.

 May, 2002.
[13] Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso,

A., Pennings, M., Sinha, S., Spoon, S.A., and Gujarathi, A.
Regression Test Selection for Java Software. In

Proceed-

ings of the

ACM Conference on OO Programming, Sys-
tems, Languages, and Applications (OOPSLA 2001).

 p.
312-326, Tampa, Florida, October, 2001.

[14] Heesch, D.v.

Doxygen

. <http://www.doxygen.org/
>, HTML, 2003.

[15] Herbsleb, J.D., Mockus, A., Finholt, T.A., and
Grinter, R.E. An Empirical Study of Global Software
Development: Distance and Speed. In

Proceedings of the
International Conference on Software Engineering (ICSE).

p. 81-90, 2001.
[16] Hoek, A.v.d. ConÞguration Management and

Open Source Projects. In

Proceedings of the

3rd Interna-
tional Workshop on Software Engineering over the Inter-
net.

 Limerick, Ireland, June 6, 2000.
[17] Howard, J. The BSD Family Tree

. Daemon News.

April, 2001. <http://www.daemonnews.org/200104/
bsd_family.html>.

[18] KDE e.V.

Developer's Corner

. <http://devel-
oper.kde.org/>, HTML, 2003.

[19] Maletic, J.I. and Marcus, A. Supporting Program
Comprehension Using Semantic and Structural Informa-
tion. In

Proceedings of the

23rd International Conference
on Software Engineering.

 p. 103-112, Toronto, Ontario,
Canada, May, 2001.

[20] Netcraft.

Netcraft Web Server Survey

. <http://
www.netcraft.com/survey/>, HTML, 2003.

[21] Python Software Foundation.

Patch Manager

.
<http://sourceforge.net/tracker/?group_id=5470>, HTML,
2003.

[22] Raymond, E.S.

The Cathedral & the Bazaar:
Musings on Linux and Open Source by an Accidental Revo-
lutionary

. O'Reilly, 2001.
[23] Software in the Public Interest.

Debian Mirrors

.
<http://www.debian.org/mirror/>, HTML, 2003.

[24] Software in the Public Interest.

Debian Releases

.
<http://www.debian.org/releases/>, HTML, 2003.

[25] SourceGear Corporation.

AbiWord Documenta-
tion

. <http://www.abisource.com/doxygen/>, HTML,
2003.

[26] The Apache HTTP Server Project. Apache HTTP
Server Project Guidelines and Voting Rules. <http://
httpd.apache.org/dev/guidelines.html>, HTML, 2003.

[27] The Mozilla Organization.

Bugzilla Project
Homepage

. <http://www.bugzilla.org/>, HTML, 2003.
[28] The Perl Foundation.

Parrot and Perl6 PDDs

.
<http://dev.perl.org/perl6/pdd/>, HTML, 2003.

[29] The PHP Group.

PHP: Documentation

. <http://
www.php.net/docs.php>, HTML, 2003.

[30] Ye, Y. and Fischer, G. Supporting Reuse by Deliv-
ering Task-Relevant and Personalized Information. In

Pro-
ceedings of the

24th International Conference on Software
Engineering.

 p. 513-523, Orlando, Florida, May, 2002.

