
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Jie Ren
Univ. of California, Irvine
jie@ics.uci.edu

Richard N. Taylor
Univ. of California, Irvine
taylor@uci.edu

Incorporating Off-The-Shelf Components with
Event-based Integration

April 2003

ISR Technical Report # UCI-ISR-03-2

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu



 

Incorporating Off-The-Shelf Components with 
Event-based Integration

 

Jie Ren, Richard Taylor

 

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

+1 949 824 2776

{jie, taylor}@ics.uci.edu

 

ISR Technical Report # UCI-ISR-03-2
April 2003

 

ABSTRACT

 

Event-based Integration (EBI) is an promising technology for constructing large software architectures. It
can integrate concurrent, heterogeneous components in dynamic software architecture. This paper dis-
cusses our experience in integrating a set of off-the-shelf components to create an event-based software
architecture development environment. We discuss the benefits and obstacles of integrating Common-Off-
The-Shelf (COTS) components, explain the rationale for choosing event-based integration, and report
some experiences from this effort.



Incorporating Off-The-Shelf Components with Event-based 
Integration 

Jie Ren, Richard Taylor 
Institute for Software Research 

University of California, Irvine 

Irvine, CA 92697-3425 

+1 949 824 2776 

{jie, taylor}@ics.uci.edu 
ISR Technical Report #UCI-ISR-03-2 

April 2003 
ABSTRACT 
Event-based Integration (EBI) is an promising technology for 
constructing large software architectures. It can integrate 
concurrent, heterogeneous components in dynamic software 
architecture. This paper discusses our experience in integrating a 
set of off-the-shelf components to create an event-based software 
architecture development environment. We discuss the benefits 
and obstacles of integrating Common-Off-The-Shelf (COTS) 
components, explain the rationale for choosing event-based 
integration, and report some experiences from this effort.  
Categories and Subject Descriptors 

General Terms 
Design, Experimentation, Languages. 

Keywords 
COM, Java, Event-based Integration 

1. INTRODUCTION 
Software architecture has been proposed as an effective solution 
for producing bigger, better and cheaper software [7]. Although 
there does not exist a common agreement about the concepts and 
terminologies within the research community, a minimum core of 
principles could be presented as: a software system is composed 
of components and connectors, components are loci of 
computation and connectors are loci of communication, and a 
specific set of components and connectors form the configuration 
of the software [6]. 

There are many ways to construct components. They can be either 
developed in-house, or acquired off-the-shelf. While in-house 
components provide the unique functionalities for a system, what 
makes Component-based Software Engineering cost-effective are 
those components acquired externally. The many advantages 
provided by such components include richer functionality, higher 
reliability, less development time, reduced documentation effort, 
flatter learning curve, and easier deployment.  

However, these advantages do not come for free. The external 
component may not match the requirements perfectly, the design 
could bear with them some inflexible decisions, and the uneasy 
task of understanding could be made worse by lack of proper 
documentation. The absence of source code, which is common 

practice in industry, can make integration a very challenging task 
[1].  

The key of composition and integration in architectural-driven 
component-based development lies in connector technology. 
Many technologies have been used as connectors, such as pipe-
and-filter, remote procedure call, and object request broker. The 
variants have different capabilities and limitations [9]. Among 
them, event-based integration (EBI) is very effective in 
integrating concurrent, heterogeneous components in dynamic 
environment [8]. In this paradigm, components communicate with 
each other by sending events, while connectors provide the 
infrastructure for messaging, include event registration, routing, 
and monitoring. The components can be written in different 
languages, reside on different processes, and run on different 
machines. They don’t need to maintain specific pointers about the 
components that they are communicating with, and they can be 
easily added or removed from the system without adversely 
affecting other members.   

In this paper, we present our experience in integrating a set of off-
the-shelf components to create an event-based software 
architecture development environment. Section 2 introduces the 
specific architecture style and development environment we are 
developing. Section 3 details the integration activity. Section 4 
discusses related work. Section 5 concludes the paper. 

