
Use Cases:
The Good, The Bad, and The Ugly

(and what you can do about it)

Hadar Ziv
ziv@ics.uci.edu

In cooperation with:
Debra Richardson
Thomas Alspaugh
Thomas Standish

And the ROSATEA group at UCI

Hadar Ziv / ziv@ics.uci.edu

Hadar Ziv / ziv@ics.uci.edu

Presentation Outline
 Use cases are good

– Quantum leap in software requirements specification (in principle)

 Use cases are bad
– Difficult, time-consuming, and error-prone (in practice)

 Use cases can get ugly
– Use case mistakes, misuse, and even “abuse cases”

 What you can do about it
– Review “Top Ten” lists (practical advice)

– Consider Goals, Scenarios, Episodes, Concerns, and Aspects
(research work in progress)

Hadar Ziv / ziv@ics.uci.edu

Use Cases: The Good
Use cases are a simple and powerful way to
define requirements for software behavior

Order tickets
Kiosk User

Actor Use Case

Withdraw money
Bank customer

Actor Use Case

Hadar Ziv / ziv@ics.uci.edu

The Use-Case Model

– A use-case model illustrates
» The system’s intended functions (use cases)

» Its surroundings (actors)

» Relationships between use cases and actors (use case diagram)

– The same use-case model used in requirements
» Is used in analysis, design, and test

» Serves as a unifying thread throughout system development

The most important role of a use-case model is to communicate
the system’s functionality and behavior to the customer or end user

The most important role of a use-case model is to communicate
the system’s functionality and behavior to the customer or end user

Hadar Ziv / ziv@ics.uci.edu

A Simple ATM Use Case Model

Bank
System

Bank
Customer

Deposit Money

Withdraw Money

Transfer Money
(Between Accounts)

ATMATMATM

Hadar Ziv / ziv@ics.uci.edu

Use Case Details

 A use case is a textual or graphical description of
– Major functions the system will perform for its actors
– Goals the system achieves for its actors along the way

 A use case description should contain
– Use case name
– Basic course or path of action
– Alternative paths and error/exception conditions

 Scenarios
– Describe typical uses of the system as narrative
– Correspond to a single path or flow through a use case
– A use case is an abstraction or container of a set of related

scenarios

Hadar Ziv / ziv@ics.uci.edu

Use Cases: The Bad and The Ugly

 If you don’t fully understand the ins and outs of use cases
– It is easy to misuse them or turn them into “abuse cases”

 Ellen Gottesdiener
– “Top Ten Ways Project Teams Misuse Use Cases – and How to Correct

Them.” The Rational Edge, June 2002 (Part I), July 2002 (Part II).
 Martin Fowler

– “Use and Abuse Cases.” Distributed Computing, April 1998.
 Doug Rosenberg

– “Top Ten Use Case Mistakes.” Software Development, February 2001.
 Susan Lilly

– “How to Avoid Use Case Pitfalls.” Software Development, January 2000.
 Kulak and Guiney

– “Use Cases: Requirements in Context.” Second Edition, Addison-Wesley
2003.

Hadar Ziv / ziv@ics.uci.edu

Ten Misguided Guidelines (Gottesdiener)

 Don’t bother with any other requirements representations
– Use cases are the only requirements model you’ll need!

 Stump readers about the goal of your use case
– Name use cases obtusely using vague verbs such as do or process

 Be ambiguous about the scope of your use cases
– There will be scope creep anyway, so you can refactor your use

cases later
 Include nonfunctional requirements and UI details in your use-

case text
 Use lots of extends and includes in your initial use-case

diagrams
– This allows you to decompose use cases into itty bitty units of

work

Hadar Ziv / ziv@ics.uci.edu

Ten Misguided Guidelines (Cont’d)

 Don’t be concerned with defining business rules
– you’ll probably remember some of them when you design and

code
 Don’t involve subject matter experts in creating, reviewing, or

verifying use cases
– They’ll only raise questions!

 If you involve users at all in use case definition, just “do it”
– Why bother to prepare for meetings with the users?

 Write your first and only use case draft in excruciating detail
– Why bother iterating with end users when they don’t even know

what they want
 Don’t validate or verify your use cases

– That will only cause you to make revisions and do more rework!