2. C2 ARCHITECTURE STYLE 
C2 is an architecture style featuring event-based integration [10]. 
Its basic tenets include:  

• Components communicate with each other only by 
sending events, which are routed by connectors. 

• Components and connectors both have one top interface 
and one bottom interface. 

• Components and connectors are connected in a layered 
manner. 

• Components can be connected to at most one connector 
at any of its interfaces, while connectors can connect to 
any number of components and connectors at any of its 
interfaces. 

• Components send request events to upper components 
for service, the upper components reply by sending 
notification events downwards. 



We developed a software development environment, ArchStudio, 
to support the development of software in this style [5]. 
ArchStudio itself is in C2-style. It integrated a set of tools, from 
both in-house and off-the-shelf, with various degrees of 
integration.  

We are continually expanding the capabilities of ArchStudio. The 
architecture of the latest version can be depicted as below: 

xArchADT

Visio ArchEdit

File Manager/Invoker

ADT Tier

Convenience Tier

No-UI Tools Tier

UI Tools Tier

Management Tier

UI-based tools and UIs for
upper layers tools.

components providing more "convenient" APIs to xArchADT

Analysis, Simulation, and other tools without user interfaces.

......

......

Figure 1, Architecture of ArchStudio 

The rectangle designates components. Those in solid line 
rectangles are complete components, while those in dashed line 
rectangles are components to be added. The round angle box 
designates connectors. The core of ArchStudio is a component 
called xArchADT, which stores architectural information 
expressed in xADL 2.0, an extensible, XML-based Architecture 
Description Language [2]. A convenience tier provides easy 
access to this abstract data repository. Some no-UI tools provide 
analysis, simulation, and monitoring capability. A set of UI tools 
is used to manipulate the architectural information graphically. An 
invoker provides a portal for accessing all integrated tools. 

Most of the components in the environment are written using a 
Java-based framework we developed to ease the construction of 
C2-style software. We want to explore the possibility to 
incorporate non-Java tools using events. Another goal we have is 
to enhance the frond end of ArchStudio. 

The old front end in ArchStudio is Jargo, a tool based on GEF 
(Graphics Editing Framework) [15].GEF is an open source Java 
graphics-editing framework. It provides basic support for graphics 
editing, but lacks industrial strength capability. We tried Mica, 
another Java-based GUI toolkit, only to find it still is not mature 
enough.  

3. INTEGRATING VISIO USING EVENTS 
3.1 Visio 
We decide to use Visio, an industry-strength graphics-editing 
product, as the basis for our new graphical front end. In addition 
to standard shape creation and editing functionality, this 
commercial product provides many advanced features, including 
dynamic master shape generation, flexible connection between 

shapes, rich format, and zoom. While adding these functionalities 
to Jargo or Mica are theoretically possible, the cost of 
development would be enormous, and there is no guarantee for 
the quality of the final result. 

The resulting environment is shown in Figure 4. The ArchStudio 
File Manager is the central portal to the various tools of 
ArchStudio environment. The main Visio window shows part of 
the architecture for AWACS (Airborne Warning and Control 
System). The architecture is described using xADL 2.0. The 
graphical layout is generated from this description with the help 
of AT&T Research’s open-source Graphviz Dot tool [16].  

Figure 2, ArchStudio with Visio front end 

Visio front end provides the following operations to the 
architecture designer: 

• Create component and connector types, define their 
interfaces 

• Create a component or a connector 
• Connect a connector to a component or another 

connector 
• Disconnect a connector from a component or another 

connector 
• Delete a component or a connector and its connected 

links 
• Undo the editing operations 
• Group a set of components and connectors into a larger 

group 
• Ungroup a group into its constituents 
• Create a sub architecture for a component type or a 

connector type to support large software architecture 

These editing operations will send requests to xArchADT to insert 
or remove the relevant xADL elements instantly. For example, 
when a component is created, an element for it is created, with 
sub elements for its identifier, interfaces, and type.  

Since Visio is not the only editor in ArchStudio, it also needs to 
get the notification when other editors modify xArchADT. For 
example, when ArchEdit, a generic syntax-directed editor, deletes 
a connector, Visio will get the notification from xArchADT and 
delete the corresponding shape. ArchEdit will not delete any 
connected links of the connector because of its simplicity and 



generality, but Visio will enhance the correct semantics and delete 
those links, telling xArchADT to remove the corresponding 
elements.  

In a word, Visio front end maintains a graphical, high-level 
snapshot of xArchADT, and it can be used to view and modify the 
states of xArchADT instantly.  

Visio provides a programmatic interface for its graphics engine, 
through which the rich functions can be accessed. This facilitates 
the development of customized solutions for various fields. We 
use it to integrate Visio into ArchStudio and make it the front end.  

Both ArchStudio and Visio are event-based systems. This 
similarity in the underlying programming paradigms eases the 
integration.  However, they are written in different languages. 
ArchStudio is a pure Java system. Visio is now a Microsoft 
product, and its programming interface has long been COM-based 
(Any COM-compliant language can be used to develop the 
customized solution, we choose the built-in Visual Basic for 
Application), as most other Microsoft products are. We need to 
bridge the COM world and the Java world.  

3.2 Microsoft’s Java Virtual Machine 
There are several products that enable this interoperation to 
happen. Sun has an ActiveX Bridge for JavaBeans [13], which 
enables Java beans to be used in a COM container. It also has an 
Enterprise Edition Client Access Services COM Bridge [14], 
which allows COM clients to access EJB components. Linar's J-
Integra [11] is an innovative pure Java-COM bridge, which 
implements COM services in Java. It provides both Java-to-COM 
and COM-to-Java bridging capability. 

We choose Microsoft Virtual Machine [12], because it provides 
both COM-to-Java and Java-to-COM conversion, and it is readily 
available with the Microsoft operating system without any further 
charge or extra installation. 

In COM [3], the central artifact is the interface, which contains 
nothing but a set of abstract functions. The interface is the 
contract between the client and the server. A class can implement 
a set of interfaces. A client will create an object from the class and 
access the object’s services. Both interfaces and classes are 
designated through Global Unique IDs.  

Although COM exhibits a lot of influence from C++, its notions 
about interface and class actually match the corresponding 
concepts in Java better. This makes COM programming in Java 
very natural, due to the capability provided by the bridging 
Microsoft Virtual Machine (VM). 

To access a Java object from COM, a COM-compatible interface 
is needed. This is provided by the Virtual Machine. It 
automatically constructs a COM-Callable Wrapper around the 
Java object. The wrapper has a set of standard COM interfaces 
(IUnknown for COM identity, IDispatch for automation, IMarshal 
for marshaling and unmarshaling, and IConnectionPointContainer 
for COM event, etc.), in addition to interfaces for the original 
functions exposed by the object. To standard COM objects, the 
wrapper looks like a canonical COM object. The call on these 
COM interfaces will be translated by the wrapper into call on the 
internal Java functions. For example, here is a regular Java class: 

public class VisioCOM { 
 private Object agent; 

 public void setAgent(Object _agent) { 
  agent = _agent; 
 } 
 
 public Object getAgent() { 
  return agent; 
 } 
} 
An instance of this class can be accessed in VBA as a regular 
COM object in the following way: 

Dim visioCOM as Object, visioAgent as Object 
Set visioCOM = GetObject(, "VisioCOM") 
Set visioAgent = visioCOM.getAgent  
To access a COM object from Java, another wrapper is needed. 
The Java-Callable Wrapper is a Java class that has some 
Microsoft-specific attributes that tell the Microsoft Virtual 
Machine how to map the Java object to the COM component that 
it represents. Microsoft has tools to automatically generate Java 
source files from COM interface definitions. These source files 
contain special directives that tell Microsoft compiler to insert 
certain attributes into the generated class files that represent the 
COM component. Other compilers and virtual machines will 
ignore these proprietary directives and attributes. For example, the 
wrapper COM object for the previous Java class can be turned 
into the following Java interface and class, with special directives: 

/** @com.interface(iid=...) */ 
public interface VisioCOM_DispatchDefault  
{ 
  /** @com.method(...) 
      @com.parameters(...) */ 
  public void setAgent(Object a); 
 