Hadar Ziv / ziv@ics.uci.edu

Top Use Case Mistakes (Rosenberg)

 Don’t write functional requirements instead of usage scenario text
– Requirements are generally stated in terms of what the system shall do
– Usage scenarios are user actions and corresponding system responses

 Don’t describe attributes and methods rather than usage
– Don’t include too many presentation details
– Don’t detail data-entry fields on user screen

 Don’t write the use cases too tersely
– Must describe user actions and system responses in detail
– Err on the side of too much detail in user documentation

 Don’t completely ignore the user interface
– Discuss features that allow the user to tell the system to “do something”

 Don’t avoid explicit names for boundary objects
– Name boundary objects explicitly in the use case text

Hadar Ziv / ziv@ics.uci.edu

Top Use Case Mistakes (Cont’d)

 Don’t write in a passive or not the user’s voice
– Should be written from the user’s perspective
– Present-tense verb phrases in active voice

 Don’t ignore system behavior
– Include what the system does in response to user actions

» Creates new objects
» Validates user input
» Generates error messages

 Don’t omit text for alternative courses of action
– Basic course of action easier to identify and write
– But alternate courses are critical for correctness and completeness;

robustness
 Don’t focus on things outside the use case

– Such as how you get there or what happens afterwards
– Watch out for “long form” use case templates!

 Don’t spend a month deciding whether to use includes or extends

Hadar Ziv / ziv@ics.uci.edu

What Can Be Done About It?

 Question everything, even the basic definitions of
relationships between
 Use cases to Goals (1:1?)

 Use cases to Scenarios (1:m?)

 Goals to Scenarios?

 All of the above to design and implementation???

Hadar Ziv / ziv@ics.uci.edu

Use Cases and Goals

 Use cases correspond to goals
– A goal is a “desired state of affairs” (Schank/Wilensky)

 Goals have nontrivial structure and relationships
– At least hierarchical but could be more complex
– We need better understanding and analysis of goals

 ATM example
– High-level stakeholder goals

» Increase the bank’s business success
» Increase market share
» Provide greater access to banking services

– Low-level goals
» Terminate a user’s session
» Authenticate a user’s ATM card and PIN
» Withdraw $200 cash from user’s account

Hadar Ziv / ziv@ics.uci.edu

(Partial) Requirements Goal Graph

increase Bank’s
business success

increase profitability

increase productivity increase market share

invest in automation

automate human teller
banking services
using Automated
Teller Machines

(or ATMs)

increase customer satisfaction

provide greater access
to banking services

more
available

hours

more
available
locations

safe
and

secure

convenient
and

easy to use
minimize total

system development
and deployment costs

Hadar Ziv / ziv@ics.uci.edu

Use Cases and Scenarios

 Use cases contain a family of related scenarios
– Within a single use case, scenarios may have nontrivial structure
– Across use cases, scenarios are often referred to, reused, or linked

in nontrivial ways
– Often, containment becomes confinement!

 Scenarios
– A sequence of events that corresponds to a purposeful use of a

system
– “Purposeful uses” are characterized by associated goals

 Episodes
– Subsequences of events contained within a surrounding scenario
– Correspond to the pursuit of subgoals
– Example episodes: Login, Logout, Authenticate

Hadar Ziv / ziv@ics.uci.edu

Goals and Scenarios

 Software requirements
– Involve many goals at many different levels of

abstraction/detail
» “provide” goals
» “prevent” goals

 Goals and Scenarios
– A high-level “provide” goal typically corresponds to a

single usage scenario
– A low-level “provide” or “prevent” goal typically

corresponds to a single plan of action or “episode”
– Therefore, a usage scenario consists of multiple

episodes addressing multiple goals!

Hadar Ziv / ziv@ics.uci.edu

A Family of ATM Scenarios

Insert ATM Card

Give PIN to Access
Your Account

Withdraw
Cash

Make
Deposit

Find
Balance

Log
Off

ATM Machine
Returns Your ATM Card

Choose a
Transaction

Hadar Ziv / ziv@ics.uci.edu

A Family of ATM Scenarios (Cont’d)
1. "Login Episode"
2. The ATM presents, in English, a choice of transactions the customer may perform.
3. Iteration *:

 1. Alternatives:
 1. Alternative:

 1. The customer selects "Withdraw cash".
 2. "Withdraw Cash Episode“
 2. Alternative:
 1. The customer selects "Make deposit".
 2. "Deposit Funds Episode“
 3. Alternative:
 Guard: Customer has more than one account.