  /** @com.method(...) 
      @com.parameters(...) */ 
  public java.lang.Object getAgent(); 
  ... 
} 
 
/** @com.class(classid=...) */ 
public class VisioCOM implements 
VisioCOM_DispatchDefault 
{ 
  /** @com.method() 
      @hidden */ 
  public native void setAgent(Object a); 
 
  /** @com.method() 
      @hidden */ 
  public native java.lang.Object getAgent(); 
  ... 
}  

Notice in the previous examples, the Java class is wrapped in a 
COM object, which can then be accessed in both COM and Java 
environment. When the access happens in the Java environment, 
both COM-Callable Wrapper and Java-Callable Wrapper are 
used. That is, the Java class is accessed not through the original 
Java class, but through a Java-Callable Wrapper on a COM object 
that is a COM-Callable Wrapper for the Java class.  

http://java.sun.com/products/plugin/1.3/docs/script.html
http://developer.java.sun.com/developer/earlyAccess/j2eecas/
http://www.linar.com/
http://www.linar.com/


3.3 First Integration Scheme When Visio tries to notify VisioAgent, it sends a COM message 
to the COM-Callable Wrapper, and the wrapper translates it into a 
Java message for VisioAgent. VisioAgent will send an event to 
the rest of ArchStudio. The COM messages are designated as 
solid arrows in Figure 3.  

To notify ArchStudio of the changes the developer makes, Visio 
needs to maintain a communication path to ArchStudio. This is 
achieved through several steps.  

First, we write a standard C2 component VisioAgent in Java, 
which will receive events that Visio sends whenever user modifies 
the architecture design.  

Figure 4 describes the situation when a notification originates 
from ArhcStudio. To let Visio receive these notifications, we 
write a standard COM object called VisioStub and embed it in 
Visio. VisioStub is in charge of processing events that come from 
ArchStudio, such as notifications sent when ArchEdit deletes a 
connector. It will modify the display of Visio to reflect those 
changes. 

Second, to pass the reference for VisioAgent to Visio, we write 
another proxy object, VisioCOM. The VisioCOM is written in 
Java, so it can preserve a standard Java reference for VisioAgent. 
Instead of just creating a standard Java instance of VisioCOM, a 
COM Callable Wrapper containing the Java object is created by 
Microsoft Virtual Machine. When VisioAgent initializes, it 
creates this COM Callable Wrapper through a Java Callable 
Wrapper, as described in the previous section, and put the COM 
Callable Wrapper into the COM Running Object Table. 

During initialization, after Visio retrieves the reference to 
VisioAgent, it tells VisioAgent the reference to VisioStub. Since 
VisioAgent is a Java component and VisioStub is a COM 
component, Microsoft VM will create a Java Callable Wrapper 
around the COM component and that wrapper will be referenced 
in VisioAgent. When Visio initializes, it retrieves the COM Callable Wrapper for 

VisioCOM from the Running Object Table using COM services, 
and get the internal Java reference to VisioAgent, from which a 
COM Callable Wrapper is constructed by Microsoft Virtual 
Machine. After this step, VisioCOM has accomplished its 
mission.  

When VisioAgent receives events from the rest of ArchStudio, it 
will send a Java message to the wrapper, which translates it into a 
COM message for VisioStub. VisioStub will deliver the event to 
Visio using COM services.  

3.4 Second Integration Scheme 
The approach outlined above solves the COM/Java integration 
problem, with a major limitation. The solution requires Microsoft 
VM, which is only JDK 1.1.4 compliant (Due to the legal dispute 
between Microsoft and Sun, it will not be updated to 
accommodate the latest technology.) and runs only on Windows 
operating system. We would like to eliminate this limitation so the 
portability and latest development of Java technology will not be 
compromised. The next step of integration is to let the Microsoft 
VM interoperate with the Sun VM, on which other parts of 
ArchStudio run. (As a matter of fact, ArchStudio keeps exploiting 
the continuous developments in Java technology, and the latest 
version of ArchStudio needs JDK 1.4 to run correctly.) 

Visio 

App. 

Visio 

VBA 

VisioAgentRMI

Sun VM 

ArchStudio

COM COM 
VisioAgent 

RMI 

VisioCOM 

Microsoft 

VM 

Figure 3, Visio->ArchStudio Communication 

The reason we use two objects is that VisioCOM is a simple 
object whose sole purpose is to transfer the VisioAgent reference 
to Visio. We want to separate this functionality from other 
complex and evolving functionalities.  

A standard socket connection can be used to achieve the 
interoperation. However, it is a low-level programming interface, 
which means significant development effort is required to provide 
and maintain the needed communication capability. We choose to 
use Remote Method Invocation (RMI), the only high-level 
distributed computing primitives available to JDK 1.1. (RMI 
support for Microsoft VM is “unofficially” provided through a 
separate download.)  

Visio 

App. 

Visio 

VBA 

Microsoft 

VM 

VisioAgent VisioAgentRMI
RMI 

Sun VM 

ArchStudio

COM COM 
VisioStub 

Two separate RMI servers, one in Microsoft VM (VisioAgent), 
another in Sun VM (VisioAgentRMI), are constructed. They 
communicate with each other using RMI to achieve the two-way 
event communications afore mentioned, depicted in Figure 3 and 
Figure 4 by the straight dashed lines. 

VisioAgent will send the following requests to VisioAgentRMI 
whenever the designer performs the corresponding operations in 
Visio: create a type for component/connector/interface, create a 
sub architecture for a type, create or remove a 
component/connector, connect a connector to a component, 
disconnect a connector from a component, group a set of 
components and connectors, ungroup a group, and get current 
components/connectors/connections from the architecture. 

Figure 4, ArchStudio->Visio Communication 

This initial setup is designated by the curved dash line in Figure 3. 
The Visio application and the Visio VBA are COM objects. The 
Microsoft VM is the bridge between COM and Java. It is a COM 
object itself, and it hosts two Java objects, VisioAgent and 
VisioCOM, with the necessary wrappers. The Sun VM is the 
standard Java VM that runs the rest of ArchStudio. 



VisioAgentRMI will send the following notifications to 
VisioAgent whenever other tools modify xArchADT in 
ArchStudio: a component or connector is created or deleted, a 
connection is created or deleted, and a group is added or removed. 

Generally speaking, there will be event traffics whenever the 
designer modifies the design to change some aspects of the 
architecture. Comparing to other high volume real time events, 
most of these design events occur much less infrequently and 
require less processing due to the little associated data.     

Now the Java/COM integration happens completely in Microsoft 
VM, and applications in both VMs can evolve independently to 
accommodate new requirements.  

3.5 Evaluation 
Through this two-segment integration approach, we have an 
integrated event-based software architecture development 
environment, with capabilities provided from both latest Java 
technology and commercial graphics editing product. The 
footprint of the solution is small. While the integration imposes 
some overhead resulting from several stages of conversion, it still 
performs reasonably well under an interactive environment. The 
solution can be freely downloaded with source code. Initial 
feedback from first users is positive. 

There is still some room to improve the performance. One 
possibility is to replace the late binding automation used in Visio-
to-VisioAgent communication by early binding automation. 
Another possibility is to change the RMI communication 
primitive to some lightweight solutions. While RMI provides a 
good balance between productivity and performance, it might be 
overkill for the current problem. We are not sure whether these 
technical solutions could result in any significant improvement in 
user perceived performance. 

The current connector between the Java component and the COM 
component is custom-made, which requires adding a set of new 
adapters for each new function. For example, when the 
functionality of adding a component is needed, VisioAgentRMI 
needs to be modified so the request can be understood, and 
VisioAgnet also needs modification so the corresponding 
notification, a component is added, can be sent back. The changes 
do little more than relaying the message to the correct receiver. 
This process is tedious and labor-sensitive. We plan to extend the 
connector into a standard, adaptive communication channel, using 
reflective technology, so it can be utilized easily by other users to 
integrate similar components.  