 1. The customer selects "Transfer funds".
 2. "Transfer Funds Episode"
 4. Alternative:
 1. The customer selects "Balance".
 2. "Balance Episode"
 2. ATM presents, in French, a choice of transactions the customer may
perform.
4. The customer selects "Done".
5. The ATM ejects the ATM card and beeps until the customer withdraw it.
6. The customer withdraws the card.

Hadar Ziv / ziv@ics.uci.edu

A Sample Login Episode

 1. The customer inserts an ATM card into an
ATM.

 2. The ATM presents a choice of languages.

 3. The customer selects English.

 4. The ATM prompts for a PIN.

 5. The customer enters the
PIN for his/her ATM card.

Hadar Ziv / ziv@ics.uci.edu

A Sample Withdraw Cash Episode

 1. The customer selects "Withdraw cash".

 2. The ATM presents the accounts from which the
customer can withdraw.

 3. The customer selects "Checking".

 4. The ATM prompts for an amount to withdraw.

 5. The customer enters $200.

 6. The ATM dispenses the requested amount of cash.

 7. The ATM prints a receipt.

 8. The ATM presents a choice of transactions
the customer may perform.

Hadar Ziv / ziv@ics.uci.edu

Example of Scenario Goal Analysis:
g2: Use ATM to

withdraw $200 cash
from your checking

account

g2a: Get access to
ATM banking

services in your
language

g2b: Use ATM’s
Cash Withdrawal

service to withdraw
$200 in cash

g2c: Finish ATM
session properly

g2b1:
choose

transaction
“Withdraw

Cash”

g2b2:
designate
“Checking
Account” to

use for
withdrawal

g2b3:
specify
$200 as

amount to
withdraw

g2b4:
collect cash

& receipt
dispensed
by ATM

{6,7} {8,9} {10,11} {12,13}

g2a1:
insert

ATM card

g2a2: select
French as

UI language

g2a3: enter
PIN for

ATM card

{1} {2,3} {4,5}

g2c1:
choose

transaction
“Done”

g2c2:
collect ATM
card from
machine

{14,15} {16,17}

Hadar Ziv / ziv@ics.uci.edu

ATM AND/OR Goal Analysis

Access and
Authorization

Goals

AND

grant access to
qualified users

deny access to
unqualified users

Allow users who
have been granted
access to perform

authorized
transactions

OR

make deposit
D

find current
account balance

B

withdraw cash
amount W

credit deposit D
to balance B
B ← B + D,

tell customer
when B is

available for
withdrawal

debit withdrawal
from balance B

B ← B - W

withdrawal
permitted if

AND

W ≤ Balance B W ≤ Bank’s daily
withdrawal limit L

W ≤ ATM’s
cash C available

to dispense

GOAL G1

GOAL G4 GOAL G2
GOAL G3

Hadar Ziv / ziv@ics.uci.edu

Concerns and Aspects

 Goals correspond to concerns
– “provide” concerns

» Withdraw money, Deposit money, Transfer money
– “prevent” concerns

 Aspects correspond to cross-cutting concerns
– Typically “prevent” concerns

» User access/authentication, data integrity, transaction integrity

 A requirements-level usage-scenario
– Will be written as a collection of episodes
– Will be designed to address multiple concerns
– Will be implemented using “regular” code + aspects for

the cross cutting concerns

Hadar Ziv / ziv@ics.uci.edu

Use Cases and Aspects

 According to Jacobson,
– All use cases are extensions to the “null system”

 He sees a relationship between use cases and aspects, such
that
– aspects ≈ extensions
– join points ≈ extension points

 AOP allows us to
– Separate use case extensions all the way down to code
– Compose back extensions before execution

 Thus, AOP supports extensions
– Ivar Jacobson, “Use cases and aspects – Working together.”

Hadar Ziv / ziv@ics.uci.edu

Summary and Recommendations

 Be aware of “top ten” lists of use case mistakes,
misuse, and “abuse cases”
– Beware each article has a different list!
– Beware articles provide different, sometimes

conflicting advice!
 Consider goals and scenarios

– When writing use cases or instead of writing them
– Perform goal analysis and goal decomposition
– Perform scenario analysis and scenario composition

(from episodes)
– Design and implement using concerns and aspects (for

cross-cutting concerns)