The messaging capability of the connector is still rudimentary. 
The communication pattern is point-to-point, and some explicit 
references are still needed. While the C2 framework provides rich 
event functionalities in the Java side, COM’s support for events is 
limited. COM+ provides the capability to dynamically define 
events and change the subscribers and publishers of events, which 
greatly loose the coupling of involved parties. We plan to explore 
these advanced features to enhance the messaging capability of 
the connector. 

3.6 Object Identity Problem 
We found an anomaly in the Microsoft Virtual Machine. When it 
generates wrappers at run-time, it does not always preserve the 
identity for the original object. That is, two different wrappers 
may be generated for the same original object. During 

initialization, a reference to the COM object VisioStub needs to 
be stored in VisioAgent, and a Java-Callable Wrapper is 
generated for this COM object. During finalization, this reference 
needs to be released, but when passed the same VisioStub object, 
Microsoft VM generates another Java-Callable Wrapper, instead 
of reusing the original wrapper. These wrappers are different Java 
objects, making the comparison for identity generating surprising 
results.  

We believe a more transparent translation, which can keep the 
identity unchanged and generate the same wrapper for the same 
original object, is possible, using some session information. Since 
each COM object has its identify (the interface pointer for 
IUnknown), the VM can maintain a map between the identify of 
the COM object and the corresponding wrapper. When asked for a 
wrapper of a COM object, instead of always generating a distinct 
Java object, the VM can ask the COM object for identity and 
consult with the map. If the identify of the COM object can be 
found, then the corresponding wrapper in the map should be used. 
Otherwise a new wrapper is generated and the association is 
stored in the map. The association can be removed when the 
objects are no longer needed. 

Since we don’t have the source code of Microsoft VM to 
implement this identification-preserving translation, we have to 
tag a streamable string identifier with such objects to circumvent 
this problem. When telling the reference for VisioStub to 
VisioAgent for the first time, in addition to the reference (which 
will be wrapped in a Java-Callable Wrapper), a unique random 
string identifier is also passed. During finalization, instead of 
using the reference, the string identifier is passed to tell 
VisioAgent that the specific VisioStub is no longer needed. The 
identity of the string could also be changed, but its content is 
preserved, and thus used as a pseudo identifier for the wrapper. 

4. RELATED WORK 
COM is probably the most widely used component technology so 
far. Researchers utilize it as a platform for developing value-
added tools and an environment for exploring issues in 
component-based software development.  

Neil Goldman and Robert Balzer of Information Science 
Institute(ISI) [4] extended PowerPoint to create a visual design 
editor generator. The editor consists of two parts. One is the 
designer, which creates the entities, specifies their properties and 
connections. The domain engineer can specify the ontology of the 
design in the generator by providing a set of samples, and the 
generator can generate the corresponding designer. The other part 
is the analyzer, which provides the distinctive semantics, such as 
analysis, execution, and monitoring of the design. This part has to 
be manually crafted. To coordinate the cooperation between the 
generic editor and the specific analyzer, they use an analysis 
router between the designer and the registered analyzers, design a 
designer-analyzer protocol based on DCOM to support 
incremental analysis, transactional analysis, and result report. 
Their technology focuses on the generation of a new COTS-based 
environment given a set of specifications. The architecture is 
shown in the following diagram. 



Analyzer

DCOM (domain specific)

Analyzer...

Analysis Router

COM (domain independent)

DesignsDomain 
Definitions

Ppt file I/OPpt file I/O

C
O

MDesign
Editor

Microsoft

ISI

User

Model TranslatorModel Translator

Power
Point

Figure 5, ISI Design Environment Architecture 

 
Figure 6, Galileo Architecture 

Our research explores the issues encountered in integrating a 
desired COTS component to become an integral part of a pre-
existing environment. The communication pattern in their 
research emphasizes the mapping between a generic front end and 
various specific backends. The control pattern they follow is one 
in which the dominant thread of control, Analysis Router, 
dispatches analysis task to analyzers that could reside on different 
processes or even different computers. Our component tools 
benefit from the event notification provided by C2 style. It is 
interesting to note they used an event observation hook at the 
operating system level to circumvent the lack of event notification 
in PowerPoint 97, and they planed to investigate Visio since it 
provides better event notification mechanisms.  

Our research applies the same general model. We agree with their 
conclusions about the potentials, returns, and risks involved in 
using the model.  Technically Our emphasis lies on integrating 
two different technologies, COM and Java, within an event-based 
integration framework.  

During years of research, their group has been exploring issues 
related to component capabilities and limitations, evolution of 
functions and user interfaces, and unexpected and undocumented 
behaviors. They found early versions of Access did not support 
Active Document Interface, which made it architecturally 
incompatible with other members of the environment, and they 
had to rely back on file system for data storage. But the newly 
available Internet Explorer proves to be architecturally compatible 
and very useful. For us, while Microsoft VM provides an easy 
integration path between COM and Java, due to the lawsuit 
between Microsoft and Sun it is clear that no improvement can be 
expected for the VM, and the integration between newer COM 
and Java technologies thus becomes more difficult.  

David Coppit and Kevin Sullivan [1] point out there are three 
problems in pursuing successful component-based software 
development models: lack of appropriate models, absence of 
knowledge about conditions under which such models can 
succeed, and shortage in understandings for specific promising 
models. They view Goldman and Balzer’s approach as a model 
that uses a single component as a platform upon which to build a 
system, and they propose an alternative model, Package-Oriented 
Programming, that employs multiple components and integrates 
them tightly into a single application. They evaluate their model 
by a successful case study that builds a computational tool for 
reliability engineering, which can be seen as an industrially strong 
representative of an important class of systems. They conclude the 
model has potential to succeed, and even today it can produce 
significant returns, although it has certain risks.  

We encountered some similar problems as they did, but we were 
happy to find that some of their early troubles have been solved 
during the evolution of the COTS products. We believe this 
demonstrates one advantage of using commercial COTS products: 
continuous support and upgrade from the vendor.  

For example, they found providing high-level operations (such as 
connecting two gates) based on Visio primitives is not easy. We 
have some difficulty in providing undoing of high-level 
operations, because the user interface exposes all the underlying 
low-level operations, which requires the user to understand the 
implementation details to perform a semantically correct undoing. 
They found the length of shape identifier limited. We suffer from 
the same obstacles.  

The environment, Galileo, is a dynamic fault tree tool for 
reliability analysis. Its architecture is shown below. The main 
mediator coordinates the views and the analysis engines. Visio is 
used as a graphical editor, Word is used as a textual editor, and 
Internet Explorer is used to provide online help. All the COTS 
packages have a COM-based application programming interface 
that is used for integration. During the development process, they 
had also used Excel and Access.  

They found Visio did not expose the “delete” event adequately, 
which forced them to give up an incremental update scheme and 
turned to a batch-oriented editing. We didn’t experience this 
problem. Similarly they reported problems of multiple-page 



support in early Visio versions, while we did not encounter such 
issues during our exploration.  

An interesting issue is layout. While they gave up their own 
layout algorithm and used Visio’s built-in layout functionality due 
to its speed improvement over cross-application communication, 
we turned to an external layout package, Graphviz, due to Visio’s 
limitation in processing extensive use of groups. Visio can group 
a set of shapes under a parenthood of a group, and the child’s 
coordinates are parent-relative. When there are many shapes and 
several levels of groups, Visio spends much time in coordinates 
recalculating when there is a position change. We found that 
unacceptable, and decided to calculate and set the coordinates 
using Graphviz. 

It is instructional to notice the difference in data consistency 
models between their tool and ours. They use a batch-oriented 
consistency scheme instead of an incremental one: one tool 
modifies the data, and submits the change so others can learn 
about it. They adopt this model because the reliability data lack a 
regular structure, the editing tool does not provide all required 
events notification, and they feel the automation performance is 
not adequate. We choose incremental update based on event 
notification, because the data we are dealing with, the architecture 
description, has a clear structure, which greatly reduces the 
amount of information, thus the burden of processing, needed for 
each event. Through experimentation we find the responsiveness 
of the tool is good enough for interactive operations on the scale 
of data we process, thus vindicating the COTS product has good 
support for notifications and performance.  

5. CONCLUSION 
Our work demonstrates that event-based integration can be an 
effective way to integrate off-the-shelf, heterogeneous 
components to create software architectures. We use it to extend 
the capability of ArchStudio to include the vast functionalities 
provided by a COM-based product. While still limited and open 
for future improvement, the solution we propose shows its 
usefulness and could be applied in similar integrations. 

6. REFERENCES 
[1] Coppit, D.; Sullivan, K.J. Multiple mass-market applications 

as components. Proceedings of the 2000 International 
Conference on Software Engineering, p.273-82. 

[2] Dashofy, E.M.; van der Hoek, A.; Taylor, R.N. A highly-
extensible, XML-based architecture description language. 
Proceedings of Working IEEE/IFIP Conference on Software 
Architecture, Aug. 2001, p.103-12. 

[3] Eddon, G.; Eddon, H. Inside COM+ Base Services, 
Microsoft Press, 1999 

[4] Goldman, N.M.; Balzer, R.M. The ISI visual design editor 
generator. Proceedings of 1999 IEEE Symposium on Visual 
Languages, p.20-7.  

[5] Khare, R.; Guntersdorfer, M.; Oreizy, P.; Medvidovic, N.; 
Taylor, R.N. xADL: enabling architecture-centric tool 
integration with XML. Proceedings of the 34th Annual 
Hawaii International Conference on System Sciences, p.9-17 

[6] Medvidovic, N.; Taylor, R.N. A classification and 
comparison framework for software architecture description 

languages. IEEE Transactions on Software Engineering, 
vol.26, no.1, Jan. 2000. p.70-93.  

[7] Perry, D.E.; Wolf, A.L. Foundations for the study of 
software architecture. SIGSOFT Software Engineering 
Notes, vol.17, no.4, Oct. 1992. p.40-52. 

[8] Reiss, S.P. Connecting tools using message passing in the 
Field environment. IEEE Software, vol.7, no.4, July 1990. 
p.57-66. 

[9] Shaw, M.; Garlan, D. Software Architecture: Perspectives on 
an Emerging Discipline, Prentice Hall, 1996 

[10] Taylor, R.N.; Medvidovic, N.; Anderson, K.M.; Whitehead, 
E.J., Jr.; Robbins, J.E.; Nies, K.A.; Oreizy, P.; Dubrow, D.L. 
A component- and message-based architectural style for GUI 
software. IEEE Transactions on Software Engineering, 
vol.22, no.6, IEEE, June 1996. p.390-406. 

[11] http://www.linar.com/ 

[12] http://www.microsoft.com/java 

[13] http://java.sun.com/products/plugin/1.3/docs/script.html 

[14] http://developer.java.sun.com/developer/earlyAccess/j2eecas 

[15] http://gef.tigris.org 

[16] http://www.research.att.com/sw/tools/graphviz 

 

http://www.linar.com/
http://www.microsoft.com/java
http://java.sun.com/products/plugin/1.3/docs/script.html
http://developer.java.sun.com/developer/earlyAccess/j2eecas
http://gef.tigris.org/
http://www.research.att.com/sw/tools/graphviz

	INTRODUCTION
	C2 ARCHITECTURE STYLE
	INTEGRATING VISIO USING EVENTS
	Visio
	Microsoft’s Java Virtual Machine
	First Integration Scheme
	Second Integration Scheme
	Evaluation
	Object Identity Problem

	RELATED WORK
	CONCLUSION
	REFERENCES
	UCI-ISR-03-2-abs.pdf
	INTRODUCTION
	C2 ARCHITECTURE STYLE
	INTEGRATING VISIO USING EVENTS
	Visio
	Microsoft’s Java Virtual Machine
	First Integration Scheme
	Second Integration Scheme
	Evaluation
	Object Identity Problem

	RELATED WORK
	CONCLUSION
	REFERENCES




